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We model information traffic on scale-free networks by introducing the node queue length L proportional to
the node degree and its delivering ability C proportional to L. The simulation gives the overall capacity of the
traffic system, which is quantified by a phase transition from free flow to congestion. It is found that the
maximal capacity of the system results from the case of the local routing coefficient � slightly larger than zero,
and we provide an analysis for the optimal value of �. In addition, we report for the first time the fundamental
diagram of flow against density, in which hysteresis is found, and thus we can classify the traffic flow with four
states: free flow, saturated flow, bistable, and jammed.
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Complex networks can describe many natural and social
systems in which lots of entities or people are connected by
physical links or some abstract relations. Since the discovery
of small-world phenomenon by Watts and Strogatz �1� ap-
peared in Nature in 1998, and scale-free property by
Barabási and Albert �2� one year later in Science, complex
networks have attracted growing interest among the physics
community �3–7�. As pointed out by Newman, the ultimate
goal of studying complex networks is to understand how the
network effects influence many kinds of dynamical processes
taking place upon networks �5�. One of the dynamical pro-
cesses, traffic of information or data packets, is of great im-
portance to be studied for modern society. Nowadays we rely
greatly on networks such as communication, transportation,
the Internet, and power systems, and thus ensure free traffic
flow on these networks is of great significance and research
interest. In the past several decades, a great number of works
on the traffic dynamics have been carried out for regular and
random networks. Since the increasing importance of large
communication networks with scale-free property such as the
Internet �8�, the traffic flow on scale-free networks has drawn
more and more attention �9–23�.

Researchers have proposed some models to mimic the
traffic on complex networks by introducing the random gen-
eration and the routing of packets �9–15�. Arenas et al. sug-
gest a theoretical measure to investigate the phase transition
by defining a quantity �10�, so that the state of the traffic flow
can be classified to the free-flow state and the jammed state,
where the free-flow state corresponds to the number of cre-
ated and delivered packets that are balanced, and the jammed
state corresponds to the packets accumulated on the network.

Many recent studies have focused on two aspects to con-
trol the congestion and improve the efficiency of transporta-
tion: modifying underlying network structures or developing
better route searching strategies in a large network �24�. Due
to the high cost of changing the infrastructure, the latter is

comparatively preferable. In this light, Echenique et al.,
Wang et al., and Yin et al. suggest traffic models based on
the local information or the local integration of static and
dynamic information �16–19�. Yan et al. propose an efficient
routing strategy based on the knowledge of the whole topol-
ogy �20�. They find that the efficient path results in the re-
distributing traffic loads from central nodes to other noncen-
tral nodes, and the network capability in handling traffic flow
is improved more than ten times by optimizing the efficient
path.

However, previous studies usually assumed that the ca-
pacity of each node, i.e., the maximum queue length of each
node for holding packets is unlimited and the node handling
capability, that is, the number of data packets a node can
forward to other nodes in each time step, is either a constant
or proportional to the degree of each node. But, obviously,
the capacity and delivering ability of a node are limited and
vary from node to node in real systems, and in most cases,
these restrictions could be very important in triggering con-
gestion in the traffic system.

Since the analysis on the effects of the node capacity and
delivering ability restrictions on traffic efficiency are still
missing, we propose a new model for the traffic dynamics of
such networks by taking into account the maximum queue
length L and handling capacity C of each node. The phase
transition from free flow to congestion is well captured and,
for the first time, we introduce the fundamental diagram �flux
against density� to characterize the overall capacity and effi-
ciency of the networked system. Hysteresis in such network
traffic is also produced.

To generate the traffic network, our simulation starts with
the most general Barabási-Albert scale-free network model,
which is in good accordance with the real observation of
communication networks �3�. In this model, starting from m0
fully connected nodes, one node with m links is added at
each time step in such a way that the probability �i of being
connected to the existing node i is proportional to the degree
ki of the node, i.e., �i=

ki

� jkj
, where j runs over all existing

nodes.
The capacity of each node is restricted by two parameters:
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�1� its maximum packet queue length L, which is propor-
tional to its degree k �a hub node ordinarily has more
memory�: L=��k; �2� the maximum number of packets it
can handle per time step: C=��L. Here 0���1 simply
shows that the maximum number of handled packets is less
than the maximum packet queue length L. Motivated by the
previous models �9–12,16–18�, the system evolves in paral-
lel according to the following rules:

�1� Add packets—Packets are added with a given rate R
�packets per time step� at randomly selected nodes and each
packet is given a random destination.

�2� Navigate packets—Each node performs a local search
among its neighbors. If a packet’s destination is found in its
nearest neighborhood, its direction will be directly set to the
target. Otherwise, its direction will be set to a neighboring

node h with preferential probability: Ph=
kh

�

�iki
� . Here the sum

runs over the neighboring nodes, and � is an adjustable rout-
ing parameter in that the packets are more likely to be for-
warded to high-degree nodes when �	0. It is assumed that
the nodes are unaware of the entire network topology and
only know the neighboring nodes’ degree ki.

�3� Deliver packets—At each step, each node can deliver
at most C packets towards its destinations and FIFO �first-
in-first-out� queuing discipline is applied at each node. When
the queue at a selected node is full, the node will not accept
any more packets and the packet will stay at the site and wait
for the next opportunity to be forwarded. Once a packet ar-
rives at its destination, it will be removed from the system.
As in other models, we treat all nodes as both hosts and
routers for generating and delivering packets.

We first simulate the traffic on a network of N=1000
nodes with m0=m=5. To characterize the system’s overall
capacity, we first investigate the increment rate 
 of the num-

ber of packets in the system: 
�R�=limt→�

��Np�

�t . Here �Np

=Np�t+�t�−Np�t� with �…� takes the average over time win-
dows of width �t. Obviously, 
�R�=0 corresponds to the
cases of free-flow state, which are attributed to the balance
between the number of added and removed packets at the
same time. As R increases, there is a critical Rc at which Np
runs quickly towards the system’s maximum packet number
and 
�R� increases suddenly from zero, which indicates that
packets accumulate in the system and congestion emerges
and diffuses to everywhere.

Hence, the system’s overall capacity can be measured by
the critical value of Rc below which the system can maintain
its efficient functioning. Figure 1 depicts the variation of Rc
versus �. The maximum overall capacity occurs at � slightly

greater than 0.0 with Rc
max=18.7 at �=0.3 for �=1 �a� and

Rc
max=42.2 at �=0.1 for �=2 �b�. The results are averaged

from ten simulations.
The analytical estimation of Rc is too complicated for our

routing model. In a recent paper �23�, Germano and
de Moura presented analytical work on the rather simple traf-
fic of particle hopping in complex networks. In the follow-
ing, we provide an analysis for the optimal value of � cor-
responding to the peak value of Rc. In the case of �=0,
packets perform randomlike walks if the maximum queue-
length restriction of each node is neglected. The random
walk process in graph theory has been extensively studied. A
well-known result valid for our analysis is that the time the
particle spends at a given node is proportional to the degree
of such a node in the limit of long times �25�. Similarly, in
the process of packet delivery, the number of received pack-
ets �load� of a given node averaging over a period of time is
proportional to the degree of that node. Note that the packets
delivering ability C of each node assumed to be proportional
to its degree, so that the load and delivering ability of each
node are balanced, which leads to a fact that no congestion
occurs earlier on some nodes with a particular degree than on
others. Since in our traffic model an occurrence of conges-
tion at any node will diffuse to the entire network, ultimately,
no more easily congested nodes bring the maximum network
capacity. However, taking the maximum queue length re-
striction into account, the short queue length of small degree
nodes make them more easily jammed, so that routing pack-
ets preferentially towards large degree nodes slightly, i.e., �
slightly larger than zero, can induce the maximum capacity
of the system.

This also explains the difference in the position of Rc
max of

Figs. 1�a� and 1�b�. Comparing with the case of �=2, the
small degree nodes are more easy to jam when �=1, so a
greater � is needed to achieve a more efficient functioning of
the system. One can also conclude that the optimal � will be
zero if � is large enough.

Then we simulate the packets’ travel time, which is also
important for measuring the system’s efficiency. In Fig. 2�a�,
we show the average travel time �T� versus � under the
conditions of R=1, 2, and 5. In the free-flow state, almost no
congestion on nodes occurs and the time for packets waiting
in the queue is negligible. Therefore, the packets’ travel time
is approximately equal to their actual path length in the map,
but when the system approaches a jammed state, the travel
time will increase rapidly. One can see that when � is
slightly greater than zero, the minimum travel time is ob-
tained. In Fig. 2�b�, the average travel time is much longer

FIG. 1. �Color online� Overall capacity of a
network with N=1000, m0=m=5, �=1 �a�, �
=2 �b�, and �=0.2. The capacity is characterized
by the critical value of Rc for different �. In �a�,
�=1, �optimal=0.3, and Rc

max=18.7. In �b�, �=2,
�optimal=0.1, and Rc

max=42.2. In both cases, the
maximum of Rc corresponds to a � slightly
greater than zero marked by a dashed line. The
data are obtained by averaging Rc over ten net-
work realizations.
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when � is negative than it is positive. These results are con-
sistent with the above analysis that a maximum Rc occurs
when � is slightly greater than zero. Or, in other words, this
can also be explained as: when �	0, packets are more
likely to move to the nodes with greater degree �hub nodes�,
which enables the hub nodes to be efficiently used and en-
hance the system’s overall capability; but when � is too
large, the hub nodes will more probably get jammed, and the
efficiency of the system will decrease.

Finally, we study the fundamental diagram of network
traffic with our model. Fundamental diagram �flux-density
relation� is one of the most important criteria that evaluates
the transit capacity for a traffic system. Obviously, if the
nodes are not controlled with the queue length L, the network
system will not have a maximum number of packets it can
hold and the packet density cannot be calculated, so that the
fundamental diagram cannot be reproduced.

To simulate a conservative system, we count the number
of removed packets at each time step and add the same num-
ber of packets to the system at the next step. The flux is
calculated as the number of successfully delivered packets
from node to node through links per step. In Fig. 3, the
fundamental diagrams for �=0.0,0.3,−0.5, and −0.7 are
shown.

The curves of each diagram show four flow states: free
flow, saturated flow, bistable, and jammed. For simplicity, we
focus on the �=0.3 chart with the maximum �Flux�=1319 in
the following description. As we can see, when the density is
low �less than �0.10�, all packets move freely and the flux
increases linearly with packet density, which is attributed to a
fact that in the free-flow state, all nodes are operated below
its maximum delivering ability C. Then the flux’s increment
slows down and the flux gradually comes to saturation
�0.10–0.34�, where the flux is restricted mainly by the deliv-
ering ability C of nodes.

At the region of medium density, the model reproduces an
important character of traffic flow—“hysteresis,” which can
be seen that two branches of the fundamental diagram coex-
ist between 0.34 and 0.40. The upper branch is calculated by
adding packets to the system, while the lower branch is cal-
culated by removing packets from a jammed state and allow-
ing the system to relax after the intervention. In this way a
hysteresis loop can be traced �arrows in Fig. 3�, indicating
that the system is bistable in a certain range of packet den-
sity. As we know so far, it is the first time that the hysteresis
phenomenon is reported in the scale-free traffic system.

One can also notice that when �=0.3, the maximum satu-
rated �Flux� is higher than others, and the saturated flow

region is much boarder than the cases of �=0.0, −0.5, and
−0.7. All these results show that the system can operate bet-
ter when � is slightly greater than zero, which is also in
agreement with the simulation result of Rc in Fig. 1.

In order to test the finite-size effect of our model, we
simulate some systems with a bigger size. The simulation
shows a similar phase transition and hysteresis in the funda-
mental diagram as shown in Fig. 4�a�.

The flux’s sudden drop to a jammed state from a saturated
flow indicates a first-order phase transition, which can be
explained by the sudden increment of full �jammed� nodes in
the system �see Fig. 4�b��. According to the evolutionary
rules, when a given node is full, packets in neighboring
nodes cannot get in the node. Thus, the packets may also
accumulate on the neighboring nodes and get jammed. This
mechanism can trigger an avalanche across the system when
the packet density is high. As shown in Fig. 4�b�, the number
of full nodes increases suddenly at the same density where

FIG. 2. �Color online� Average travel time for
a network with N=1000, m0=m=5, �=2, and
�=0.2. �a� Average travel time �T� versus � for
R=1, 2, and 5. The data are truncated because the
system jams when � is either too large or too
small. �b� The variation of �T� versus R when � is
fixed. The data are also truncated when the sys-
tem jams.

FIG. 3. �Color online� Fundamental diagram for a N=1000 net-
work with m0=m=5, �=1, �=0.2, and different �. The data are
averaged over ten typical simulations on one realization of network.
In each chart, the solid square line shows the flux variation when
adding packets to the system �increase density�, while the empty
circle line shows the flux variation when drawing out the packet
from the system �decrease density�. The sudden transition density
values are 0.26 and 0.23 ��=0.0�, 0.40 and 0.34 ��=0.3�, 0.26 and
0.15 ��=−0.5�, 0.15 and 0.13 ��=−0.7�. For different realizations
of the network, the fundamental charts are similar, but with a small
difference in the transition values. The arrows in the charts of �
=0.3 and −0.5 show the hysteresis as a guide for the eyes.
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the flux drops to zero and almost no packet can reach its
destination. As for the lower branch in the bistable state,
starting from an initial jammed configuration, the system will
have some jammed nodes that are difficult to dissipate.
Clearly, these nodes will decrease the system efficiency by
affecting the surrounding nodes until all nodes are not
jammed, thus we get the lower branch of the loop.

In conclusion, a new model for scale-free network traffic
is proposed to consider the nodes’ capacity and delivering
ability. In a systemic view of overall efficiency, the model

reproduces several significant characteristics of network traf-
fic, such as phase transition, and for the first time, the fun-
damental diagram for a networked traffic system. Influenced
by two factors of each node’s capability and navigation effi-
ciency of packets, the optimal routing parameter � is found
to be slightly greater than zero to maximize the whole sys-
tem’s capacity. A special phenomenon—the hysteresis—is
also reproduced in the typical fundamental diagram, indicat-
ing that the system is bistable in a certain range of packet
density. It is the first time that the phenomenon is reported in
a networked traffic system. For different packet density, the
system can self-organize to four different phases: free-flow,
saturated, bistable, and jammed.

Our study may be useful for evaluating the overall effi-
ciency of networked traffic systems, and the results may also
shed some light on alleviating the congestion of modern
technological networks.
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FIG. 4. �Color online� �a� Fundamental diagram for a N=5000
network with m0=m=5, �=1, �=0.2, and �=0.1. �b� The aver-
aged number of jammed nodes �Njv�. The symbols for an increasing
or decreasing density are the same as in Fig. 3. One can see that the
two sudden change points 0.40 and 0.14 in both charts are equal.
The arrows are showing the hysteresis as a guide for the eyes.
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