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Reconstructing Complex Networks With Binary-State Dynamics

1 Theoretical validation of data-based linearization

We provide a heuristic analysis for the completely data-based linearization that gives rise to the

general relationship

〈si(t̂+ 1)〉 ≈ ci ·
N∑

j=1,j 6=i

aij〈sj(t̂)〉+ di, (1)

from general binary-state dynamics characterized by the switching probability

P 01
i (t) = F (mi(t), ki) , (2)

where 〈si(t̂+ 1)〉 and 〈sj(t̂)〉 can be obtained and calculated exclusively from data, aij are the elements

of adjacent matrix and are to be reconstructed, ci and di are constants of node i, P 01
i (t) is the switching

probability of node i from 0 to 1 in time t, and F (mi(t), ki) is the dynamic function that depends on the

number of active neighbors m of node i and the node’s degree ki. We will confirm through a heuristic

analysis that the data-based linearization resulting from the merging process presented in the main text

is valid for general binary-state dynamics subject to formula (2).

For nodes with only one neighbor, the linear relationship (1) can be rigorously proved. In this sce-

nario, the number of active neighbors is either 0 or 1. Let Pt̂(1) denote the proportion of strings with

single active neighbors in the set of base t̂, and denote the proportion of strings with null active neighbors

as 1− Pt̂(1). Let the switching probability of null active neighbors and single active neighbors be f(0)

and f(1). Then we have

〈si(t̂+ 1)〉 ≈ 〈P 01
i (t)〉 = f(0) [1− Pt̂(1)] + f(1)Pt̂(1)

= [f(1)− f(0)]Pt̂(1) + f(0) (3)

and
N∑

j=1,j 6=i

aij〈sj(t̂)〉 = Pt̂(1). (4)
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Inserting Eq. (4) into Eq. (3), we have

〈si(t̂+ 1)〉 ≈ [f(1)− f(0)]
N∑

j=1,j 6=i

aij〈sj(t̂)〉+ f(0), (5)

which is a linear form that is subject to Eq. (1), because both [f(1) − f(0)] and f(0) are constants and

they are determined by the specific binary-state dynamics.

Figure 1a,b shows two representative examples of reconstructing the local structure of a node with

one neighbor for evolutionary game model and threshold model. We see explicit linear relationship for

both models. With respect to different number of active neighbors in the original bases, two sets of

groups are classified, as shown in Fig. 1c. (what does Fig. 1c means?)

For nodes with more than one neighbor, the linear relationship can be justified and predicted based on

binomial distribution and Taylor linear approximation. For an arbitrary node, say, node i with k neigh-

bors, we will substantiate the linear relationship between 〈si(t̂ + 1)〉 and
∑N

j=1,j 6=i aij〈sj(t̂)〉 resulting

from the data-based linearization, where

〈si(t̂+ 1)〉 ≈ 〈P 01
i (t)〉 =

ki∑
m=0

F (m, ki)Pt̂(m), (6)

and
N∑

j=1,j 6=i

aij〈sj(t̂)〉 =

ki∑
m=0

mPt̂(m), (7)

where Pt̂(m) represents the proportion of strings with m active neighbors among all strings that belong

to the set of base t̂. The key to validating the linear relationship lies in the distribution that Pt̂(m) obeys.

Regarding the effect of the merging process (Fig. 1 in the main text), we hypothesize that Pt̂(m)

follows is binomial distribution with different binomial coefficient pt̂. We denote the proportion of s-

tate 0 in data to be p0. If the strings are randomly chosen for each set of a base, Pt̂(m) exactly obeys

binomial distribution with binomial coefficient p0. However, due to the process of selecting strings that

are similar to each set of a base, the distribution will be biased toward the number of active neighbors

in the base. Despite the original complex influence of the base and string selections based on Hamming

distance, their effects can be simply regarded as selecting a group of strings with similar proportion of

state 0 since we actually do not know which the node’s neighbors are. This process leads to the bino-

mial coefficient that depends on the base string. Figure 2a,b shows the comparison between the actual

distribution of Pt̂(m) obtained from numerical simulations and the binomial distributions with different

binomial coefficients in game and majority model, where the binomial coefficients approximately range

from 0.4 to 0.6 because p0 ≈ 0.5 in the data. We see that Pt̂(m) can be well approximated by a binomial

distribution with different parameter values, which indeed validates our binomial distribution hypothesis.
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Based on the binomial distribution hypothesis, we have

Pt̂(m) = Cm
ki
pt̂

m(1− pt̂)
ki−m. (8)

Inserting Eq. (8) into Eq. (6) yields

〈si(t̂+ 1)〉 ≈
ki∑

m=0

F (m, ki)C
m
ki
pt̂

m(1− pt̂)
ki−m

=

ki∑
m=0

Cm
ki

m∑
l=0

[
(−1)m−lCl

mF (l, ki)
]
pt̂

m. (9)

The fact that pt̂ fluctuates around p0 allows us to apply the Taylor series expansion around p0 to Eq. (9),

leading to

〈si(t̂+ 1)〉 ≈
ki∑

m=0

Cm
ki

m∑
l=0

[
(−1)m−lCl

mF (l, ki)
]
pm0

+

ki∑
m=0

Cm
ki

m∑
l=0

[
(−1)m−lCl

mF (l, ki)
]
mpm−10 (pt̂ − p0)

+ O(pt̂ − p0). (10)

Omitting the high-order term O(pt̂ − p0), we have

〈si(t̂+ 1)〉 ≈
ki∑

m=0

Cm
ki

m∑
l=0

[
(−1)m−lCl

mF (l, ki)
]

(1−m)pm0

+

ki∑
m=0

Cm
ki

m∑
l=0

[
(−1)m−lCl

mF (l, ki)
]
mpm−10 pt̂. (11)

On the other hand, substitute Eq. (8) into Eq. (7) yields

N∑
j=1,j 6=i

aij〈sj(t̂)〉 =

ki∑
m=0

mCm
ki
pt̂

m(1− pt̂)
ki−m

= kipt̂. (12)

Combining Eq. (11) and Eq. (12), we have

〈si(t̂+ 1)〉 ≈
ki∑

m=0

Cm
ki

m∑
l=0

[
(−1)m−lCl

mF (l, ki)
]

(1−m)pm0

+

{
1

ki

ki∑
m=0

Cm
ki

m∑
l=0

[
(−1)m−lCl

mF (l, ki)
]
mpm−10

}
N∑

j=1,j 6=i

aij〈sj(t̂)〉. (13)

Note that all variables in the first term on the right hand side of Eq. (13) are only determined by the

binary-state dynamics and the node degree of i. Hence, the first term corresponding to di is a constant

with respect to node state si. In analogy, all variables in the coefficient of the second term are determined
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by the the binary-state dynamics and the node degree of i as well, indicating the coefficient is a constant

corresponding to ci in Eq. (1). Taken together, we theoretically justified that Eq. (13) is approximately a

linear equation in the form of Eq. (1).

Figure 2c,d shows the relationship between 〈si(t̂ + 1)〉 and
∑N

j=1,j 6=i aij〈sj(t̂)〉(namely 〈m〉) of

each set of bases and the linear relationship calculated by using Eq. 13 for game model and majority

model with nonlinear and piecewise switching dynamics. We see that the theoretical predictions are in

good agreement with the results from the merging process for linearization, which strongly validates the

data-based linearization for general binary-state dynamics.

It is noteworthy that the key to the success of the data-based linearization lies in selecting similar

strings subject to a base and the average over each set of bases. The selection similar strings accounts

for the binomial distribution of active neighbors in a set, and different bases induces different binomial

coefficients. Then the average of the binomial distributions leads to the relatively small range of 〈m〉

compared to the original range in the switching function, allowing us to use Taylor linear approximation.

Moreover, high-order terms in the Taylor series expansion contribute little to the binomial distribution,

which justifies the low-order approximation. Based on the linear relationship, the reconstruction of local

structure can be realized by employing the Lasso without requiring the linear coefficients and intercept.

In other words, the data-based linearization is general valid for arbitrary binary-state dynamics without

any knowledge of the switching function.

2 AUROC and AUPR

To quantify the performance of our reconstruction method, we introduce two standard measuremen-

t indices, the area under the receiver operating characteristic curve (AUROC) and the area under the

precision-recall curve (AUPR). True positive rate (TPR), false positive rate (FPR), Precision and Recall

that are used to calculate AUROC and AUPR are defined as follows:

TPR(l) =
TP(l)

P
, (14)

where l is the cutoff in the edge list, TP(l) is the number of true positives in the top l predictions in the

edge list, and P is the number of positives in the gold standard.

FPR(l) =
FP(l)

Q
, (15)

where FP(l) is the number of false positive in the top l predictions in the edge list, and Q is the number

of negatives in the gold standard.
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Precision(l) =
TP(l)

TP(l) + FP(l)
=

TP(l)

l
, (16)

Recall(l) =
TP(l)

P
, (17)

where Recall(l), which is called sensitivity, is equivalent to TPR(l).

3 Computation details

Parameter values in the binary-state dynamics used for network reconstruction are displayed in Sup-

plementary Table 1. The only requirement for choosing the parameter values is that the switching dy-

namics should be monotonic. Since all the binary-state dynamics are monotonic, there is no specific

restriction for the parameter values. Note that several models have convergent behaviors. If the states of

nodes converge into a stable state, there will be no more useful information for network reconstruction.

If this occurs, we randomly initialize the states of all nodes after a certain period.

The set of the threshold parameter ∆ for realizing the merging process for network reconstruction

is independent of network structure and binary-state dynamics. We investigate the dependence of the

reconstruction performance on threshold ∆. The results are shown in Supplementary Fig 3. We found

that AUROC and AUPR can always reach high values when 0.4 6 ∆ 6 0.55 in all cases. Thus, we

set the threshold ∆ to be 0.45 for simplicity. Regarding the selection of bases, the method is relatively

time consuming because it requires calculating the Hamming distance between each pair of strings in

different time steps. Hence, to improve computational efficiency, for large-size networks with more than

500, we choose bases randomly instead of using the base-selection method presented in the main text,

which will lose some reconstruction accuracy and increase requirement of data amount, but considerably

reduce computational complexity. The reconstruction performance is displayed in Table II in the main

text.

There is an adjustable parameter λ in the Lasso. In general, the parameter is determined by us-

ing cross-validation method, such as sklearn.linear model.LassoCV in python. In terms of the cross-

validation method, we obtained the proper value of λ, which is set to be 10−4 and 10−3 for reconstructing

networks with N 6 500 and N = 1000, respectively, in all reconstructions.

4 Data sets of empirical networks

The details of several empirical networks in nature and society used in the main text for examining

our reconstruction method are shown in Supplementary Table 2.
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5 Dependence of performance on amount of data

We first examine how the number of base strings affects reconstruction accuracy. we denote nt̂ to be

the number of bases divided by the network size N . Supllementary Fig. 4 shows AUROC and AUPR as

functions of nt̂ for Voter (linear), Game (nonlinear) and Majority (piecewise) model, respectively. We

see that due to the advantage of the lasso in reconstructing sparse signals, nearly perfect reconstruction is

achieved from using a small amount of nt̂, and in a wide range of nt̂, such high accuracy is guaranteed,

suggesting both high efficiency and robustness of our reconstruction method.

The length of time series is also an important for evaluating reconstruction efficiency as well, because

all the required bases and subordinate strings are selected from limited time series. We denote nt to be

the ratio of the total length of time series normalized to the network size N . Supplementary Fig. 5 shows

the reconstruction performance measured by AUROC and AUPR for various dynamics in combination

with different types of networks. We find that AUROC and AUPR rapidly increases as nt increases. After

nt exceeds a relatively small value, nearly full reconstruction can be achieved, which provides additional

evidence for the high efficiency of our reconstruction method.

6 Influence of network properties to reconstruction performance

We explore how network properties affect the reconstruction accuracy. In additional to investigations

on model and real networks in paper, we explore the effect of mean degree 〈k〉 on the reconstruction

accuracy, as shown in Supplementary Fig. 6. The reconstruction accuracy decreases as 〈k〉 increases.

The main reason for this result is that the low-order approximation in the data-based linearization is

better for smaller node degree, as discussed in Supplementary Sec. I. Moreover, with the increase of 〈k〉,

the vector Xi to be reconstructed will become denser. Note that it usually requires larger amounts of

data to reconstruct a denser signal by using the Lasso according to the compressed sensing theory. Thus,

in general a network with larger 〈k〉 will be more difficult to be reconstructed.

We explore how network size affects data requirement. Supplementary Fig. 7 shows the minimum

normalized length of time series nmin
t to acquire at least 0.95 AUROC and AUPR simultaneously as

functions of network size N . We see that nmin
t decreases as N increases, which is because of network

sparsity as well. In general, for the same average node degree 〈k〉, a network with larger size will be

sparser, leading to a sparser vector Xi. According to the compressed sensing theory, less amount of data

is required for reconstructing a sparser Xi, accounting for the decrease of nmin
t with the increase of N .

These results indicate that our reconstruction method is scalable and of practical importance for dealing

with large real networked systems.
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7 Robustness against noise and missing data

Robustness against noise and missing data is important for evaluating the applicability of a method.

We consider the scenario of noise-induced wrong records in time series. Specifically, we assume that a

fraction nf of binary states are wrong, flip from 1 to zero or from zero to 1. The presence of unobservable

nodes or missing data is quite often in the real situation. We assume that the data of a fraction of nodes,

say, nm, cannot be observed. We investigate the reconstruction accuracy as a function of nf and nm.

As shown in Supplementary Fig. 8 and Supplementary Fig. 9, respectively, we find that high AUROC

and AUPR remains in a wide range of nf and nm, providing strong evidence for the robustness of our

reconstruction framework against measurement noise and missing data.
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Supplementary tables

Supplementary Table 1 | Parameter values in various binary-state dynamics and the period for initiating

node states because of converging to steady state.

Model Parameters Convergent Update period

Voter — Yes 100

Kirman c1 = 0.1, c2 = 0.1, d = 0.08 No —

Ising Gluaber β = 2 No —

SIS λ = 0.2, µ = 0.5 No —

Game α = 0.1, β = 1, a = 5, b = 5 No —

Language s = 0.5, α = 0.7 No —

Threshold Mk = 2/k Yes 5

Majority vote Q = 0.3 Yes 10
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Supplementary Table 2 | Feature and description of the empirical networks. N and L denote the

numbers of nodes and links of the empirical network studied in the paper.

Name N L Description

Dolphins [3] 62 159 Social network of dolphins

Football [2] 115 613 The network of American football games, Fall 2000.

Karate [6] 34 78 Social network of friendships of a karate club

Leader [4] 32 96 College students in a course about leadership

Polbooks [1] 105 441 A network of books about US politics

Prison [4, 5] 67 182 Social networks of positive sentiment (prison inmates)

Santa Fe [2] 118 200 Scientific collaboration network of the Santa Fe Institute
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Supplementary figures

Supplementary Figure 1 | linearization of switching function with ki = 1. Linearization of switching

function for nodes with a single neighbor for (a) game model and (b) threshold model. The grey solid

curves are the original switching functions, data points are the results of data-based linearization (E-

q, (1)), and the dashed lines are theoretical predictions from Eq. (5). The color of data points represents

two sets of subordinate strings whose base string has no active neighbors (m = 0) or has a single active

neighbors (m = 1). For both nonlinear and piecewise switching functions, the theoretical predictions are

in exact agreement with data-based linearization, because for ki = 1 the linearization is rigorous without

any approximation.
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Supplementary Figure 2 | Theoretical analysis of the data-based linearization. (a, b) The distribu-

tion of active neighbors m in subordinate strings subject to each base string and binomial distributions

for reconstructing node iwith ki = 3 for game model (a) and ki = 6 for majority model (b), respectively.

Each color of curves represents a set of subordinate strings whose base string has m active neighbors.

The distribution can be well described by binomial distributions under different binomial coefficients,

as exemplified by black curves. There is a good agreement between the distribution of active neigh-

bors in subordinate strings and binomial distributions. (c, d) The original switching function and the

linearized function with theoretical prediction based on binomial distribution for game model (c) and

majority model (d), respectively. The color of data points represents different sets of subordinate strings

whose base string has different number of active neighbors m (the same meaning as in (a, b)). The grey

curves are the original switching function in the binary-state dynamics. The black dashed line are the

theoretical prediction of the linear relationship through Eq. 13 based on binomial distribution and Taylor

linear approximation. The theoretical predictions are in good agreement with numerical results.
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Supplementary Figure 3 | Determination of threshold ∆. (a) AUROC as a function of threshold

parameter ∆ for Voter and Ising model on ER, SF and SW networks. (b) AUROC as a function of ∆ for

the two models and three networks. The network size N = 100 and 〈k〉 = 6. The length of time series

is 1.5× 104. Other parameters of dynamics are shown in Supplementary Table 1.
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Supplementary Figure 4 | Reconstruction performance with respect to the number of base strings.

(a,b,c) AUROC and (d,e,f) AUPR as functions of the normalized number of base strings nt̂ for Voter,

Game and Majority model on ER, SF and SW networks. The network size N = 100 and 〈k〉 = 6.

The length of time series is 1.5 × 104. Other parameter values of binary-state dynamics are shown in

Supplementary Table 1.
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Supplementary Figure 5 | Reconstruction performance with respect to the length of time series. (a-

h) AUROC and (i-p) AUPR as functions of the normalized length of time series nt for various dynamics

on ER, SF and SW networks. The network size N = 500 and 〈k〉 = 6. Other parameter values of

binary-state dynamics are shown in Supplementary Table 1.
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Supplementary Figure 6 | Reconstruction performance affected by average node degree. (a,b,c)

AUROC and (d,e,f) AUPR as functions of the average node degree 〈k〉 for Voter, Game and Majority on

ER, SF and SW networks. The network size N = 500 and normalized length of time series nt = 100.

Other parameter values of binary-state dynamics are shown in Supplementary Table 1.
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Supplementary Figure 7 | Reconstruction performance affected by network size. The minimum

normalized length nmin
t to acquire at least 0.95 AUROC and AUPR simultaneously as a function of

network size N for Voter, Ising and Majority on (a) ER, (b) SF and (c) SW networks. The mean degree

of networks is 6. Other parameter values of binary-state dynamics are shown in Supplementary Table 1.
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Supplementary Figure 8 | Robustness against measurement noise. (a,b,c) AUROC and (d,e,f) AUPR

as functions of the fraction nf of wrong states in time series for Voter, Ising and Majority on ER, SF and

SW networks. Parameters of networks and dynamics are the same as in Fig. 5. nt = 100.

18



0.0 0.1 0.2 0.3
0

0.5

1.0

AU
RO

C

a Voter

0.0 0.1 0.2 0.3
0

0.5

1.0
b Game

0.0 0.1 0.2 0.3
0

0.5

1.0
c Majority

ER
SF
SW

0 0.1 0.2 0.3
nm

0

0.5

1.0

AU
PR

d

0 0.1 0.2 0.3
nm

0

0.5

1.0
e

0 0.1 0.2 0.3
nm

0

0.5

1.0
f

ER
SF
SW

Supplementary Figure 9 | Robustness against missing data. (a,b,c) AUROC and (d,e,f) AUPR as

functions of the fraction nm of unobservable nodes for Voter, Ising and Majority on ER, SF and SW

networks. Parameters of networks and dynamics are the same as in Fig. 5. nt = 100.
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