next up previous
Next: About this document ... Up: 从统计物理学看复杂网络研究 Previous: 致谢

Bibliography

1
Réka Albert and Albert-László Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74(2002),47-97.

2
S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks, Adv. Phys., 51(2002), 1079 - 1187.

3
S.H. Strogatz, Exploring comlex networks, Nature, 410(2001), 268-276.

4
SIS: Faster Breaking Papers, http://www.esi-topics.com/fbp/fbp-december2002.html.

5
B. Bollobás, Modern Graph Theory (Springer-Verlag, New York, 1998); Random Graph (Academic, London, 1985).

6
J. Scott, Social Network Analysis: A Handbook (London: Sage Publications, 1991).

7
D.J. Watts and S.H. Strogatz, Collective dynamics of 'small-world' Networks, Nature, 393(1998), 440-442.

8
A.-L. Barabási, Z. Dezso, E. Ravasz, S.H. Yook and Z. Oltai, Scale-free and Hierarchical structures in complex networks, unpublished, http://www.nd.edu/$ \sim$networks/papers.htm.

9
M.E.J. Newman, S.H. Strogatz and D.J. Watts, Random graph with arbitrary degree distribution and their applications, Phys. Rev. E, 64(2001), 02618.

10
A. Ramezanpour and V. Karimipour, Simple models of small-world networks with directed links, Phys. Rev. E 66(2002), 036128.

11
S.H. Yook, H. Jeong and A.-L. Barabási, Weighted evolving networks, Phys. Rev. Lett., 86(2001),5835-5838.

12
V. Latora and M. Marchiori, Economic small-world behavior in weighted networks, Eur. Phys. J. B 32(2003), 249-263.

13
C. Moore and M.E.J. Newman, Epidemics and percolation in small-world networks, Phys. Rev. E, 61(2000), 5678-5682.

14
N. Schwartz, R. Cohen, D. ben-Avraham, A.-L. Barabási ans S. Havlin, Percolation in directed scale-free networks, Phys. Rev. E, 66(2002), 015104(R).

15
L.F. Lago-Fernandez, R. Huerta, F. Corbacho and J.A. Siguenza, Fast response and temporal coherent oscillations in Small-World Networks, Phys. Rev. Lett., 84, 2758-2761.

16
M.E.J. Newman, Assortative Mixing in Networks, Phys. Rev. Lett., 89(2002), 208701; M.E.J Newman, Mixing pattern in Networks, Phys. Rev. E, 67(2003), 026126.

17
K.-I. Goh, E. Oh, B. Kahng and D. Kim, Betweeness centrality correlation in social networks, Phys. Rev. E, 67(2003), 017101.

18
A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286(1999), 509-512.

19
S.N. Dorogovtsev, J.F.F. Mendes and A.N. Samukhin, Structure of growing networks with preferential linking, Phys. Rev. Lett., 85(2000), 4633-4636.

20
P.L. Krapivsky, S. Redner and F. Leyvraz, Connectivity of growing random networks, Phys. Rev. Lett., 85(2001), 4629-4632.

21
A.-L. Barabási, R. Albert and H. Jeong, Mean-field theory for scale-free random networks, Physica A, 272(1999), 173-187.

22
S.H. Yook, H. Jeong and A.-L. Barabasi, Modeling the Internet's Large-Scale Topology, PNAS 99(2002), 13382-13386.

23
P.L. Krapivsky, S. Redner and F. Leyvraz, Connectivity of Growing Random Networks, Phys. Rev. Lett., 85(2000), 4629-4632.

24
M. Girvan and M. E. J. Newman, Community structure in social and biological networks, PNAS, 99(2002), 7821-7826.

25
Per Bak, How Nature Works: The Science of Self-Organised Criticality (Copernicus Press, New York, 1996).

26
J.-L. Guillaume and M. Latapy, The web graph: an overview, Proceedings of Algotel 2002, http://citeseer.nj.nec.com/guillaume02web.html

27
A.Z. Broader, S.R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins and J.L. Wiener, Graph structure in the web, WWW9/Computer Networks, 33(1-6)(2000), 309-320.

28
Aiello, W., F. Chung, and L. Lu, A random graph model for massive graphs, Proceedings of the 32nd ACM Symposium on the Theory of Computing (ACM, NewYork, 2000), 171-180.

29
R. Kumar, P. Raghavan, S. Rajalopagan, and A. Tomkins, Proceedings of the 9th ACM Symposium on Principlesof Database Systems (1999), p.1.

30
L. A. Adamic and B. A. Huberman, Power-law distribution of the world wide web, Science 287(2000), 2115.

31
L. A. Adamic and B. A. Huberman, Growth dynamics of the World Wide Web, Nature 401(1999), 131.

32
R. Albert and A.-L. Barabási, Topology of evolving networks: local even and universality, Phys. Rev. Lett., 85(2000), 5234-5237.

33
B. Tadic, Dynamics of directed graphs: the world-wide web, Physica A, 293(2001), 273-284.

34
C. Cooper and A. Frieze, A general model of web graph, In ESA, 500–511, 2001.

35
H. Jeong, Z. Néda and A.-L. Barabási, Measuring preferential attachment in evolving networks, Europhys. Lett. 61(2003), 567-572.

36
伍法岳,杨展如,相变与临界现象V--模型理论综述,《物理学进展》,Vol 1 (1981),No. 4, 525-541。

37
C. Moore and M.E.J. Newman, Exact solution of the site and bond percolation on small-world networks, Phys. Rev. E, 62(2000), 7059-7064.

38
A.L. Lloyd and R.M. May, How virus spread among computers and people, Science, 292(2001), 1316-1317.

39
R. Paster-Satorras and A. Vespignani, Epidemics spreading in scale-free networks, Phys. Rev. Lett. 86(2001), 3200-3203.

40
S.A. Pandit and R.E. Amritkar, Characterization and control of small-world networks, Phys. Rev. E, 60(1999), R1119-1122.

41
A.E. Motter, T. Nishikawa and Y.-C. Lai, Range-based attack on links in scale-free networks: Are long-range likns responsible for the small-world phenomenon?, Phys. Rev. E, 66(2002), 065103(R).

42
R. Albert, H. Jeong, A.-L. Barabási, Error and attack tolerance of complex networks, Nature, 406(2000), 378-382.

43
P. Holme, B.J. Kim, C.N. Yoon and S.K. Han, Attack vulnerability of complex networks, Phys. Rev. E, 65(2002), 056109.

44
M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the Internet topology, Comput. Commun. Rev. 29(1999), 251.

45
R. Govindan, and H. Tangmunarunkit, Heuristics for Internet Map Discovery, in Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel (IEEE, Piscataway, N.J.), 3(2000), 1371.

46
L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, Classes of small-world networks, Proc. Natl. Acad. Sci. U.S.A. 97(2000), 11149-11152.

47
F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Aberg, The Web of Human Sexual Contacts, Nature (London) 411(2001), 907-908.

48
H. Jeong, S. P. Mason, Z. N. Oltvai, and A.-L. Barabási, Lethality and centrality in protein networks, Nature (London) 411(2001), 41-42.

49
R. Ferrer i Cancho, and R. V. Solé, The small-world of human language, Proceedings of the Royal Society of London,B 268 (2001), 2261-2266..

50
R. Albert, H. Jeong, and A.-L. Barabási, Nature (London), The Diameter of World Wide Web, 401(1999), 130-131.

51
H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, The large-scale organization of metabolic networks, Nature (London) 407(2000), 651-654.

52
D. A. Fell and A. Wagner, The small world of metabolism, Nat Biotechnol18(2000), 1121-1122.

53
R. J. Williams, N. D. Martinez, E. L. Berlow, J. A. Dunne, and A.-L. Barabási, Two Degrees of Separation in Complex Food Webs, Santa Fe Institute Working Papers, 01-07-036.

54
J.A. Dunne, R.J. Williams and N.D. Martinez, Food-web structure and network theory: The role of connectance and size, PNAS 99(2002), 20, 12917-12922.

55
J. Camacho, R. Guimerá , and L. A. N. Amaral, Analytical solution of a model for complex food webs, Phys Rev E 65(2002), 030901R.

56
J. Camacho, R. Guimerá , and L. A. N. Amaral, Robust Patterns in Food Web Structure, Phys. Rev. Lett 88(2002), 228102.

57
J.A. Dunne, R.J. Williams and N.D. Martinez, Network structure and biodiversity loss in food webs: robustness in cress with connectance, Ecol. Lett., 5(2002), 558-567.

58
D. Garlaschelli, G. Caldarelli and L. Pietronero, Universal scaling relation in food webs, Nature 423(2003), 165-168.

59
J.R. Banavar, A. Maritan and A. Rinaldo, Size and form in efficient transportation networks, Nature 399(1999), 130-132.

60
S.N. Forogovtsev, A.V. Goltsev and J.F.F. Mendes, Ising model on networks with an arbitrary distribution od connections, Phys. Rev. E, 66(2002), 016104.

61
C.P. Herrero, Ising model in small-world networks, Phys. Rev. E, 65(2002), 066110.

62
F. Medevedyeva, P. Holme, P. Minnhagen and B.J. Kim, Dynamic critical behavior of the XY model in small-world networks, Phys. Rev. E, 67(2003), 036118.

63
A.V. Golsev, S.N. Forogovtsev, and J.F.F. Mendes, Critical phenomena in networks, Phys. Rev. E, 67(2003), 026123.

64
Z. Dezsö and A.-L. Barabási, Halting viruses in scale-free networks, Phys. Rev. E 65(2002), 055103(R).

65
Sidney Redner, How popular is your paper? An empirical study of the citation distribution, Eur. Phys. J. B, 4(1998), 131-134.

66
M. E. J. Newman, Scientific collaboration networks. I. Network construction and fundamental results, Phys. Rev. E64(2001), 016131; M. E. J. Newman, Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality, Phys. Rev. E64(2001), 016132;

67
A.-L. Barabasi, H. Jeonga, Z. Neda, E. Ravasz, A. Schubert and T. Vicsek, Evolution of the social network of scientific collaborations, Physica A 311(2002), 590-614.

68
L. Egghe and R. Rousseau, A Measure for the Cohesion of Weighted Networks, J. Amer. Soci. Info. Sci. Tech., 542003, 193–202.

69
R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, England, 1999).

70
J.-P. Bouchaud and M. Potters, Theory of Financial Risk (Cambridge University Press, Cambridge, England, 1999).

71
R.M. Anderson and R.M. May, Infectious Disease of Humans: Dynamics and Control (Oxford Univ. Press, Oxford, 1991).

72
K. Hubacek and S. Giljum, Applying physical input-output analysis to estimate land appropriation (ecological footprints) of international trade activities, Ecological Economics 44(2003) 137-151.

73
M. Girvan and M.E.J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA 99, 7821-7826.

74
T.H. Cormen, C.E. Leiseison, R.L. Rivest and C. Stein, Introduction to Algorithm (MIT Press, 2001).



wwwwjs 2004-01-04