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Universal robustness characteristic of weighted networks against cascading failure
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We investigate the cascading failure on weighted complex networks by adopting a local weighted flow
redistribution rule, where the weight of an edge is (k,-kj)e with k; and k; being the degrees of the nodes
connected by the edge. Assume that a failed edge leads only to a redistribution of the flow passing through it
to its neighboring edges. We found that the weighted complex network reaches the strongest robustness level
when the weight parameter #=1, where the robustness is quantified by a transition from normal state to
collapse. We determined that this is a universal phenomenon for all typical network models, such as small-
world and scale-free networks. We then confirm by theoretical predictions this universal robustness character-
istic observed in simulations. We furthermore explore the statistical characteristics of the avalanche size of a
network, thus obtaining a power-law avalanche size distribution together with a tunable exponent by varying 6.

Our findings have great generality for characterizing cascading-failure-induced disasters in nature.
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The robustness characteristic of complex networks against
attacks and random failures has drawn a great deal of atten-
tion in the past decade [1-4]. In particular, this issue is cru-
cial for a large number of technological networks, on which
modern human society very much relies. Such networks in-
clude power grids, information communication networks,
and transportation networks, to name just a few. Evidence
has demonstrated that in such a network, even though inten-
tional attacks and random failures emerge very locally, the
entire network can be affected, often resulting in global col-
lapse. Typical examples are several blackouts in some coun-
tries [5] and Internet congestion [6,7]. These severe incidents
have been attributed to cascading behaviors, and have been
investigated quite intensively recently [3].

In the current studies of complex networks, several impor-
tant properties shared by most networks have been discov-
ered, subject to not only the topology but also the weights. It
has been found that the small-world (SW) and scale-free
(SF) properties are ubiquitous in nature and human society
[1]. It is now known that the network structure plays a sig-
nificant role in the dynamical process taking place on the
network. Understanding this issue is regarded as one of the
major objectives in the study of complex networks [2].
Therefore, it is natural and important to consider cascading
failures on SW and SF networks in order to better understand
and control various cascading-failure-induced disasters. For
this purpose, many network models have been proposed and
studied, such as the sandpile model [8-10], the global load-
based cascading model (GLBCM) [11-17], and the fiber
bundle model (FBM) [18-20]. Based on these models, some
protection strategies have also been proposed [13,15,17,21].
However, the network weights have not been taken into con-
sideration in these models, regardless of the facts that real
networks display a large heterogeneity in the weights which
have a strong correlation with the network topology [22]. In
addition, the existing common weighted features play a sig-
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nificant role in a variety of dynamical processes [23-25].
Hence, there is a need for a modeling approach that can
capture the coupling of cascading and weighted characteris-
tics.

In this paper, we propose a cascading model with a local
weighted flow redistribution rule (LWFRR) on weighted net-
works. The proposal is inspired by both GLBCM and FBM,
in which the load redistribution or sharing (triggered by at-
tacks or failures) and the finite capacities are regarded as two
underlying mechanisms contributing to the cascading reac-
tions. The LWFRR combines the cascading process and the
weighted characteristics of the network. For two typical net-
works, i.e., the Barabdsi-Albert (BA) SF [26] and Newman-
Watts (NW) SW networks [27], we found the strongest ro-
bustness level against cascading failures at a specific
weighting strength. The robustness is quantified by the criti-
cal weighting threshold of edges, at which a phase transition
occurs from normal state to collapse. Our theoretical analysis
based on the mean-field theory confirms the numerical simu-
lations. We also found tunable power-law distributions of
avalanche sizes, which can generally reproduce the real ob-
servations.

Now, we briefly describe the cascading model under the
LWFRR. We assume the weight (flow) of an edge ij to be
wy=(kik;) % where 6 is a tunable weight parameter, govern-
ing the strength of the edge weight, and k; and k; are the
degrees of nodes i and j, respectively. This assumption is
supported by empirical evidence of real weighted networks
[22]. Moreover, Ref. [28] shows that the betweenness of an
edge has positive correlation with the product form of node
degrees at both ends of the edge. In this sense, our assump-
tion on the weights is in accordance with the previous load-
based model but has practical convenience. Assume that the
potential cascading failure is triggered by a small initial at-
tack, e.g., cutting a single edge. The flow along the broken
edge ij will be redistributed to the neighboring edges con-
necting to the ends of ij (see Fig. 1 for illustration). The
additional flow AF;, received by edge im is proportional to
its weight, i.e.,
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FIG. 1. Illustration of the LWFRR triggered by an edge-cut-
based attack. Edge ij is broken and the flow along it is redistributed
to the neighboring edges connecting to both ends of ij. Among
these neighbor edges, the one with higher flow will receive higher
shared flow from the broken edge.
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where I'; and T'; are the sets of neighboring nodes of i and j,
respectively. If edge ij does not receive additional flows be-
fore being broken, F;;=w;;. Here, following previous models
[13,14,17,20,21], each edge im has a weight threshold, which
is the maximum flow that the edge can transmit. In manmade
networks, the threshold is limited by cost. Thus, it is natural
to assume that the threshold is proportional to its weight, i.e.,
Tw;,,, where the constant 7> 1 is a threshold parameter. If

Fi+ AF,, > Tw;,, (2)

then im will be broken and induce further redistribution of
flow F;,+AF,, and potentially further edge breaking. After
the cascading failure process stops, we calculate the ava-
lanche size s, which is defined as the number of broken
edges accumulated through the process.

The LWFRR can be explained by taking the scenario of
information traffic on the Internet as an example. After con-
gestion occurs on a transmission line, information flow is
rerouted to bypass it, which leads to the flow increment of
other lines. Since an edge of higher traffic flows has broader
bandwidth for traffic transmission, i.e., an edge’s threshold is
proportional to its weight, it is reasonable to preferentially
reroute traffic along those higher-capacity edges to maintain
normal functioning of traffic and try to avoid further conges-
tions. For simplicity, we assume that the additional flow re-
ceived by an edge is proportional to its weight (flow). When
a line receives extra flow, its total flow may exceed its band-
width (threshold) and congestion occurs consequently. As a
result, an avalanche of overloads emerges on the network.
This data traffic redistribution may be global or local, de-
pending on the network structure and rerouting protocols. In
fact, global and local rerouting protocols both exist [16,20].
A very recent example is the submarine earthquake near Tai-
wan in December 2006; when a few important optical cables
were broken, information transmissions were significantly
delayed over many countries particularly in the Asia-Pacific
region [7].

To explore the effect of a small initial attack on our cas-
cading model, we cut only one edge ij initially and calculate
S;j (here 8;j denotes the avalanche size, i.e., the number of
broken edges, induced by cutting ij) after the cascading pro-
cess is over. To quantify the robustness of the whole net-
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FIG. 2. (Color online) Normalized avalanche size Sy as a func-
tion of threshold T for (a) different values of € on both BA and NW
networks (network size 5000) and (b) different network sizes for
BA networks. (c) Both the Sy of edges and nodes for BA networks.
The phase transition points are the same. The average degree of BA
networks is (k)=4. The coordination number of NW networks is 2
and the parameter p=1.0. Here, if all edges of a node is cut, the
node fails. The avalanche size of node is the number of failed nodes
normalized by the total number of nodes in the network.

work, we adopt the normalized avalanche size Sy
=28/ Nedge» Obtained via summation over all the avalanche
sizes by cutting each edge initially at each time divided by
the total number of edges Ny

Figure 2 shows Sy as a function of the threshold param-
eter 7 for BA and NW networks. BA and NW networks are
constructed by the preferential attachment mechanism [26]
and by randomly adding edges to a regular ring graph [27],
respectively. A phase transition occurs at the critical thresh-
old T,, which can be used as a measure of the robustness of
the network against cascading failure. When 7>T,, no cas-
cading failure occurs and the system maintains its normal
and efficient functioning; while for 7<<T,, Sy suddenly in-
creases from O and cascading failure emerges, causing the
whole or part of the network to stop working. Hence 7. is the
least value of protection strength to avoid cascading failure.
Apparently, the lower the value of 7,, the stronger the ro-
bustness of the network against cascading failure.

Hereafter, we investigate the relationship between 6 and
the critical threshold 7. of BA and NW networks. As shown
in Fig. 3, all these networks display the strongest robustness
level at #=1 for all different average degrees. Here, we
should briefly introduce a recent work of Korniss [29], in
which #=-1 is found to be the optimum for synchronization
in weighted networks, where the weight assignment of edges
is the same as that in our weighted networks. However, in
our study, #=1 is the optimum value for the weighted net-
work against cascading failures, and the values of T, at
0=—1 are much higher than that at =1 [30]. These different
optimal values of @ results from the dynamical difference
between cascading process and synchronization.

In order to understand this observed universal phenom-
enon, we provide some theoretical analysis. To avoid the
emergence of cascading failure, the following condition
should be satisfied [see (1) and (2)]:
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FIG. 3. (Color online) Robustness T, as a function of 6 for
different average degrees (k) on BA networks and different p on
NW networks. p=1 corresponds to a random network. N=5000,
and each data point is averaged over ten different network realiza-
tions. For the BA model, (k)=2m, where m is the number of edges
attached to the existing nodes from the new node and k;,=m. For
the NW model, (k)=2(ny+p), where ng is the coordinate number
and p is the probability for each node to receive one edge.

(kik)) %(kik,,)®
) itm + (kik,)? < T(kik,)?.  (3)
kik)? kik,)?
aegri( k) +be§F:_/( k)

Here Eueri(kika)f):kfﬁii"j}; k;P(k'|k;)k'?, where P(k'|k;) is
the conditional probability that a node of k; has a neighbor of

k'. BA and NW networks have no degree-degree correlation;
thus P(k'|k;)=k' P(k")/{k). Hence, we have

Kax kra+1P(kr) k{9+1<k6+1>
k)= k%! =
2 (k)" =k 2 o

acl; k' =k

(4)

Then Eq. (3) can be simplified as

&y kK¢
w0t ST o

By noting that k/**+k}*'=2(kk;)"*?2, we have

(kY (k) 1"

+1<T. 6
2<k0+1> ( )
From the above inequality, the critical threshold 7. can be
chosen by considering the ranges of <1, =1, and 6> 1,
respectively:

KLU ) +1, 0> 1,
T, = k/(20*) + 1, o=1, (7)
kAN ) +1,  0<1,

where k.;, and k., are the minimum and maximum node
degrees. To find the minimum value of 7., we consider
T.—1 in the case of #>1 in Eq. (7):
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Hence, T.0>1)>T,(0=1). Similarly, we can get
T.(0<1)>T.(6=1). Apparently, the lowest value of T, at
6=1 indicates that the system possesses the universal stron-
gest robustness, independent of the degree distribution of the
network. Furthermore, one can notice that the result in Eq.
(7) at 6=1 is related with the critical infection rate of epi-
demic spreading in a susceptible-infected-susceptible model
[31-33]. This relationship may indicate the similarity in dy-
namical behaviors of epidemic spreading and cascading fail-
ure.

There are two points of 7. that can be easily calculated by
Eq. (7) without relying on simulations, i.e.,

T8%(6=0) = 1/(2kpy) + 1,

™W(0=1)= 1/(2(k)) + 1. )

Here, {k)/{k*)=~1/{k) for the NW network due to its homo-
geneous degree distribution. For the BA network with finite
size, T. at #=1 can be also calculated by integrations. The
degree distribution of BA networks is P(k):2kr2nink‘3 [26].
Hence (k?) can be obtained by

k,

P(k)ICdk = 202 (I gy — I ki) (10)
kmin

kpax can be calculated by [ P(k)dk=1/N, which gives
kmax=kmin\fﬁ, where N is the network size. Hence,

<k2> = 2k12nin[ln(kmin \‘"N) —In kmin] = kr211in InN. (1 1)
Then we get
k 1
T2A0=1)=1+ <>2 =1+ . (12)
2(k*) kpin IN N

The comparison between simulation results and analytical
predictions is shown in Figs. 4(a) and 4(b). In the case of
6=1 for the BA network, the difference between simulation
and analytical results is large, which mainly results from one
approximation in the analytical predictions. For the BA net-
work with finite size, the exponent of power-law degree dis-
tribution is higher than —3. Hence the use of P(k) ~ k=3 leads
to the difference in comparison.

Another prominent phenomenon empirically observed in
the cascading failure process is the power-law avalanche size
distribution. To explore the statistical features of the ava-
lanche sizes, we continuously increase the flow along edges
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FIG. 4. (Color online) A comparison of analytical results and
theoretical predictions on T, vs ky;, (=0 and 6=1) for BA net-
works and vs. (k) (#=1) for NW networks. Data points are by
simulations and curves are by theory.

by a small constant &, starting from an empty network. This
process is essentially the same with the FBM and the sand-
pile model [9,20]. Here, the threshold of each edge is as-
sumed to be its weight for simplicity. At any time step, add &
to one randomly selected edge. If the flow of the edge ex-
ceeds its threshold, the edge is broken and the flow will be
redistributed according to the LWFRR. As shown in Fig.
5(a), for the BA model, the avalanche size displays a typical
power-law distribution P(s) ~s~7, where 7 is a function of 6.
For the NW model [Fig. 5(b)], P(s) shows an exponential
law, which implies that the homogeneous degree distribution
of the NW may inhibit the emergence of a large area of
avalanches. In previous work, 7 can only be tuned by the
degree distribution exponent y [9] or the geographic restric-
tion [10]. In this sense, our model may shed some new light
on the cascading failure mechanism.

In conclusion, we have investigated the cascading reac-
tion behaviors on various weighted networks with respect to
small edge-based initial attacks. We found that all studied
weighted networks reach their strongest robustness level
when the weight parameter equals 1. These results indicate
the significant roles of weights in complex networks for de-
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FIG. 5. (Color online) Distributions of the avalanche sizes for
both (a) BA and (b) NW networks for different 6. The inset of (a)
shows the exponent 7 of the power-law distribution, P(s)~s~7,
depending on 6. N=5000 and 6=0.01. The avalanche size is calcu-
lated as follows. At each time step, after the cascading process
stops, record the number of broken edges as the avalanche size at
this time step. Then recover all broken edges and set their flows to
zero. At the next time step, add flow & to randomly selected edges
and repeat the cascading process. After the time step has lasted 108,
we obtain the avalanche distribution P(s) of the sizes recorded at
each time step. If no cascading failures occur, s=0.

signing protection strategies against cascading failures. In
addition, the obtained tunable power-law distributions of the
avalanche sizes demonstrate the validity and generality of
our model for characterizing cascading reaction behaviors.
Our work may have practical implications for controlling
various cascading-failure-induced disasters in the real world.
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