next up previous
Next: ÓÐÏòÍøÂç Up: ÍøÂçÉϵľ²Ì¬¼¸ºÎÁ¿ Previous: ÍøÂçÉϵľ²Ì¬¼¸ºÎÁ¿

ÎÞÏòÍøÂç

Ä¿Ç°Òѵõ½Ñо¿µÄµäÐÍÎÞÏòÍøÂç°üÀ¨£ºInternetÍøÂ磬µçÓ°ÑÝÔ±ºÏ×÷ÍøÂ磬¿Æѧ¼ÒºÏ×÷ÍøÂ磬ÈËÀàÐÔ¹ØϵÍøÂ磬µ°°×ÖÊ»¥×÷ÓÃÍøÂ磬 ÓïÑÔѧÍøÂ磬µ°°×ÖÊÕÛµþ¹ØϵÍøÂç¡£

ÎÞÏòÍøÂçµÄ»ù±¾¼¸ºÎÁ¿[1,2]ÓУº¶È¼°Æä·Ö²¼ÌØÕ÷£¬¶ÈµÄÏà¹ØÐÔ£¬¼¯¾Û³Ì¶È¼°Æä·Ö²¼ÌØÕ÷£¬×î¶Ì¾àÀë¼°Æä·Ö²¼ÌØÕ÷£¬½éÊý£¨Betweenness£© ¼°Æä·Ö²¼ÌØÕ÷£¬Á¬Í¨¼¯ÍŵĹæÄ£·Ö²¼¡£

Ò»¸ö¶¥µãµÄ¶ÈÊÇÖ¸Óë´Ë¶¥µãÁ¬½ÓµÄ±ßµÄÊýÁ¿£¬¼´

dv = $\displaystyle \sum_{{l\in E}}^{}$$\displaystyle \delta^{{v}}_{{l}}$, (1)
ÆäÖÐ $ \delta^{{v}}_{{l}}$¼ÇºÅȡֵΪ1µ±±ßl°üº¬¶¥µãv£¬·ñÔòΪÁ㣬¼´

$\displaystyle \delta^{{v}}_{{l}}$ = $\displaystyle \left\{\vphantom{ \begin{array}{ll} %array ±íʾ¾ØÕóµÄ¿ªÊ¼,ll˵µÄÊ...
...vetex $v$\ included in edges $l$} \\
0 & \mbox{if not}
\end{array} }\right.$$\displaystyle \begin{array}{ll} %array ±íʾ¾ØÕóµÄ¿ªÊ¼,ll˵µÄÊÇÁ½ÐÐ,×ó¶ÔÆë.
1 & \mbox{if vetex $v$\ included in edges $l$} \\
0 & \mbox{if not}
\end{array}$; (2)
ͬʱΪÁËÒÔºó±íÊö·½±ã£¬ÎÒÃǶ¨ÒåÆäËûÁ½ÖÖÀàÐ͵Ä$ \delta$¼ÇºÅ£¬ $ \delta^{{uv}}_{}$Óë $ \delta_{{lm}}^{}$·Ö±ð±íʾ¶¥µãÏàÁÚÓë±ßÏàÁ¬£»¶ÔÓÚÏÂÒ»½ÚÖеÄÓÐ ÏòÍøÂ磬 $ \delta^{{uv}}_{}$Óë $ \delta^{{vu}}_{}$·Ö±ð±íʾ´Óuµ½vµÄÓÐÏòÁª½ÓºÍ±íʾ´Óvµ½uµÄÓÐÏòÁª½Ó£¬ $ \delta_{{lm}}^{}$ÍƹãΪ $ \delta_{{l\rightarrow m}}^{}$,$ \delta_{{l\leftarrow m}}^{}$,$ \delta_{{l\rightarrow\leftarrow m}}^{}$$ \delta_{{l\leftrightarrow m}}^{}$£» ¶ÔÓÚ¼ÓȨÍøÂ磬ÓüǺŠWuv$ \delta^{{uv}}_{}$´úÌæ $ \delta^{{uv}}_{}$¾Í¿ÉÒÔÍêÕûµØÃèÊö£¬ÆäÖÐWuv±íʾu¡¢vÖ®¼äÁª½ÓµÄȨÖØ¡£

$ \forall$v $ \in$ VÎÒÃǶ¼¿ÉÒԵõ½Æä¶Èdv¡£¶ÈÖµµÄ·Ö²¼ÌØÕ÷ÊÇÍøÂçµÄÖØÒª¼¸ºÎÐÔÖÊ¡£¹æÔòÍøÂç¸÷¶¥µã¶ÈÖµÏàͬ£¬Òò¶ø·ûºÏ$ \delta$·Ö²¼£¬ Ëæ»úÍøÂç·ûºÏ²´ËÉ·Ö²¼£¨¼û3.1½Ú£©£¬´óÁ¿Êµ¼ÊÍøÂç´æÔÚÃÝÂÉÐÎʽµÄ¶È·Ö²¼[1,2]£¬³ÆΪÎÞ±ê¶È ÍøÂ磨Scale Free Networks£©£¬°üÀ¨InternetÍøÂç[44,45]£¬µçÓ°ÓëµçÊÓ¾çÑÝÔ±ºÏ×÷ÍøÂç[18,32,46]£¬¿Æѧ¼ÒºÏ×÷ÍøÂç[66,67]£¬ ÈËÀàÐÔ¹ØϵÍøÂç[47]£¬µ°°×ÖÊ»¥×÷ÓÃÍøÂç[48]£¬ÓïÑÔѧÍøÂç[49]µÈ£¬Í¬Ê±»¹´æÔÚ¸ß˹ ÐÍ£¬Èçµ°°×ÖÊÕÛµþÍøÂç[46]£¬ºÍÖ¸ÊýË¥¼õÐ͵ĸÅÂÊ·Ö²¼£¬ÈçµçÊÓ¾çÑÝÔ±ºÏ×÷ÍøÂç[46]¡£

½øÒ»²½µÄÎÊÌâÊÇ£¬ÊÇ·ñ¶È·Ö²¼¿ÉÒÔÍ걸µØÃèÊöÍøÂçµÄÌØÕ÷ÄØ£¿Èç¹û¶È·Ö²¼ÓëÍøÂçÒ»Ò»¶ÔÓ¦£¬ÎÒÃǾÍ˵¶È·Ö²¼¿ÉÒÔÍêÕûµØÃèÊöÍøÂ磬ÍøÂçÒ²Ö»Ðè ÒªÓöȷֲ¼À´ÃèÊö¡£ÊÔÏë¶ÔÓÚÒ»¸ø¶¨µÄ¶È·Ö²¼£¬Í¨¹ý³éÑù£¬ÎÒÃÇ¿ÉÒÔ¸ø¶ÔÓ¦ÍøÂçµÄÿһ¸ö¶¥µãÒ»¸ö¶ÈÖµ£¬±£³Ö¶ÈÖµµÄÈÎÒâÒ»ÖÖÁ¬½Ó·½Ê½¶¼¹¹ ³ÉÒ»ÖÖÍøÂç¡£Èç¹ûÈÎÒâÒ»ÖÖÁ¬½Ó¶ÔÓ¦µÄÆäËû¼¸ºÎÁ¿¶¼Ò»Ñù£¬ÔòÎÒÃÇÈÏΪʵ¼ÊÉÏΪͬһÍøÂç¡£µ«ÊÇÏÔÈ»²»Äܱ£Ö¤ÆäËû¼¸ºÎÁ¿Ò²¶¼Ò»Ñù¡£ÄÇô£¬ ±£³Ö¶ÈÖµ²»±äµÄËæ»úÁ¬½Ó£¬¼´¶ÈÓë¶ÈÖ®¼äûÓÐÏà¹ØÐÔ£¬ÊÇ·ñ¿ÉÒÔ³ÉΪ´ó¶àÊýÍøÂçµÄ´ú±íÄØ£¿ËùÒԶȷֲ¼Ö®¼äµÄÏà¹ØÐÔÊÇÁíÒ»¸öÖØÒªµÄ¼¸ºÎÁ¿¡£ Newman°ÑËü³ÆΪ¡°Æ¥Åäģʽ¡±[16]£¬Òâ˼ÊÇ¿¼²ì¶ÈÖµ´óµÄµãÇãÏòÓںͶÈÖµ´óµÄµãÁ¬½Ó£¬»¹ÊÇÇãÏòÓںͶÈֵСµÄµãÁ¬½Ó¡£¾ßÌåµÄ·½·¨ÊÇ£¬Í¨¹ýÈÎÒâÒ»Ìõ ±ß¶¼¿ÉÒÔÕÒµ½Á½¸ö¶¥µã£¬½ø¶øµÃµ½Á½¸ö¶ÈÖµ£¬ÕâÑùͨ¹ýËùÓеıßÎÒÃǾ͵õ½ÁËÁ½¸öÐòÁУ¬·ÖÎöÕâÁ½¸öÐòÁеÄÏà¹ØÐÔ¼´¿É¡£Ñо¿±íÃ÷ʵ¼Ê ÍøÂç´æÔÚÒ»¶¨³Ì¶ÈÉϵÄÆ¥Åäģʽ£¬ÓеÄÍøÂçÕýÏòÆ¥Å䣬ҲÓеÄÍøÂç·´ÏòÆ¥Åä¡£µ«ÊÇ£¬ÓÉÓÚÊÇÎÞÏòÍøÂ磬°ÑÄÄÒ»¸ö¶¥µãµÄ¶È·ÅÈëÐòÁÐa£¬°Ñ ÄÄÒ»¸ö¶¥µãµÄ¶È·ÅÈëÐòÁÐbÊÇÈÎÒâµÄ£¬ÕâÒ»µã¶ÔÓÚÏà¹ØÐÔ·ÖÎöµÄÓ°Ï첢ûÓеõ½Ñо¿¡£Êµ¼ÊÍøÂçµÄ·ÖÎö±íÃ÷£¬²»Í¬µÄÍøÂç´æÔÚ²»Í¬µÄÆ¥Åä ģʽ£¬ÓÐÕýÏà¹ØÒ²ÓиºÏà¹Ø¡£

¼¯¾Û³Ì¶ÈµÄÒâÒåÊÇÍøÂ缯ÍÅ»¯µÄ³Ì¶È£¬¼´¿¼²ìÁ¬½ÓÔÚÒ»ÆðµÄ¼¯ÍŸ÷×ԵĽüÁÚÖ®ÖÐÓжàÉÙÊǹ²Í¬µÄ½üÁÚ¡£Ò»ÖÖ¶¨ÒåÊǶÔÓÚÿһ¸ö¶¥µãv£¬ÕÒ µ½Æä½üÁÚ¼¯ºÏNv£¬¼Ç n = $ \left\vert\vphantom{N_v}\right.$Nv$ \left.\vphantom{N_v}\right\vert$£¬NvÖдæÔڵıߵÄÊýÁ¿Îª

M = $\displaystyle \sum_{{l\in E; x,y \in N_v}}^{}$$\displaystyle \delta^{{x}}_{{l}}$$\displaystyle \delta^{{y}}_{{l}}$, (3)
Ôò

Cv = $\displaystyle {\frac{{M}}{{C^{2}_{n}}}}$. (4)
ÓÚÊÇÎÒÃÇ¿ÉÒԵõ½ËùÓж¥µãµÄ¼¯¾Û³Ì¶È£¬ËüµÄͳ¼Æ·Ö²¼ÊÇ¿Ì»­ÍøÂçµÄÒ»¸öÖØÒª¼¸ºÎÁ¿£¬Æäƽ¾ùÖµ³ÆΪƽ¾ù¼¯¾Û³Ì¶ÈC¡£

Á½µãµÄ×î¶Ì·¾¶lij¶¨ÒåΪËùÓÐÁ¬Í¨ $ \left(\vphantom{i,j}\right.$i, j$ \left.\vphantom{i,j}\right)$µÄͨ·ÖУ¬Ëù¾­¹ýµÄÆäËû¶¥µã×îÉÙµÄÒ»Ìõ»ò¼¸Ìõ·¾¶¡£¼Ç $ \left(\vphantom{i,j}\right.$i, j$ \left.\vphantom{i,j}\right)$ Ö®¼ä×î¶Ì·¾¶µÄ¼¯ºÏΪSij£¬ÏàÓ¦µÄ·¾¶³¤¶ÈΪ dij = $ \left\vert\vphantom{l_{ij}}\right.$lij$ \left.\vphantom{l_{ij}}\right\vert$¡£Èç¹û $ \left(\vphantom{i,j}\right.$i, j$ \left.\vphantom{i,j}\right)$Ö®¼ä²»´æÔÚͨ·£¬ÄÇô¼Çdij = N¡£ÓÚÊÇÎÒÃÇ¿ÉÒԵõ½ Ò»¸öN x NµÄ¾ØÕó $ \left(\vphantom{d_{ij}}\right.$dij$ \left.\vphantom{d_{ij}}\right)_{{N\times N}}^{}$¡£Æä·Ö²¼ÌØÕ÷ÊÇÒ»¸öÖØÒªµÄÈ«¾Ö¼¸ºÎÁ¿£¬Æäƽ¾ùÖµ³ÆΪƽ¾ù×î¶Ì·¾¶d¡£

ÁíÒ»¸öÖØÒªµÄÈ«¾Ö¼¸ºÎÁ¿ÊǽéÊý£¨Betweenness£©[17]¡£¶¥µãuµÄ½éÊýº¬ÒåΪÍøÂçÖÐËùÓеÄ×î¶Ì·¾¶Ö®ÖУ¬¾­¹ýuµÄÊýÁ¿¡£ Ëü·´Ó³Á˶¥µãuµÄÓ°ÏìÁ¦¡£¼Ç $ \left(\vphantom{i,j}\right.$i, j$ \left.\vphantom{i,j}\right)$Ö®¼ä×î¶Ì·¾¶µÄ¼¯ºÏΪSij£¬¶¥µãuµÄ½éÊý¶¨ÒåΪ

Bu = $\displaystyle \sum_{{i,j}}^{}$$\displaystyle {\frac{{\sum_{l\in S_{ij}}\delta^{u}_l}}{{\left\vert S_{ij}\right\vert}}}$. (5)
ÓÉ´Ë¿ÉÒԵõ½Ã¿Ò»¸ö¶¥µãµÄ½éÊýBv¡£ÊµÖ¤Ñо¿±íÃ÷£¬´óÁ¿Êµ¼ÊÍøÂçµÄ½éÊý·Ö²¼Ò²ÓµÓй²Í¬µÄͳ¼ÆÌØÕ÷[17]¡£ÀàËƵأ¬ ¿ÉÒÔ¶¨Òå±ßµÄ½éÊý£¬NewmanµÈÈË·¢ÏÖ£¬±ßµÄ½éÊý¿ÉÒÔÓÃÓÚ·ÖÎö¶¥µãµÄ¾ÛÀà[24]¡£Æä»ù±¾Ë¼ÏëÊÇÔÚ°üº¬²»Í¬¼¯ÍŵÄÍøÂçÖÐ ËùÓÐ×î¶Ì·¾¶¾­¹ý´ÎÊý×î¶àµÄ±ß£¬Ò²¾ÍÊǽéÊý×î´óµÄ±ß£¬±ØÈ»ÊÇÁª½ÓÁ½¸ö¼¯ÍÅÖ®¼äµÄ±ß¡£µ±È»£¬½¨Á¢ÔÚÁª½Ó¸³È¨»ù´¡É쵀 Hierarchical Clustering¾ÛÀàËã·¨Ò²Äܸø³öÍøÂçÉ϶¥µãµÄ·ÖÀà¡£

Á¬Í¨¼¯ÍÅÊÇÖ¸GµÄÒ»¸ö×Óͼ£¬ÔÚÕâ¸ö×ÓͼÄÚ£¬ÈÎÒâÁ½µãÖ®¼ä¶¼´æÔÚͨ·¡£Ò»¸öÍøÂç¿ÉÄÜ´æÔÚ¶à¸öÏ໥¶ÀÁ¢µÄÁ¬Í¨¼¯ÍÅ¡£ÔÚÉøÁ÷Ä£ÐÍÖУ¬ µ±ÏµÍ³´¦ÓÚÁÙ½ç״̬ʱ£¬Á¬Í¨¼¯ÍŵĹæÄ£³ÊÏÖ³öÃÝÂÊ·Ö²¼¡£ÊµÖ¤Ñо¿±íÃ÷£¬¶ÔÓÚ´óÁ¿µÄScale-free ÍøÂ磬Á¬Í¨¼¯ÍŵĹæÄ£Ò²´æÔÚÃÝÂÊ·Ö²¼[1]¡£

¹ØÓÚÎÞÏòÍøÂçµÄ¶È·Ö²¼»¹´æÔÚÁíÍâÒ»ÖÖÐÎʽ¡£¼ÆËã½üÁÚ¶¥µãµÄÊýÄ¿µÃµ½¶ÈÖµ£¬È»ºó°ÑËùÓж¥µãµÄ¶ÈÖµ¹éÒ»»¯ºóÔٰѽüÁÚ¶¥µãµÄ¶ÈÖµÏà¼ÓµÃ µ½¶¥µãµÄ¶þ´Î¶ÈÖµ£¬Öظ´ ÕâÒ»¹ý³Ì£¬Ö±µ½µÃµ½Îȶ¨µÄ¶ÈÖµ[6]¡£ÕâÑùµÃµ½µÄÿһ¸ö¶¥µãµÄ¶Èֵʵ¼ÊÉÏÊÇÁÚ½Ó¾ØÕóµÄ×î´ó±¾Õ÷Öµ¶ÔÓ¦µÄ±¾Õ÷ÏòÁ¿£¬ÉÏÊö¹ý³Ìʵ¼ÊÉϾÍÊÇ¾Ø Õó±¾Õ÷ÖµµÄ×îËÙϽµ·¨¡£µ«ÊÇÕâÑùµÄ¶È·Ö²¼¾ßÓеļ¸ºÎÒâÒåĿǰûÓеõ½Ñо¿¡£



wwwwjs 2004-01-04