
Supplementary Figures

Supplementary Figure S1: Identifying all minimum sets of driver nodes in a directed network
associated with structural matrix. (a) A directed network with structural matrix A, matrix A− λMIN

and the column canonical form of matrix A − λMIN , where λM is eigenvalue of A resulting in the
maximum geometric multiplicity µ(λM). (b)-(d), four configurations of drivers as marked by red and
relevant column canonical form of matrix A − λMIN in which the rows that are linearly dependent on
others are marked by red. There is a one-to-one correspondence between the drivers and the rows that
are linearly dependent on others in the column canonical form. The number of drivers are fixed, as
determined by µ(λM) = 4. We have checked in the four configurations, all the drivers identified by
our method are unmatched nodes according to the maximum matching algorithm. There are totally four
maximum matchings for this network, which are exactly the same as our findings.
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Supplementary Figure S2: Controllability measure nD of (a) undirected ER random network, (b)
undirected BA network, (c) directed ER network and (d) directed BA network of different network
sizes. p is the probability of having an undirected or a directed link between any pair of nodes in the ER
networks, and ⟨k⟩ is the average degree of the BA networks. For the directed BA network, we randomly
assign each link a direction and the average degree is the sum of average in- and out- degrees. The
data points are obtained from the maximum multiplicity theory and the curves are the results from the
cavity method. For ER networks with small and large values of p and BA networks, the results from the
cavity method are based on Eqs. (S26) and (S31), respectively. In the thermodynamic limit, the results
of cavity method are from Eqs. (S37) and (S38). All numerical results are obtained by averaging over 10
independent network realizations.
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Supplementary Table

Supplementary Table S1: Summary of the real unweighted and weighted networks analyzed in the
paper.

Index Name N L Class Desciption
Trust 1 Prison inmate [60, 61] 67 182 Unweighted Social networks of positive sentiment(prisoninmates).

2 WikiVote [62] 7115 103689 Unweighted Who-vote-whom network of Wikipedia users.
Food web 3 St.martin [63] 45 224 Unweighted Food Web in YthanEstuary.

4 Seagrass [64] 49 226 Unweighted Food Web in Seagrass.
5 Grassland [65] 88 137 Unweighted Food Web in Grassland.
9 Ythan [65] 135 601 Unweighted Food Web in Ythan.
6 Mangrove [66] 97 1492 Weighted Food Web in Mangrove.
7 Florida Baydry [66] 128 2137 Weighted Food Web in Baydry.
8 Florida Baywet [66] 128 2106 Weighted Food Web in Florida.
10 Silwood [67] 154 370 Unweighted Food Web in Silwood.
11 Littlerock [68] 183 2494 Unweighted Food Web in Littlerock.

Electronic circuits 12 s208a [69] 122 189 Unweighted Electronic sequential logic circuit.
13 s420a [69] 252 399 Unweighted Same as above.
14 s838a [69] 515 819 Unweighted Same as above.

Neuronal 15 C.elegans [70] 297 2359 Unweighted Neural network of C.elegans.
Citation 16 Small World [71] 233 1988 Unweighted Citation network in S.Milgram’s Small World(1967).

17 SciMet [71] 2729 10416 Unweighted Citation network in Scientometrics(1978-2000).
18 Kohonen [72] 3772 12731 Unweighted Citation network in T.Kohonen’s Small World.

World Wide Web 19 Polblogs [73] 1224 19090 Unweighted Hyper links between web logs on US politics.
Internet 20 P2P-1 [74] 10876 39994 Unweighted Gnutella peer-to-peer file sharing network.

21 P2P-2 [74] 8846 31839 Unweighted Same as above.
22 P2P-3 [74] 8717 31525 Unweighted Same as above.

Organizational 23 Freeman-1 [75] 34 695 Unweighted Social network of network researchers.
24 Consulting [76] 46 879 Unweighted Social network from a consulting company.

Language 25 Word-English [77] 7381 46281 Unweighted The words network in English.
26 Word-French [77] 8325 24295 Unweighted The words network in French.

Transportation 27 USA top 500 [78] 500 5960 Weighted Flight network in USA.
Co-authorships 28 Coauthorships [79] 1461 2742 Weighted The Co-authorships between the scientists.

Social communication 29 Facebook-like [80] 899 142760 Weighted The online social network as similar as Face-book.
30 UCIonline [81] 1899 20296 Weighted Online message network of students at UC,Irvine.

Metabolic 31 C.elegans [82] 453 2040 Weighted Metabolic network of C.elegans.
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Supplementary Note 1: Rank of λiIN − J

We detail the calculation of the rank of matrix λiIN − J , where λi denotes distinct eigenvalues of the
Jordan block matrix J . Recall the linear dynamical system [1] as described by

ẋ = Ax+Bu, (S1)

where A ∈ RN×N denotes the system’s coupling matrix, in which aij denotes the weight of a di-
rected link from node j to i (for undirected networks, aij = aji), u is the controller vector with
u = (u1, u2, · · · , um)T, and B is the N × m control matrix. Using the nonsingular transformation
y = P−1x and Q = P−1B, system (S1) can be rewritten in the following Jordan form:

ẏ = Jy +Qu, (S2)

where J is the Jordan matrix. Systems (S1) and (S2) possess the same controllability in the sense that
rank(λIN −A,B) = rank(λIN − J,Q), ∀λ ∈ σ(A) with rank(B) = rank(Q).

For an arbitrary Jordan matrix [45,57]

J = diag(J(λ1), J(λ2), · · · , J(λl)), (S3)

we have
λiIN − J = diag(λiI1 − J(λ1), λiI2 − J(λ2), · · · , λiIl − J(λl)), (S4)

where the unit matrix Ii (i = 1, 2, · · · , l) is of the same order as J(λi). If λi ̸= λj , λiIj − J(λj) is a
nonsingular matrix. In this case, rank deficiency can only appear in λiIi − J(λi). Note that each basic
Jordan block can be described by

j = λIv + (0, e1, e2, · · · , ev−1), (S5)

where ei (i = 1, 2, · · · , v) is the ith column of Iv. We thus have

λIv − j = −(0, e1, e2, · · · , ev−1) (S6)

and
rank(λIv − j) = v − 1. (S7)

Using the fact
J(λi) = diag(j1, j2, · · · , jµ(λi)), (S8)

where µ(λi) is the geometric multiplicity of λi and is equal to the number of basic Jordan block in J(λi),
we can conclude that λiIN − J has µ(λi) zero columns and N − µ(λi) independent columns. Thus,

rank(λiIN − J) = N − µ(λi). (S9)
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For example, assuming a Jordan block of the following form

J =



1 1

1

1

2 1

2 1

2

2

2

0


,

where µ(1) = 2, µ(2) = 3, µ(0) = 1, and all missing elements are zero, we can check that for λ1 = 1,
the matrix λ1IN −J = 1× I9−J has 2 zero columns which are column 1 and 3; for λ2 = 2, 2× I9−J

has 3 zero columns, i.e., column 4, 7 and 8; for λ3 = 0, 0×I9−J has only 1 zero column 9. These results
verify that the number of zero columns for an eigenvalue λ is nothing but the geometric multiplicity µ(λ).
Subsequently, we have rank(1×I9−J) = 9−2, rank(2×I9−J) = 9−3, and rank(0×I9−J) = 9−1.

Supplementary Note 2: Determination of control matrix B and transformed
matrix Q

A special case: undirected chain graph

In order to achieve actual control of a complex network system, we need to identify the key nodes to
apply external control to. Mathematically, this entails finding B and the transformed matrix Q. Take an
undirected chain graph, PN , as an example. The coupling matrix of PN is

A =



0 1 0 · · · 0 0

1 0 1 · · · 0 0

0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1

0 0 0 · · · 1 0


(S10)

where the N distinct eigenvalues are displayed in Table I in the main text. According to the PBH rank
condition, PN is controllable when all elements of Q = P TB are nonzero, where P is the matrix whose
columns consist of an orthonormal basis of eigenvectors of A. The eigenvector α associated with the
eigenvalue λ satisfies the relation (λIN −A)α = 0 which, when written per component, is [58, 59]

λα1 − α2 = 0,

−αk−1 + λαk − αk+1 = 0, 2 ≤ k ≤ N − 1,

−αN−1 + λαN = 0.

We have α1 ̸= 0 and αN ̸= 0. (Otherwise, we can infer that α1 = α2 = · · · = αN = 0, which
contradicts to the definition of eigenvector that must be nonzero.) We can set B = (1, 0, · · · , 0)T or
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B = (0, · · · , 0, 1)T to guarantee that all elements of Q = P TB are non-zero. This indicates that we
can control a chain simply by driving a single node at either end of the chain. This is valid for weighted
undirected chain as well.

Identifying drivers in directed network with structural matrix

We have offered a general method to identifying a minimum set of driver nodes in arbitrary networks by
relying on the PBH rank condition and the elementary column transformation. To be concrete, according
to the exact-controllability theory, ND is determined by the maximum geometric multiplicity µ(λM)

associated with the eigenvalue λM. Thus, the control matrix B to ensure full control should satisfy the
PBH rank condition by substituting λM for the complex number c, as follows:

rank[λMIN −A,B] = N. (S11)

The question becomes how to find the minimum number of drivers identified in B to satisfy Eq. (S11).
Note that the rank of the matrix [λMIN − A,B] is contributed by the number of linearly-independent
rows. In this regard, we implement elementary column transformation on the matrix λMIN − A, which
reveals a set of linearly-dependent rows that violates the full rank condition (S11). The controllers should
be imposed on the identified rows to eliminate all linear correlations to ensure condition (S11). The nodes
corresponding to the linearly-dependent rows are the drivers with number N − rank(λMIN −A), which
is nothing but the maximum geometric multiplicity µ(λM).

Here, we test the validity of this approach in comparison with the structural-controllability frame-
work for a directed network with structural matrix. The assumption of structural matrix can be ensured
by assigning each link in a directed network a random parameter, as shown in Supplementary Fig. S1(a).
In the network matrix A, all the values associated with links are completely independent of others.
According to the exact-controllability theory, we calculate the eigenvalues λ of A and their geometric
multiplicity µ(λ). In this specific case, all the eigenvalues are zero and the maximum geometric multi-
plicity µ(λM) = 4. The eigenvalue λM related with µ(λM) is zero as well. Subsequently, according to
the PBH rank condition, we construct the matrix A− λMIN , as shown in Supplementary Fig. S1(a), the
column canonical form of which resulting from the elementary column transformation reveals the linear
dependence among rows. We find that the column canonical form in this case is unique, but there are
more than one possible choice of rows that are linearly dependent on others. Each set of options results
in a distinct configuration of the set of drivers, but the number of drivers are fixed and determined by
µ(λM). Supplementary Fig. S1(b) to (d) show four combinations of linearly-dependent rows chosen from
the column canonical form. In the column canonical form, the 1st row must be chosen and three rows
from the 2nd, 3rd, 4th and 6th rows should be chosen to be controlled to eliminate all linear correlations.
We thus totally have four different combinations of drivers as shown in Supplementary Fig. S1(b) to (d).

To validate the four identified configurations of drivers, we use the framework of structural con-
trollability based on the maximum matching algorithm to find all possible configurations of drivers for
comparison. For the directed network with structural matrix as guaranteed by assigning random param-
eters to directed links, our method will offer the same result as that from the structural-controllability
framework, if our method is correct. We have enumerated all possible combinations of unmatched nodes
that according to the structural-controllability theory are the drivers. We acquire four configurations of
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drivers that are indeed exactly the same as the results shown in Supplementary Fig. S1(b) to (d). This
test provides strong evidence to the validity of our PBH-based method for identifying driver nodes.

How to determine the simplest Q

The transformed matrix Q can be used to study control issues related to energy consumption and prove
the reachability of the minimum number of controllers and independent drivers as guaranteed by the
maximum multiplicity theory. However, Q cannot be immediately derived from the relation of B =

PQ, since we can only identify independent driver nodes with minimum number in B, rather than the
complete matrix B. Here we present a method [45] to construct Q without requiring full information
about B. In particular, for the transformed system (S2) with the simplest form of J , we can construct Q
by assigning value one to the row of Q corresponding to the last row of every Jordan sub-block of J(λi),
i.e., Iµ(λi), and leaving others rows empty. This is the simplest form of Q with the smallest number
of nonzero elements. For diagnolizable matrix A or undirected network, Q can be set according to the
multiplicity of eigenvalue λi, i.e., Iδ(λi). For example, we can set Q1 of the following J1 with ND = 3

which we highlight the last row’s element of each Jordan sub-block matrix by a box:

J1 =



1 1

1

1

2 1

2 1

2

2

2

0





0 0 0

1

1

0 0 0

0 0 0

1

1

1

1


= Q1

Note that the unwritten elements are zero, the same for J2 and Q2 in the following examples. For
undirected networks with the same eigenvalue and algebraic multiplicity of J1, we also can set Q2 with
ND = 5, as follows:

J2 =



1

1

1

2

2

2

2

2

0





1

1

1

1

1

1

1

1

1


= Q2

According to this construction of matrix Q, we can ensure that the minimum number maxi{µ(λi)} of
controllers and independent driver nodes can be achieved as constrained by

rank(B) ≥ N − rank(λiIN − J) = µ(λi). (S12)
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Our maximum multiplicity theory thus offers both sufficient and necessary conditions for achieving full
control of any complex network, including directed, undirected, weighted, unweighted, connected and
disconnected networks in the presence or absence of self-loops or loops.

Supplementary Note 3: Exact controllability of simple regular graphs

Using our maximum-multiplicity theory, we analytically evaluate the exact controllability of four regular,
unweighted and undirected graphs: a chain, a ring graph, a star graph, and a fully connected graph.
Especially, for a given graph, we calculate all the eigenvalues and the maximum algebraic multiplicity.

Undirected chain graph

The coupling matrix of an undirected path of N nodes [58, 59] is

A =



0 1

1 0 1
. . . . . . . . .

1 0 1

1 0


, (S13)

where all unwritten elements are zeros. The eigenvector α associated with eigenvalue λ of the chain
satisfies (λIN −A)α = 0 or (A− λIN )α = 0, which can be written for each component as [58, 59]

+λα1 − α2 = 0,

−αk−1 + λαk − αk+1 = 0, (2 ≤ k ≤ N − 1)

−αN−1 + λαN = 0.

The set with α0 = αN+1 = 0 can be rewritten as

−αk+2 + λαk+1 − αk = 0. (0 ≤ k ≤ N − 1) (S14)

The general solution is αk = ark1 + brk2 , where r1 and r2 are the roots of the corresponding polynomial
x2 − λx+ 1 = 0, which satisfy

r1 + r2 = λ,

r1r2 = 1.
(S15)

The constants a and b in Eq. (S15) are constrained by the boundary requirement α0 = αN+1 = 0,
yielding

a+ b = 0,

arN+1
1 + brN+1

2 = 0.

We have a = −b. The last equation can be modified to ( r1r2 )
N+1 = 1 or r1

r2
= e

2πq
√

−1
N+1 (q = 1, 2, · · · , N).

Substituting r1 = r2e
2πq

√
−1

N+1 into the last equation of (S15) yields

r1 = e
πq

√
−1

N+1 and r2 = e−
πq

√
−1

N+1 . (S16)
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Since λ = r1 + r2, we have

λ = e
πq

√
−1

N+1 + e−
πq

√
−1

N+1 = 2 cos
qπ

N + 1
, (S17)

so the maximum algebra multiplicity is δ(λq) = 1 (q = 1, 2, · · · , N).

Ring network

The adjacency matrix of a directed ring of N nodes [58, 59] is

C =



0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0


, (S18)

which has the property CT = C−1. The characteristic polynomial of C is pC(ζ) = ζN − 1 [59], so the
eigenvalues of C are ζq = e

2(q−1)πi
N (q = 1, 2, · · · , N), where i is the imaginary unit.

The coupling matrix of an undirected ring network of N nodes is A = C +CT = C +C−1. Hence,
the eigenvalues of A are λq = ζq + ζ−1

q = 2 cos 2(q−1)π
N with λq = λN−q+2, which gives δ(λq) = 2

(q = 1, 2, · · · , N) for N > 4.

Star graph

The coupling matrix of a star graph of N nodes is [58, 59]:

A =



0 1 1 · · · 1

1 0 0 · · · 0

1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0


. (S19)

The characteristic polynomial of A is

pA(λ) =| λIN −A |= [λ2 − (N − 1)](λ+ 1)N−2. (S20)

The eigenvalues, which are roots of pA(λ), and the corresponding algebraic multiplicities are: λ1 =
√
N − 1, δ(λ1) = 1; λ2 = −

√
N − 1, δ(λ2) = 1; and λ3 = −1, δ(λ3) = N − 2.

Fully connected network

The coupling matrix is [58, 59]

A =



0 1 1 · · · 1

1 0 1 · · · 1

1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0


. (S21)
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The characteristic polynomial of A is

pA(λ) =| λIN −A |= [λ− (N − 1)](λ+ 1)N−1. (S22)

The eigenvalues and the respective algebraic multiplicities are: λ1 = N − 1, δ(λ1) = 1 and λ2 = −1,
δ(λ2) = N − 1.

Supplementary Note 4: Interplay between maximum multiplicity and net-
work structure

We aim to reveal the interplay between our theory and network structure by the aid of the maximum
matching algorithm. Let’s recall the following general formula:

ND = max
i

{N − rank(λiIN −A)}, (S23)

where λi is the eigenvalue of the network coupling matrix A. If A is diagnolizable, e.g., as for an
undirected network, we have

ND = max
i

{δ(λi)}, (S24)

which is the maximum number of identical eigenvalues. For an arbitrary network, it is difficult to
make statement about the maximum multiplicity and network structure. However, for a sparse network
(weighted or unweighted), the zero eigenvalue dominates the eigenvalue spectrum. In this case, we have

ND = max{1, N − rank(A)}, (S25)

revealing the underlying relationship between structure and exact controllability in that ND is exclusively
determined by the rank of A. The task then becomes that to understand the interdependence between
the matrix rank and its structure. We can demonstrate that for sparse networks, the rank of the cou-
pling matrix is approximately equal to the maximum matching [34], based on which we can uncover
the relationship between the exact controllability and the network structure by means of the maximum
matching and estimate the exact controllability through the cavity method [36,37]. The key to explaining
the approximate equality of rank and maximum matching lies in understanding the connection between
our maximum multiplicity theory and the structural controllability.

First, we have proved that under the condition of zero value domination, e.g., for sparse networks,
the exact controllability is rigorously determined by N − rank(A).

Second, as we have demonstrated in the main text, for sparse networks with identical weights, the
structural controllability is quite close to the exact controllability with negligible small difference. This
can be explained in terms of existence of linear constrains resulting from the linear correlations among
nodes. In the state space of a linear network system, there may exist some linear constrains that prevent
the trajectory of the system state from reaching an arbitrary state in the phase space. Implementing
controllers can eliminate all constrains so that control toward any point in the state space is possible.
All the constraints can be classified to two categories: in terms of topology and link weights. Structural
controllability only considers the topological constraints by assuming that constraints resulting from
link weight are of zero measure. For exact controllability, both constraints are important, but sparse
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networks represent an exceptional case, because of the low probability of generating weight constraints.
Consequently, as illustrated in Figs. 2 and 3 in the main text, in this case structural controllability is
approximately equivalent to the exact controllability.

Based on the above argument, we have, for sparse networks, ND = N − rank(A) ≈ N − Nm(A),
where Nm(A) is the number of nodes in the maximum matching set of A. This thus yields

rank(A) ≈ Nm(A). (S26)

As presented in Ref. [34], the cavity method can be used to estimate Nm [36,37].
For dense networks with unit weights, we have

ND = max{1, N − rank(IN +A)}. (S27)

The main feature is then how to reveal the relationship between the rank of matrix IN + A and the
network topology. However, in this situation, we have observed that the exact controllability is quite
different from the structural controllability due to the very high likelihood of the occurrence of linear
constraints resulting from link weights. Hence, the maximum matching algorithm and the cavity method
cannot be directly used to uncover the relationship. In order to overcome this difficulty, we consider the
complement graph of matrix IN + A, which is given by JN − IN − A, where JN is the matrix whose
elements are all one. We then have

rank(JN − IN −A) ≤ rank(JN ) + rank(IN +A), (S28)

where the equality holds if one of the ranks in the right hand side is zero. Note that rank(JN ) = 1, which
is quite close to zero and far from N if the network size is large enough. We thus have, approximately,

rank(IN +A) ≈ rank(JN − IN −A). (S29)

The complement graph of the original network is sparse and can be related to the maximum matching as

rank(IN +A) ≈ Nm(JN − IN −A). (S30)

The maximum matching of the complement graph on the right-hand side can be found by the cavity
method due to the sparsity of the complement graph. We thus have the following relationship between
maximum multiplicity and the maximum matching:

ND = max
i

{µ(λi)} ≈ N − rank(IN +A) ≈ N −Nm(JN − IN −A). (S31)

In Supplemental Materials of Ref. [34], the cavity method for maximum matching of directed net-
works is detailed. Specifically, for a directed network with similar in- and out-degree distribution P (k),
the density of driver nodes is given by

nD = G(w2) +G(1− w1)− 1 + ⟨k⟩w1(1− w2), (S32)

where G(x) is the generating function

G(x) =

∞∑
k=0

P (k)xk. (S33)
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The quantities w1 and w2 in Eq. (S32) can be obtained by the following self-consistent equations:

w1 = H[1−H(1− w1)],

w2 = 1−H[1−H(w2)], (S34)

where

H(x) =

∞∑
0

Q(k + 1)xk (S35)

is a generating function and Q(k) = kP (k)/⟨k⟩. Equation (S34) is valid for general networks in the
absence of degree-degree correlations. For ER random networks, P (k) follows the Poisson distribution
e−⟨k⟩⟨k⟩k/k!. We thus have G(x) = H(x) = exp[−⟨k⟩(1− x)], and

nD = w1 − w2 + ⟨k⟩w1(1− w2), (S36)

where ⟨k⟩ is the average in- or out-degree in the network, w1 = H(w2) = exp[−⟨k⟩(1 − w2)] and
w2 = 1−H(1− w1) = 1− exp[−⟨k⟩w1]. For k ≫ 1, we have

nD ≈ exp[−⟨k⟩]. (S37)

For scale-free networks, we have

nD ≈ exp

[
− ⟨k⟩

(
1− 1

γ − 1

)]
. (S38)

Supplementary Fig. S2 shows the measure of the controllability nD calculated from both the maxi-
mum geometric multiplicity and the cavity method for undirected and directed Erdös-Rényi (ER) [43]
and Barabási-Albert (BA) [12] networks with unit link weights. In all cases, there is good agreement
between the results from both methods. In particular, for large network size, e.g., N = 10000, the exact
controllability obtained by the maximum multiplicity theory matches that predicted by the cavity method
in the thermodynamic limit. In this regard, the relationship between the maximum multiplicity and the
network structure is bridged by the maximum matching algorithm for both sparse and dense networks.

Supplementary Note 5: Energy of control

The exact-controllability framework allows us to study the issue of control energy in, for example, un-
weighted networks given the minimum number of driver nodes. The control-energy problem in un-
weighted networks has been explored by Yan et al. [39] with respect to relatively large average node
degree. In this case, according to the exact-controllability framework, single controller can ensure full
control of the network with convergent control energy. However, except the case of requiring a single
controller, one has to rely on the framework to identify the minimum number of controllers to address
the important issue of control energy.

Similar to the approach in Ref. [39], we begin from the definition of energy in canonical control
theory to show how to make use of the transformed matrix Q to simplify the calculation and derive the
upper and lower bounds of energy. For system (S1), without loss of generality, we consider driving
the network from an initial state x0 at time 0, to the destination at time t1. According to the linear
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control theory [45], the controller is u = −BTe−ATtW−1eAtx0, so that the minimum total energy
E =

∫ t1
0 ∥ u∥2 dt can be evaluated as

E = xT
0W

−1x0, (S39)

where

W =

∫ t1

0
e−AtBBTe−ATtdt (S40)

is the controllability Gramian matrix. When system (S1) is controllable, W is positive definite (as well as
the matrix S defined below) [45]. We take undirected networks with AT = A as an example. System (S1)
can be transformed to

ẏ = Λy +Qu, (S41)

where y = P Tx, Q = P TB, P TP = PP T = IN and P is the matrix whose columns are an orthonormal
basis of eigenvectors of A. For an undirected network, W can be calculated as

W = P

∫ t1

0
e−ΛtQQTe−ΛtdtP T.

Defining

S =

∫ t1

0
e−ΛtQQTe−Λtdt, (S42)

we have
E = xT

0PS−1P Tx0 = yT
0S

−1y0 (S43)

with y0 = P Tx0. For convenience, we consider the normalized energy ϵ with the inequality [55]

1

λmax(S)
≤ ϵ =

xT
0W

−1x0

xT
0x0

=
yT
0S

−1y0

yT
0y0

≤ 1

λmin(S)
(S44)

where λmax(S) and λmin(S) stand for the maximum and minimum eigenvalue of S, respectively. There-
fore, for a given transformed control matrix Q (or equivalently B = PQ) constructed by our exact-
controllability theory, we can compute the total energy as well as the normalized energy’s lower bound
1/λmax(S) and upper bound 1/λmin(S) from Eq. (S44). The two bounds are in agreement with that in
Ref. [39].

When the network can be fully controlled by only one controller, S is well defined. We stress that,
for single controller, there may be more than one nodes controlled simultaneously to achieve full con-
trol. However, for any configuration of driver nodes associated with a single controller, the transformed
control matrix Q must have the form Q = P TB = (α1, α2, ..., αN )T, αi ̸= 0 [45]. Consequently, S can
be derived as

S =

∫ t1

0
e−ΛtQQTe−Λtdt

=

∫ t1

0


α1e

λ1t

α2e
λ2t

...
αNeλN t


[
α1e

λ1t α2e
λ2t · · · αNeλN t

]
dt

(S45)
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with i, j = 1, 2, · · · , N , so that

Sij = αiαj

∫ t1

0
e−(λi+λj)tdt

=

αiαjt1 λi + λj = 0,

αiαj
1−e−(λi+λj)t1

λi+λj
λi + λj ̸= 0.

(S46)

Equation (S46) gives the elements in the matrix S. However, to derive the control energy, we need the
inverse of S, which at present cannot be resolved analytically. In this sense, the transformed matrix
Q can be used to simplify the calculation of energy rather than offering analytical results. Yet, how
to theoretically predict control energy of complex networks is extremely challenging and remains an
outstanding problem.

Supplementary Note 6: Observability of complex networks

The observability of a complex system is defined as the minimum number of observers required to probe
the states of nodes so as to reconstruct the dynamics of the whole system. Here we prove that the
observability of an arbitrary network is equivalent to its exact controllability in the framework of PBH
rank condition.

Consider a complex network system in the presence of observers [17], which is described by

ẋ = Ax+Bu,

z = C2x,
(S47)

where C2 is the r ×N observe matrix. There exists a PBH rank condition akin to exact controllability,
which can be described as

rank

(
λIN −A

C2

)
= N (S48)

for all λ ∈ σ(A). This equation is equivalent to

rank[λIN −AT, CT
2 ] = N. (S49)

In general A and AT have the same eigenvalues and the same algebraic and geometric multiplicities [55].
Consequently, the observability of a complex network is equivalent to the controllability of the same
network, i.e.,

NO = ND = max
i

{µ(λi)}, (S50)

where the number of observers NO is equal to the rank of C2. Analogous to controllability, with respect
to undirected networks or diagonlizable matrix A, we have

NO = ND = max
i

{δ(λi)}, (S51)

where δ(λi) is the algebraic multiplicity of λi.
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Supplementary Note 7: Network data sets

The details of the real-world networks studied in this paper are presented in Table S1, including cate-
gory of networks, index, name, number N of nodes, number L of directed or undirected links, types of
networks (weighted or unweighted), and the description.
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