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We investigate the geographical effect on the synchronization of small-world oscillator networks. We con-
struct small-world geographical networks by randomly adding links to one- and two-dimensional regular
lattices, and we find that the synchronizability is a nonmonotonic function of both the coupling strength and the
geographical distance of randomly added shortcuts. Our findings demonstrate that the geographical effect plays
an important role in network synchronization, which may shed some light on the study of collective dynamics
of complex networks.
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Many systems composed of dynamical units can be prop-
erly described by complex networks with nodes representing
units and links representing interactions among units �1–6�.
A great deal of empirical evidence has revealed that real
complex networks share some common features, such as
small-world �SW� and scale-free �SF� structural properties
�7,8�. Understanding how these properties influence dynam-
ics of real networks is deemed a significant task �3,6�. How-
ever, real networks are often embedded in Euclidean geo-
graphical space, such as the Internet and neuronal networks.
Pure topological representations of complex systems would
neglect important physical characteristics, such as the
geography-induced interactions among individuals, which,
however, may play significant roles in the evolution of the
networks and the dynamical processes upon networks. From
this perspective, some network models associated with geo-
graphical restrictions have been developed for revealing the
underlying dynamics of network evolution and for studying
dynamical processes with geographical effects �9–11�.

Synchronization among dynamical units has been widely
observed in complex systems. Typical examples include the
flash of fireflies, the sound of hands clapping, the oscillation
of chemical reactions, etc. �12–15�. To investigate collective
synchronous behaviors, oscillator network models have been
commonly used �16�; these are natural representations of real
systems consisting of coupled units. In this framework, it has
been found that the SW property can remarkably enhance the
synchronizability while SF networks tend to inhibit synchro-
nization as compared to regular lattices �17,18�. Moreover,
the exploration of which structural property plays the most
significant role in synchronization has received much atten-
tion �19–21�. Recently, topology-induced weighted coupling
has been considered in oscillator networks to better mimic
real synchronization behaviors �22–24�. However, the geo-
graphical effect on network synchronization has not been
considered seriously. Geography-induced coupling differ-
ences between units may play a significant role. Both in the
flash of fireflies and in hand clapping, the coupling strength
between two units is indeed closely correlated with their geo-

graphical distance, since the coupling signal in transmissions
may be weakened by increase of the distance, particularly for
sound and light. In some man-made networks, the coupling
strength may be positively correlated with distance. For ex-
ample, in power grids, longer electrical cables usually carry
more electric power. Therefore, there is an obvious need to
model oscillator networks by taking the combination of the
geographical effect and the coupling strength into account.

In this paper, we investigate the collective synchroniza-
tion behaviors of oscillators on one- and two-dimensional
SW networks with coupling strengths depending on the geo-
graphical distance. Our work follows the study of synchro-
nization on weighted networks. Our main result is that the
network synchronizability is a nonmonotonic function of
both the coupling strength and the geographical distance of
the shortcuts, with the strongest synchronizability in the
middle of the range. The present study indicates that the
geographical effect plays a significant role in the collective
synchronization behaviors of SW oscillator networks.

The dynamics of a general weighted network of N
coupled identical oscillators has been previously investigated
in Refs. �22–24�. Each node of a network represents an os-
cillator, and a link connecting two nodes represents the cou-
pling between them. Let xi be the m-dimensional vector of
dynamical variables of the ith node. The following set of
equations of motion governs the dynamics of the N coupled
oscillators:

ẋi = f�xi� + c�
j=1

N

WijAij���x j� − ��xi�� = f�xi� + c�
j=1

N

Gij��x j� ,

�1�

where ẋi= f�xi� describes the dynamics of an individual os-
cillator, ��x�: Rm→Rm is a vectorial output function, c is the
overall coupling strength, Wij is the link weight, A= �Aij� is
the adjacency matrix, and G= �Gij� is the coupling matrix:
Gij =�ijSi−WijAij where Si=� j=1

N WijAij. The adjacency matrix
A is binary and both A and G are symmetric.

If the network �1� is diffusively and irreducibly coupled,
then all the eigenvalues of matrix G are nonpositive real
values because G is negative semidefinite, and its biggest
eigenvalue �0 is always zero because the rows of G have
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zero sum. Thus, the eigenvalues can be ranked as 0=�0
��1� ¯ ��N−1, and the synchronization manifold is an in-
variant manifold, with a fully synchronized state: x1=x2

= ¯ =xN=s satisfies ṡ�t�= f(s�t�).
Let �i be the variation on the ith node, and linearize �1�

about s�t� �25� to get the variational equation

�̇k = �Df�s� + c�kD��s���k, �2�

where Df�s� and D��s� denote the Jacobian matrices of f�s�
and ��s�, respectively, and k=1,2 , . . . ,N−1. Let �=c�k and
	= ��1 ,�2 , . . . ,�N�, and rewrite �2� as

	̇ = �Df�s� + �D��s��	 . �3�

In the symmetric coupling setting �namely, Gij =Gji�, since
Df�s� and D��s� are the same for each block, the largest
Lyapunov exponent 
max of �3� depends only on �. The sign
of the master stability function determines the synchronized
state: the synchronized state is stable if 
max����0 for all
blocks �25�.

For many dynamical systems, if the master stability func-
tion is negative in a single finite interval ��1 ,�2� then the
largest Lyapunov exponent is negative. Therefore, the net-
work is synchronizable for some c when the eigenratio R
=�N−1 /�1 satisfies

R � �N−1/�1 � �2/�1. �4�

In �4�, the eigenratio R depends only on the network struc-
ture and the range from �1 to �2 depends on the node dynam-
ics. From this, it follows that the smaller the eigenratio R, the
more synchronizable the network, and vice versa �25�.

In order to introduce the notion of geographical distance
into SW networks, we adopt a modified SW network model,
generated from one- and two-dimensional regular lattices,
through randomly adding shortcuts to the original lattices.
Here, for simplicity, periodic boundary conditions are as-
sumed for both regular lattices. For a d-dimensional lattice,
d=1,2 here, each node i has d Euclidean geographical coor-
dinates �a1

i ,a2
i , . . . ,ad

i �. The geographical distance Lij be-
tween nodes i and j is defined as �26�

Lij = �
k=1

d

�ak
i − ak

j � . �5�

This definition is also called the Manhattan distance �26�. A
more detailed description of the geographical distance can be
seen in Fig. 1. Then one can calculate the geographical dis-
tance in a given d-dimensional lattice. To add shortcuts with
fixed distance L, node i was chosen randomly and then an-
other node j was chosen in an equally random way from the
nodes whose geographical distance from i equaled L. If there
was no link between the two nodes, then a shortcut was
established; otherwise another node was selected as j. This
process was repeated until m new links were created. Thus a
d-dimensional SW network was obtained and all added
shortcuts had identical geographical distance L.

The distance-induced coupling strength between two con-
necting nodes i and j is defined as

Wij = Wji = Lij
� , �6�

where Lij is defined by �5� and � is a tunable parameter
which governs the intensity of the coupling strength. Here,
the coupling strength between two geographically neighbor-
ing nodes is always 1, regardless of the value of �. In the
following, we focus on the influences of the parameter � and
the geographical distance L of the shortcuts on the collective
synchronization dynamics.

For both one- and two-dimensional SW networks, we set
the network size to 2025 in all simulations. Each data point
is obtained by averaging over 100 independent realizations.
Figure 2 shows the eigenratio R as a function of the tunable
parameter � for different geographical distance L. Here, for
easy comparison, the number of added links m is fixed to 400
for all model parameters. These links are enough to introduce
small-world properties in the network with size 2025. One
can see that the strongest synchronizability occurs at the
point of �=0, independent of the value of L. The synchroni-
zation behavior in the range of ��0 can be easily under-
stood: according to �6�, the lower the value of �, the weaker
the coupling strength among oscillators, which leads to
worse synchronizability. When � approaches negative infin-
ity, the coupling strengths of those shortcuts L� are approxi-
mately zero and the SW network is reduced to the original
unweighted regular lattice. It is well known that the synchro-
nizability is considerably inhibited in regular lattices as com-
pared to SW networks, which is consistent with our simula-
tion results. In the range of ��0, the change of the
synchronizability as � increases may be counterintuitive, i.e.,

FIG. 1. �a� One-dimensional ring graph and �b� two-dimensional
lattices with some shortcuts. a1 and a2 are the coordinate directions.
In �a�, nodes are marked by their coordinates. The geographical
distance L between each pair of nodes can be calculated by Eq. �5�.
The geographical distance of a link is the geographical distance
between the two nodes at the ends of this link. For instance, the link
geographical distance L1,3 between nodes 1 and 3 is �1–3�=2.
Analogously, L2,6= �2–6�=4, and L7,10= �7–10�=3. In �b�, some
nodes are marked by their coordinates �a1 ,a2�. We can calculate the
geographical distance between each pair of nodes and the geo-
graphical distance of each link according to Eq. �5�. For instance,
the link geographical distance L�2,0�,�3,1� between nodes �2,0� and
�3,1� is �2–3�+ �0–1�=2. Analogously, L�1,3�,�2,1�= �1–2�+ �3–1�=3,
L�0,1�,�3,2�= �0–3�+ �1–2�=4, and L�0,0�,�2,0�= �0–2�+ �0–0�=2. Note
that the geographical distance is independent of the position of the
origin �0,0�. The unit geographical distance between two geographi-
cally neighboring nodes is 1. The range for the spatial coordinate is
determined by both the dimension and the network size. The peri-
odic boundary condition is used here.

BRIEF REPORTS PHYSICAL REVIEW E 77, 027102 �2008�

027102-2



a stronger coupling strength results in a worse synchroniz-
ability. This fact can be partially explained from the view-
point of intensity heterogeneity �22,24�; it was found that the
heterogeneous intensity of nodes restrains the synchroniz-
ability of weighted SF networks. In other words, a weighted
network with more homogeneous intensity can synchronize
more easily. Similarly, for weighted SW networks, the node
intensity seems to play the same role in synchronization. For
positive values of �, as � increases, the coupling strengths of
the shortcuts become stronger, so that the intensity differ-
ences between the nodes at the ends of the shortcuts and the
nodes without shortcut connections become bigger and big-
ger. Hence, the network becomes more difficult to synchro-
nize with increase of �, reflected by the enhancement of the
eigenratio R. The inset of Fig. 2 shows the results for one-
dimensional SW networks, which are analogous to the two-
dimensional case.

Next, we study the eigenratio R as a function of the geo-
graphical distance L of the shortcuts for different fixed val-
ues of the coupling parameter �. As shown in Fig. 3, as L
increases from 2 to about 25, the eigenratio decreases rapidly
and reaches a minimum value, indicating that the strongest
synchronizability is achieved. Thereafter, the value of R be-
comes larger when L of the shortcuts is continuously in-
creased. A similar varying trend of R was found in one-
dimensional SW networks, as displayed in the inset of Fig. 3.
This finding may not be easily understood. In geographically
embedded networks, the topological and geographical dis-
tances have a rough relationship. Generally, if the geographi-
cal restriction is strong, i.e., connections are established
more locally �L is small�, the average topological distance
and the diameter are large, due to the absence of long-range
connections; otherwise, more long-geographical-distance
connections usually reduce the diameter of the network �11�,
which would benefit the synchronization of the network �17�.
However, this expectation is inconsistent with the result in
Fig. 3. To explain the nonmonotonic phenomenon, we fur-
ther investigated the average topological distance �l	 as a
function of the geographical distance L of the shortcuts in

two-dimensional SW networks. As shown in Fig. 4, the
curves of �l	 against L resemble that in Fig. 3. Hence, it is the
increment of �l	 that leads to the nonmonotonic behavior of
synchronizability, whereas the degrees of nodes are highly
homogeneous in SW networks in particular.

In summary, we have studied the geographical effect on
collective synchronization behaviors by combining the no-
tions of geographical distance and the coupling strength on
geographical small-world networks. We have focused on the
synchronizability affected by both the coupling parameter �
and the distance L of the added shortcuts. We found that the
synchronizability is a nonmonotonic function of both � and
L on both one- and two-dimensional small-world networks.
These results indicate that the geographical effect plays an
important role in collective network synchronization behav-
iors. We have also provided some qualitative explanations

FIG. 2. �Color online� Eigenratio R of two-dimensional SW
networks as a function of the tunable parameter � for different
geographical distance L of the shortcuts. Other parameters: network
size N=2025 �width=45�, number of added links m=400. The inset
shows the similar results of one-dimensional SW networks �net-
work size N=2025�. All the results are averaged over 100 different
network realizations.

FIG. 3. �Color online� Eigenratio R of two-dimensional SW
networks as a function of the geographical distance L of the short-
cuts for different values of parameter �. Other parameters: network
size N=4545=2025, number of added links m=400. The inset
shows the results of one-dimensional SW networks �network size
N=2025�. All the results are averaged over 100 different network
realizations.

FIG. 4. �Color online� Average topological distance �l	 of two-
dimensional SW networks with periodic boundary conditions as a
function of the geographical distance L for different values of pa-
rameter �. �l	 is defined as the average shortest hops between each
pair of nodes �7�. Other parameters: network size N=2025 �width
=45�, number of added connections m=400. Here, for �=−1, �l	is
the weighted topological distance. The weights of all links are their
geographical distances. All the results are averaged over 100 inde-
pendent runs.
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for the network synchronizability in terms of the heterogene-
ity of the node intensity and the average topological distance.
Since the geographical distance is an important parameter of
many real networks, our findings shed some light on the
collective dynamics of real coupled systems.
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