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a b s t r a c t

In this paper, we propose an evolutionary model for weighted networks by introducing
an age-based mutual selection mechanism. Our model generates power-law distributions
of degree, weight, and strength, which are confirmed by analytical predictions and are
consistent with real observations. The investigation of the relationship between clustering
and the connectivity of nodes suggests hierarchical organization in theweighted networks.
Furthermore, both assortative and disassortative properties can be naturally obtained by
tuning a parameter α, which controls the strength of age-based preferential attachments.
Since the age information of nodes is easier to acquire than the degree and strength of
nodes, and almost all empirically observed structural and weighted properties can be
reproduced by the simple evolutionary regulation, our model may reveal some underlying
mechanisms that are key for the evolution of weighted complex networks.

Published by Elsevier B.V.

1. Introduction

Many systems can be naturally described by complex networks with vertices representing individuals and edges
representing interactions among individuals. Exploring evolutionary dynamics of complex networks have attracted much
attention of scientific communities [1–4]. Much empirical evidence has demonstrated that most real networks share small-
world and scale-free structural properties. Modeling and reproducing these common structural and dynamical properties
have been deemed as a significant task for understanding the evolutionary dynamics of complex networks [5–17]. However,
most real networks are weighted networks and far beyond the Boolean representations which would miss some important
physical characters on edges. For instance, traffic amounts along edges and passing through vertices of communication and
transportation systems are fundamental for a full description of these networks. In world-wide airport networks (WAN),
each given edge weight (traffic) is the number of available seats on direct flight connections between the airports i and j.
In the scientific collaboration networks (SCN), the nodes are identified by authors and the weight denotes the number of
coauthored papers.
A weighted network is often described by a weighted adjacency matrix wij, which represents the weight on the edge

connecting vertices i and j, with i, j = 1, . . . ,N , where N is the size of the network. The weights are symmetric (wij = wji)
for undirected networks, which we will focus on. A natural generalization of connectivity in the case of weighted networks
is the vertex strength defined as si =

∑
j∈ν(i)wij, where the sum runs over the set ν(i) (neighbors of node i). This quantity

is a natural measure of the importance or centrality of a vertex in the network. Most recently, the access to more complete
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empirical data and higher computation capability allow scientists to study the variation of the connection weights of many
real networks [7,18–23]. As confirmed bymeasurements, weighted complex networks not only exhibit the scale-free degree
distribution p(k) ∼ k−γ with 2 ≤ γ ≤ 3, but also the power-lawweight distribution p(w) ∼ w−θ and strength distribution
p(s) ∼ s−η [19,21,22]. The strength highly correlated with the degree also displays scale-free property s ∼ kβ with β ≥ 1
[19,23].
A number of evolutionary mechanisms have been presented to model real weighted networks. Barrat, Barthélemy, and

Vespignani (BBV) presented an original model to study the growth of weighted networks [24,25]. The BBV model, based on
the mechanisms of strength preferential attachment and weight dynamical evolution, can produce scale-free properties of
degree, weight, and strength, but its assortative property (i.e., the hubs are primarily connected to less connected nodes), as
observed in real technological and biological networks, differs from social networks like the SCN where the hubs are very
likely to be linked together (i.e., assortative mixing). Recently, Wang et al. have studied the creation and reinforcement of
internal connections in the weighted network evolution [26–29]. However, all these models incorporate the preferential
attachment of the strength for reproducing scale-free properties. That is, a new added node is connected to a preexisting
one with a probability exactly proportional to the strength of the target node. In reality, however, this absolute quantity
information of agents is often unknown. In this perspective, Fortunato et al. recently introduced a criterion of network
growth that explicitly relies on the ranking of nodes according to the prestige measure [30]. This rank-based model can
mimic well the reality in many real cases that the relative information of agents is easier to acquire than their absolute
information [31].
In this paper, we propose a weighted evolutionary model with an age-based mutual selection mechanism. It can

mimic the reinforcement of internal connections and the evolution of many infrastructure networks with less information
of vertices compared to previously proposed models. It is demonstrated that the generated networks recover scale-
free distributions of degree, strength, and weight. Interestingly, this network evolution mechanism can also produce a
hierarchical structure, and both assortative and disassortative properties, all of which have been empirically observed.
The paper is organized as follows: in Section 2 we describe themodel in detail and analyze it mathematically. Simulation

results of various scale-free properties are given in Section 3. The hierarchical structure and assortative mixing pattern are
discussed in Section 4. Finally, the paper is concluded.

2. The model and analysis

The model starts from an initial N0 = m isolated node, each with initial age coefficient h = 1. At each time step t , a new
isolated node, with age coefficient h = t , is introduced into the system. Then every existing node i preferentially selects m
other nodes with the probability∏

i→j

=
h−αj∑

k
h−αk − h

−α
i
, (1)

where hi is the age coefficient of node i, and it’s an age-based rank series. The parameter α which controls the strength of
preferential attachment is a real number larger than 0. Note that the larger the age coefficient of the node is (the node is
younger), the more difficult for it to gain new links. Considering the normalization requirement and that vertices are not
permitted to connect themselves, the denominator of Eq. (1) is

∑
k h
−α
k − h

−α
i . Such selection is totally free and does not

guarantee the creation of new links or an increase of edge weights between node pairs. Unless two nodes mutually select
each other (in other words, unless they attract each other), there will be no change to the pair of nodes or their connection.
If they do, then the weight of their link w is supposed to increase by 1. The degree ki of any node i is still defined as the
number of linked neighbors of i. Repeated interactions (links) only increase the edge weight. As a remark,w can be regarded
as 0 if the nodes were not connected before, and the mechanism is globally implemented for all the nodes. After updating
all the edge weights and node strengths, the growth process is iterated by introducing a new node, until the desired size
of the network is reached. The mechanism of our model can well mimic the reality in many real cases. Take the SCN for
example: scientists are more likely to collaborate with other experienced scientists, i.e., the scientists have long research
age, and collaboration among scientists requires their common interest and mutual acknowledgement.
The model time is measured with respect to the number of nodes added to the network, i.e., t = N −m, and the natural

time scale of the model dynamics is the network size N . We consider time t as a continuous variable using the continuous
approximation. The parametersw, s, k are the functions of t andwij is updated only if node i and j select each other, and the
dynamics function of weight evolution can be expressed as follows:

dwij
dt
= m

h−αj∑
k
h−αk − h

−α
i
×m

h−αi∑
k
h−αk − h

−α
j
. (2)

The increment of strength si is contributed by the creation or reinforcement of internal connections incident with node i,
which can be written as

dsi
dt
=

∑
j

dwij
dt
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=

∑
j

m2 h−αj∑
k
h−αk − h

−α
i
×

h−αi∑
k
h−αk − h

−α
j


≈
m2h−αi∑
k
h−αk

. (3)

We only consider the cases α < 1, because when α < 1,
∑
k h
−α
k is not a convergent series and the increment of strength

tends to zero as t increases, which means that the evolution of the network converges and the network can reach a stable
topological and weighted statistical property. Using the continuous approximation, Eq. (3) can be approximately solved by
integrals. Therefore, the node strength evolution equation is

si(t) =
m2(1− α)

α

(
t
i

)α
−
m2(1− α)

α
. (4)

The knowledge of the time evolution of the strength quantities allows us to compute its statistical properties. Because i of
si(t) is selected randomly, i obeys homogeneously distribution in total t + m nodes, i.e., p(i) = 1/(t + m). The strength
probability distribution can be written as

p(s, t) =
dp(si(t) < s)

ds
=
t(sα +m2(1− α))−1−1/α

(t +m)(m2(1− α))−1/α
. (5)

In the infinite size limit t →∞, the distribution is

p(s)t→∞ =
(sα +m2(1− α))−1−1/α

(m2(1− α))−1/α
. (6)

It was obvious that, when s� m2(1− α)/α, p(s) has a power-law distribution p(s) ∼ s−η , with η = 1+ 1/α. Similarly, it
can also obtain analytical expression for the statistical probability distribution of weights:

p(w, t) =
t−(2α−1)/α

a(t +m)2

(
2α − 1

m2(1− α)−1/α

)−1/α
w−1−1/α. (7)

It is clear that p(w) ∼ w−θ with θ = 1+ 1/α.

3. Simulation result

In order to check the analytical predictions, numerical simulations for different values of α andmwere performed. Fig. 1
shows the strength distributions for different parameter values. Numerical simulations are well consistent with analytical
results. One can find that the power-law distribution exponent η of the strength is only related with α. But the distribution
displays exponent corrections in the zone of low strengths, which are interestingly very similar with the empirical finding
in some social networks [3]. The size of the exponential correction in the low strength zone is related with m2(1 − α)/α,
which is clear in Fig. 1 and Eq. (6). Fig. 2 shows the weight probability distributions. It exhibits obviously scale-free behavior
and the exponent agrees well with the theoretical predictions.
As confirmed by empirical measurements, weighted networks not only exhibit scale-free distributions of strength and

weight, but also the power-law degree distribution p(k) ∼ k−γ with 2 ≤ γ ≤ 3. The strength highly correlated with the
degree usually displays scale-free property s ∼ kβ with β ≥ 1. To compare themodel with the real network, the diversity of
scale-free characteristics is simulated. The average strength si of vertices with degree ki is shown in Fig. 3, which shows the
scale-free property of s ∼ kβ as confirmed by empirical measurement. The exponent β here is around 1 and independent
of the values of α andmwhen α < 1. Thus, by using the correlation of s ∼ k, we have

p(k) = p(s)
ds
dk
∼ p(s), (8)

which indicates that the distribution of node degree is consistent with the distribution of node strength which has been
shown in Fig. 1.

4. Clustering and correlation

The architecture of complex networks, imposed by the structure and administrative organization of the system, can
not be exclusively characterized by the scale-free distribution properties. In fact, it is mathematically encoded in the
various correlation existing among the properties of different vertices. For this reason, a set of topological quantities have
been introduced to character the network architecture. The widely used quantities are the clustering coefficient and the
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Fig. 1. (Color online) Strength probability distributions of both computer simulation and analytical result of our model with different parameters α = 0.1,
α = 0.2, α = 0.5, and α = 0.8. The solid lines represent analytical result. All the data are averaged over 100 independent runs of network size N = 4000.

Fig. 2. (Color online) The weight probability distributions p(w) ∼ w−θ with different α. As shown in its inset, the data fitting also gives values of θ (full
circles) as predicted by analytical calculation (line). All the data are averaged over 100 independent runs of network size N = 4000, andm = 5.

assortative mixing pattern (or the degree–degree correlation of nodes). To better understand the architecture structure, we
studied the clustering of vertices and the degree–degree correlation by choosing different values of α andm.
Using the method proposed by Watts and Strogatz, we define ci as the clustering of vertex i, which measures the

local cohesiveness of the network in the neighborhood of the node. The average of all nodes gives the network clustering
coefficient C , which describes the statistics of the density of connected triples [3,32]. Further information can be gathered
by inspecting the average clustering coefficient C(k) restricted to classes of vertices with degree k. For the degree–degree
correlation, we use the average nearest-neighbor degree knn,i to measure the degree–degree correlation of vertex i and its
neighbors. knn(k) is defined as the average over classes of vertices with degree k. When correlations are present, two main
classes of possible correlations can be identified: assortative behavior if knn(k) increases with k, which indicates that large
degree vertices are preferentially connected with other large degree vertices, and disassortative behavior if knn(k) decreases
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Fig. 3. (Color online) The average strength si of verticeswith degree ki (log–log scale). The exponent of the distribution doesn’t changewith the parameters
m and α. All the data are averaged over 100 independent runs of network size N = 4000.

Fig. 4. The clustering coefficient C versus N with different parameters.

with k, which denotes that links are more easily built between large degree vertices and small ones. A simpler measure to
quantify this structural property is the assortative mixing coefficient proposed by Newman [33]:

r =
M−1

M∑
i=1
jiki −

[
M−1

M∑
i=1

1
2 (ji + ki)

]2
M−1

M∑
i=1

1
2 (j
2
i + k

2
i )−

[
M−1

M∑
i=1

1
2 (ji + ki)

]2 , (9)

where ji, ki are the degrees of vertices at the ends of the ith edges, with i = 1, . . . ,M (M is the total number of edges in
the observed graph). The values of this quantity are restricted in the interval [−1, 1], and moreover, positive values denote
assortative and negative values denote disassortative.
Fig. 4 shows the clustering coefficient C(N) as a function of the network size N for different values of α and m. C(N)

converges soon as the network size increases. A number of real networks possess a hierarchical structure property, which is
quantified by the dependence of the average clustering C(k) of nodes with the same degree on the degree k [34]. Empirical
results demonstrate that C(k) is a decreasing function of k with a fat tail in the large-degree range. This behavior indicates
that low-degree nodes generically belong to well connected clusters while the neighbors of high-degree nodes belong
to many different communities which are not directly connected, namely the hierarchical structure. Fig. 5 shows C(k)
depending on k under the different values of α. One can find that when α is close to 1, C(k) versus k displays a flat head
with a fat tail in the log–log plot, which is similar to the real observations and exhibits the hierarchical structure [34]. On
the other hand, as α decreases from 1, C(k) becomes a non-monotonic function of k, which indicates that the age-strength
parameter α has strong influences on the formation of the hierarchical organization of the weighted network.
The correlation of knn(k) and k for different values of α is shown in Fig. 6. The increasing trend and decreasing trend of

knn(k) depending on k both exist, which implies the general patterns of both assortative and disassortativemixing generated
by our model. To measure the assortative mixing pattern more simply and intuitively, we study the coefficient r . As shown
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Fig. 5. (Color online) The distribution of C(k) as a function of k with different α (log–log scale). m = 3 is focused on. All the data are averaged over 100
independent runs of network size N = 4000.

Fig. 6. (Color online) The distribution of knn(k) as a function of k with different α. m = 3 is focused on. All the data are averaged over 100 independent
runs of network size N = 4000.

Fig. 7. The mixing coefficient r versus N with different parameters.

in Fig. 7, r(N) converges soon as the network size N increases for different values of α andm. The dependence of r on both α
andm is shown in Fig. 8. It can be found that themixing coefficient r only changeswithα, and nearly independent ofm. With
the increase of α, r can change from positive values to negative values, which is consistent with the results of assortative
mixing reflected by knn(k).
Empirical studies have found that many social networks (e.g., SCN) present assortative behaviors while technological

networks (e.g., Internet, WAN) present disassortative behaviors. In general social networks, take SCN for example, when
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Fig. 8. The mixing coefficient r depending on bothm and α with N = 4000.

scientists want to get collaboration with other scientists, the experience of the other scientists, i.e., the scientific age, plays
important roles. Besides, there are some other factors (e.g., area distinction, social ability, history collaboration, etc) that
may affect the cooperation of two scientists. Thus, there is an obvious need to model weighted networks by considering
possible mechanisms other than the node-strength-based preferential attachment. Few previously proposed weighted
models can generate both assortative and disassortative mixing properties. Compared to previous models, our model by
simply considering the age-based mutual selection mechanism can characterize well the origin of both mixing patterns.
The parameter α governs the strength of the age-based preferential attachment. For smaller α, younger nodes have higher
chances to select each other for possible interaction, which will lead to denser connectivity among younger nodes and thus
favor the emergence of an assortative mixing pattern. On the other hand, larger α promotes the formation of connections
between younger nodes and older nodes. Moreover, old nodes usually have more neighbors and younger nodes in reverse
have fewer neighbors. Hence, the fact thatmore connections are built between the two groupswith different degrees results
in the emergence of a disassortative pattern. From the above analysis, the intensity of the age-based preferential attachment
plays the key role in the mixing difference of our weighted network.

5. Conclusion

To summarize, in this paper we propose an age-based mutual selection model for weighted evolutionary networks.
The model networks recover scale-free distributions of degree, strength, and weight. Furthermore, our model generates
the nontrivial clustering and assortative mixing patterns. By changing the values of α, both assortative and disassortative
properties can be simply reproduced, which implies the significance of our proposed age-based selection mechanism, since
the origin of the assortative mixing difference between social networks and other kinds of networks is still a challenging
question so far. More significantly, the age-based selection mechanism is very natural and the age information is easily
known by individuals in a complex network. From this viewpoint, our model may make sense in exploring simple and
unified underlying mechanisms existing in various weighted complex networks.
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