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a b s t r a c t

In this paper, the packet traffic flow on weighted scale-free networks is investigated based
on the local routing strategy using link weights: Pl→i =

wα
li∑

j w
α
lj
. The capacity of links is

controlled by max(βwlj, 1), and the capacity of nodes is controlled by node strength:
max(γsi, 1). It is shown by simulations that the traffic dynamics depends strongly on the
navigation parameters. These behaviors can be explained by investigating the average
number of packets on nodes and delivered through links.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Ever since the small-world [1] and scale-free properties [2] were identified, complex networks have received much
attention from physicists, mainly because a wide range of systems in nature and society can be described by complex
networks. Research has been focused on topologies of networks as well as dynamics of networks, including traffic dynamics
of information packets, spreading of rumors and epidemics, cooperative behaviors of evolutionary games, synchronization
dynamics, navigation and search ability, and so on [3–9]. Due to the importance of large communication networks such as
the Internet andWWW inmodern society, many investigations have been focused on ensuring free traffic flow and avoiding
traffic congestion on complex networks [10–14].

Recently, some models have been proposed to mimic the traffic routing on complex networks by introducing packets
generating rate R and homogeneously selected sources and destinations of data packets [12–17]. In these models, the
capacity of networks is measured by a critical generating rate Rc. At this critical rate, a continuous phase transition from
free flow state to congested state occurs. In the free-flow state, the numbers of created and delivered packets are balanced,
leading to a steady state. While in the jammed state, the number of accumulated packets increases with time due to the
limited delivering capacity or finite queue length of each node. A variety of studies have been focused on developing
better packet routing strategies to enhance traffic flow and to avoid traffic congestion on a large growing communication
network. In previous studies, packets are forwarded following the random walking [15,18], the shortest path [16], the
efficient path [17], the nearest-neighbor search strategy [19–21], the next-nearest-neighbor search strategy [22], the local
information [19–21] or the integration of local static and dynamic information [23].
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In most real cases, a complex topology is often associated with a large heterogeneity in the capacity and intensity of the
connections, i.e., most networks are weighted networks. However, the traffic dynamics have been investigated mainly in
un-weighted networks. The previous traffic routing strategies have been focused on how to route the packets by using local
or global node information (mainly by using node degree). Moreover, weights have a strong correlation with the network
topology [24–29] and the existing weighted features play a significant role in a variety of dynamical processes [31–33].
Therefore, a modeling approach that can capture the effects of weighted characteristics on traffic dynamics is needed. In
this paper, a study of traffic dynamics in a weighted scale-free network is carried out with a conceptual traffic model in
which packets are guided based on local link information with a single tunable parameter α. To maximize the capacity of
the networks which can be measured by the critical packet generating rate Rc, the optimal αc is achieved. The traffic load
distribution among nodes and links is also studied to give an explanation for the optimal α value.

This paper is organized as follows. In the following section, the traffic model is described in detail, in Section 3 simulation
results of traffic dynamics are provided, and Section 4 gives the conclusion.

2. Traffic model

To generate the underlying network infrastructure, this paper uses a weighted scale-free network model proposed by
Wang et al. [24], in which power-law distributions of degrees, weights, and strengths are all in good accordance with real
observations of weighted technological networks. In this model, the network is generated with a weight-driven preferential
attachment with co-evolution of weights and topology. The weight-topology co-evolution mimics the traffic interactions of
vertices, in contrast with previous models where weights are assigned statically [27] or rearranged locally [28]. This model
is also different from static complex networks such as those using fluctuating random graphs [29]. The model rules of [24]
can be described as follows. Starting from m0 nodes fully connected by links with assigned weight w0 = 1, the system is
driven by two mechanics: (1) the strength dynamics: the weight of each link connecting i and j is updated as wij → wij + 1,
with probability Pij = W × pij = W ×

sisj∑
a<b sasb

, where si =
∑

j∈Γi
wij is the strength of node i and Γi is the neighboring set of

node i; (2) the topological growth: a new node n is added with m links that are randomly attached to a node i according to
the strength preferential probability: Πn→i =

si∑
j sj
, where j runs over all existing nodes. Analysis of this model [30] shows

that the outcome strength distribution follows a power law P(s) ∼ s−Θ with the exponent Θ = 2 + m/(m + 2W), and the
exponent γ of power-law degree distribution P(k) ∼ k−γ can be expressed as γ = φ(Θ − 1) + 1 with φ > 1.

Once the network is generated, it remains fixed, and the traffic dynamics is modeled on top of it as follows. At each time
step, there are R packets generated homogeneously on the nodes in the system. We treat all the nodes as both hosts and
routers and assume that node i can deliver at most Ci = max(γsi, 1) packets per time step towards their destinations, where
si denotes the strength of node i. To navigate packets in the system, all the nodes perform a parallel local search among their
immediate neighbors, i.e., following a depth = 1 searching algorithm. If a packet’s destination is found within the searched
area of node l, i.e. the immediate neighbors of l, the packet will be delivered from l directly to its target and then removed
from the system. Otherwise, the packet will be delivered to a neighboring node i according to the probability:

Pl→i =
wα

li∑
j
wα

lj

, (1)

where wli is the weight of the link connecting nodes l and i, the sum runs over the immediate neighbors of the node l,
and α is an introduced tunable parameter characterizing the preferential probability in choosing links to forward packets.
Furthermore, the capacity (or bandwidth) of the link connecting nodes l and i is set to Bli = max(βwli, 1), i.e., the link can
handle at most Bli packets from each end per time step. When the link capacity is reached, the delivery of packets will be
delayed and must wait for the next time step. During the evolution of the system, the FIFO (first-in-first-out) rule is applied
on the nodes. In simulation, we find that the value of γ does not affect the qualitative behavior of the system. So we set
γ = 1 in the following and mainly discuss the effects of α and β.

3. Simulation results

The network overall capacity is measured by the critical generating rate Rc at which a continuous phase transition occurs
from free state to congestion. Firstly, we investigate the order parameter [10]:

η(R) = lim
t→∞

1
R

〈1Np〉

1t
. (2)

Here 1Np = Np(t + 1t) − Np(t), 〈...〉 denotes taking the average over a time window of width 1t, and Np(t) is the number
of packets in the system at time t. As shown in Fig. 1, when R < Rc, 〈1N〉 = 0 and η(R) = 0, corresponding to the case
of free-flow state, in which the numbers of added and removed packets are balanced; while η(R) increases suddenly from
zero at R = Rc. Therefore a phase transition occurs at R = Rc where congestion emerges and spreads in the system, and
packets will continuously accumulate in the system. Hence, the system’s overall handling and delivering capacity can be
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Fig. 1. (Color online) The order parameter η versus R for weighted scale-free networks with different routing parameter α. Other parameters are size of
network N = 1000, m0 = m = 5, W = 2 and β = 1.

Fig. 2. (Color online) Rc vs α with fixed W = 2 and β ≥ 1.0. The results are obtained by averaging Rc over ten network realizations.

measured by the critical value of Rc. We note that there can be different ways to define the network capacity, but we will
mainly consider the critical value of Rc in the following discussion.

In Fig. 1, one can also see that η(R) ' |R − Rc|
x (when R → R+

c ), and the critical exponent x increases with increasing α.
This indicates that the routing strategy is further away from the optimum, and thus the accumulation rate of packets in the
system will increase also.

Our simulations show that when β → ∞, i.e., when the capacity of every link is very large, the maximum network
capacity is reached when α is slightly larger than 1.0. Figs. 2 and 3 show the overall traffic capacity measured by Rc vs αwith
different β values. One can see that both the network capacity and the values of αc remain unchanged when β is larger than
a threshold βc1 ≈ 5. The maximum capacity always occurs at αc = 1.2 with Rmax

c ≈ 313. This behavior implies that when
β > βc1, the links are operating efficiently under their maximum capacity, and the network capacity is mainly controlled
by the node capacity. When βc1 > β > βc2 ≈ 1, the system’s overall capacity decreases rapidly, and the αc value increases
with the decrease of β (Fig. 2). This is because the capacity of some links will be reached from time to time, and thus the
delivery of some packets is delayed and accordingly the network capacity decreases. Nevertheless, when β becomes smaller
than the second threshold βc2 ≈ 1, αc begins to decrease with the decrease of β. As we can see in Fig. 3, when β = 0, i.e., all
links have the same capacity that is equal to one, the system’s maximum capacity occurs at αc = 0.2 with Rmax

c = 24.
In addition, simulations also show that Rc tends to be constant with the decrease of α. This constant decreases with the

decrease of β for βc2 < β < βc1. When α < 0 and |α| is very large, the probability that links with large weights are chosen
to deliver packets is very low. This implies that even if we cut off the links with large weights, the network capacity will
remain essentially unchanged.

These findings are different from the results obtained by using local routing strategies on un-weighted scale-free
networks. In Ref. [19], Wang et al. found that in a typical Barabási–Albert network, the maximum traffic capacity appears at
αc = −1.0 when the node capacity is set to const. This means repelling the packets from the central nodes andmaking them
move along the periphery of the network. When considering the heterogeneity of node capacity, they found that αc = 0.0
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Fig. 3. (Color online) Rc vs α with β ≤ 1.0. The results are obtained by averaging Rc over ten network realizations.

Fig. 4. (Color online) Average visits per node divided by the node strength. The other parameters are N = 1000, m0 = m = 5, W = 2, R = 20 and β = 1.

when C = k. This means that random walk is the best strategy for the packets. In the present paper, which differs from
previous results, it is shown that αc is larger than 1.0. This means that the maximum traffic capacity is achieved by using
links with large values of weight. This finding is valuable sincemost real networks are weighted and the traffic will probably
be affected by the link bandwidth [21].

The analytical estimation of the Rc value is very complicated for the weighted traffic system and our routing model. In
the following, we give a heuristic explanation for the optimal αc value corresponding to the peak value of Rc by investigating
the traffic load distribution on the network. In Fig. 4, we investigate the average visits per node divided by the node strength
which can be used to analyze the traffic load distribution among the nodes. When α < 1.2, the value self-organizes to a
power law, which implies that the traffic burden of high-degree nodes is alleviated, while when α > 1.2, it is an increasing
function with respect to S, which may lead to the collapse of hub-nodes. When α = 1.2, it essentially remains constant with
respect to S. At this point, the balance of node capacity with traffic load is achieved for all nodes if the restriction of link
bandwidth can be neglected. Since in scale-free networks, the congestion of one node will spread to other nodes and trigger
the decrement of overall efficiency, this balance ensures that no node will be more easy to jam than others and thus the
optimal traffic capacity will be achieved. This conclusion is confirmed by our previous simulation result that the optimal αc

value is always located at 1.2 when β ≥ 5.
To explain why αc > 1.2 for low β value, we investigate the average visits per link divided by the link weight which

reflects the traffic load distribution among the links. Fig. 5 shows the value vs w (link weight) for different α values. One can
see that when α ≈ 2.0, the value is roughly constant for all the link weights.When α < 2.0, it self-organizes to a power-law,
especially when α is smaller than zero. Thus we can see that the capacity of the links will be more fully used when α is set
to the value close to 2.0 for the case of β = 1 and therefore the overall capacity of the system will be maximized. We also
note that the value remains almost the same for links with weight w = 1. As in our network model, the weights of most of
the links in the system (∼95%) are equal to one, this behavior explains why the system’s capacity will remain constant for
negative α values.
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Fig. 5. (Color online) Average visits per link divided by the link weight. The other parameters are N = 1000, m0 = m = 5, W = 2, R = 20 and β = 1.

Finally, we briefly introduce the effect of link weight growth rate W on the packet traffic capacity. Since W is just a
multiplicative factor, the qualitative behavior is not affected by varying W. In general, the system’s overall capacity will
increase with the increase of W, but the optimal value of αc remains the same.

When changing the node capacity parameter γ, it is found that αc depends on β in the same way. However, βc1 is a
monotonically increasing function of γ, while the value of βc2 is independent of γ. The maximum value of Rc is linearly
proportional to γ.

4. Conclusion

In conclusion, the traffic dynamics on weighted scale-free networks is studied with a local routing strategy based on
link weight information. The simulation yields some results different from previous studies. In general, the overall capacity
decreases when the bandwidth parameter of links (β) is below a critical value βc1. In most cases, the optimal value of the
local routing parameter α appears at αc > 1.0, which means taking advantage of links with large bandwidth. The αc value
also depends on β. We give explanations for the variation of αc by investigating the average visits per node and average
visits per link, which are also important for studying the traffic load distribution among the nodes and links.
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