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For many technological networks, the network structures and the traffic taking place on them mutually
interact. The demands of traffic increment spur the evolution and growth of the networks to maintain their
normal and efficient functioning. In parallel, a change of the network structure leads to redistribution of the
traffic. In this paper, we perform an extensive numerical and analytical study, extending results of Wang et al.
�Phys. Rev. Lett. 94, 188702 �2005��. By introducing a general strength-coupling interaction driven by the
traffic increment between any pair of vertices, our model generates networks of scale-free distributions of
strength, weight, and degree. In particular, the obtained nonlinear correlation between vertex strength and
degree, and the disassortative property demonstrate that the model is capable of characterizing weighted
technological networks. Moreover, the generated graphs possess both dense clustering structures and an anti-
correlation between vertex clustering and degree, which are widely observed in real-world networks. The
corresponding theoretical predictions are well consistent with simulation results.
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I. INTRODUCTION

Many real-world systems existing in both nature and so-
ciety can be described by complex networks. Prototypical
examples cover systems as diverse as the Internet �1,2�, the
World Wide Web �3,4�, scientific collaboration networks
�5,6�, protein-protein interaction networks, and worldwide
airport networks �7–10�. In the past few years, much empiri-
cal evidence has revealed that small-world �11� and scale-
free �12� topological properties are shared by many real net-
works, which triggered continuous interest from the
scientific community �13,14�. Understanding and character-
izing the evolutionary dynamics inducing the universal struc-
tural features in complex networks become a central issue.
Many evolutionary models aiming at reproducing those com-
mon topological properties have been proposed. In addition,
much effort has been devoted to studying how the dynamical
processes taking place on complex networks are influenced
by their structures �15–17�, which has been considered as the
ultimate goal of studying complex networks.

Since the first scale-free network model presented by
Barabási and Albert �BA� �12�, much attention has been
given to modeling to better mimic the evolutionary processes
of real-world networks �13�. So far, the research on networks
has been primarily focused on unweighted networks �13,14�,
i.e., edges among vertices are either present or absent, rep-
resented as binary states. Recently, more and more real ob-
servations have indicated that the connections in many real
networks are far beyond Boolean representations which
would miss some important physical characters on edges.
Take the Internet for example �1,2�. The load of information
traffic along edges or through routers can reflect the impor-
tance of edges or routers in traffic transportation. Similarly,
the number of passengers in airport networks can directly
image the status of airlines �8,9�. In scientific collaboration
networks, the number of papers coauthored by two scientists
is a reflection of their research relationship �5,6�. The inter-

action strength in predator-prey networks is crucial for the
stability of the ecosystem �18,19�. Therefore, there is an ob-
vious need for a model approach that can capture the physi-
cal characteristics missing in pure network structures. Fortu-
nately, weighted network representations provide a proper
access to investigate the evolution of network structures and
the weight of interactions among vertices. Moreover, recent,
more complete empirical data support the study of the evo-
lution of weighted networks. Many interesting phenomena
have been observed in the analysis of real data, including a
large heterogeneity in the capacity and intensity of connec-
tions, and, in particular, nonlinear correlations between
weight and topology in a variety of real-world networks
�7–9,20�.

Very recently, Barrat, Barthélemy, and Vespignani �BBV�
presented an evolutionary model to investigate weighted net-
works �21�. It has been deemed to be the first weighted net-
work model that can reproduce the heterogeneity in the in-
tensity of connections and vertices, and in the topology as
well, by coupling the dynamical evolution of topology and
weights �21�. Enlightened by BBV’s remarkable work, many
models have been presented for better mimicking real
weighted networks �22–30�. We propose a traffic-driven
model to investigate the coevolution of traffic and topology
on weighted technological networks. Our proposal is par-
tially inspired by noting that the BBV model takes into ac-
count only the evolution of weight and topology between
newly added vertices and old ones. We argue that such inter-
action also exists among the old nodes. Moreover, due to the
absolute difference between social and technological net-
works in the behavior of assortative mixing �31–33�, these
two types of network should be investigated individually.
What underlying mechanism results in such essential differ-
ence still remains unclear �34�, although some previous mod-
els did give some possible explanations �35�. We focus on
the evolutionary dynamics of technological networks in the
present work. We deem that traffic is ubiquitous in techno-
logical networks, and the networks self-organize and grow to
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maintain their functioning in routing traffic. The evolution
driven by traffic occurs both between newly added vertices
and existing ones and between existing vertices themselves.
This is partially motivated by the work of Dorogovtsev and
Mendes �36,37�, who presented a class of undirected and
unweighted models in which edges can be either created or
removed among old vertices. Our model is fully studied
based on both simulation and theoretical predictions �a short
report of the model appeared in Ref. �38��. The obtained
diversity of scale-free characteristics, the nontrivial cluster-
ing coefficient, the assortative behavior of strength correla-
tion, the nonlinear strength-degree correlation, and the corre-
lation between vertex clustering and degree have all been
empirically observed, demonstrating the validity of our mi-
croscopic mechanisms.

The paper is organized as follows. In Sec. II, we review
definitions of tools for investigating weighted networks. The
evolutionary rules of the model are described in Sec. III.
Section IV provides the theoretical predictions of the distri-
butions of strength, degree, and weight, as well as the
strength-degree correlation. In Sec. V, simulation results of
evolutionary properties and distributions are reported. In Sec.
VI, we discuss the strength correlation and hierarchical back-
bone structures. In Sec. VII, the work is summarized.

II. DEFINITIONS

The topological as well as weighted properties can be
completely described by a weighted adjacency matrix W,
whose elements wij denote the weight on the edge between
vertex i and j. wij =0 represents that vertices i and j are
disconnected. Here, we focus on the cases of undirected
graphs, where the weights are symmetric �wij =wji�.

In weighted networks, a natural generalization of degree
is the vertex strength described as si=� j���i�wij, where the
sum runs over the set ��i� of neighbors of the vertex i. The
physical content of strength can be easily explained. For in-
stance, in the Internet and the worldwide airport network, si
denotes the total traffic load passing through a router �1,2,32�
or an airport at one unit time �8,9�. For scientific collabora-
tion networks, si denotes the number of papers of a scientist
coauthored with others �5�.

Statistical properties of weighted networks can be charac-
terized by the distributions of strength P�s� and weight P�w�,
which denote the probability of a vertex to have strength s
and of an edge to have weight w. Much empirical evidence
has demonstrated that the distributions of strength and
weight also follow heavy-tailed distributions �8,9,17�, which
indicates that the heterogeneous behavior is a universal fea-
ture of weighted networks, and �s� and �w� are not typical in
weighted graphs. Of particular interest is the correlation be-
tween the vertex strength and the degree, which is encoded
in the statistical properties of these distributions. Previously
reported results have displayed that there exists a nonlinear
relationship between strengths and degrees s�k� with �
�1 �8,9,17�, implying a “rich get richer” effect, i.e., large-
degree vertices usually afford higher strength.

A high clustering coefficient is a common property of
real-world networks, ranging from society to nature

�11,13,15�. The clustering coefficient is used to quantify the
emergence of cliques, representing circles of friends or ac-
quaintances in which every member knows every other
member. In addition, a power correlation has been widely
observed between vertex clustering and degree with expo-
nent −1, i.e., C�k��k−1 �39�.

The assortative mixing property has gained much atten-
tion in complex networks �31–33�. In social networks, con-
nections between people are usually assortative, while for
other types of networks, like technological and biological
networks, vertices in the network tend to form connections to
others unlike them, i.e., disassortative behavior. The simplest
and most intuitive method to measure the correlation of ver-
tex degrees is the average nearest-neighbor degree �32,40�.
Analogously, the average nearest-neighbor strength of vertex
i can be defined as

sNN,i =
1

ki
�

j

aijsj . �1�

Once averaged over classes of vertices with strength s, the
average nearest-neighbor strength can be expressed as

sNN�s� = �
s�

s�P�s�	s� , �2�

providing a probe of the strength correlation function. Here,
P�s� 	s� denotes the conditional probability that an s-strength
vertex connects to an s�-strength neighboring vertex.

III. THE MODEL

Previous models for weighted networks gave us the un-
derstanding that the network growth is driven by topological
features with weights only statically assigned to the edges, or
coupled the evolution of weights and topologies spurred only
by newly added vertices �21,41,42�. We argue that for tech-
nological networks traffic �denoted by weights� is an intrin-
sic character and traffic-driven interactions should exist not
only between newly added vertices and old ones, but also in
the whole network, i.e., among the existing vertices. Perhaps
the most reasonable and the simplest way to express such
reinforcement of interaction among edges is the product
form of related vertex strengths, i.e., the pairwise interaction
between vertices i and j is proportional to sisj �strength-
coupling form�. Let us review the BA model �12�: a new
vertex n with m edges is attached at each time step in such a
way that the probability �i of being connected to the existing
node i is proportional to the degree ki of node i, which can be
written in the product form of degrees:

�n→i
BA =

ki

�
j

kj

=
knki

�
j

knkj

. �3�

Similarly, in the BBV model, one can rewrite the strength
preferential probability as
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�n→i =
si

�
j

sj

=
snsi

�
j

snsj

. �4�

Actually, such interaction should exist among old vertices in
the same way, including the updating of weights along edges
and creating new edges between old vertices. It should be
noted that edge creation can also be considered as the rein-
forcement of weights from zero to nonzero.

Our model consists of two evolution mechanisms: the
strength dynamics and the topological growth �see Fig. 1�.
We start from an initial configuration of N0 vertices con-
nected by edges with assigned weight w0=1.

�i� Strength dynamics. From the beginning of the evolu-
tion, all the possible connections at each time step are al-
lowed to update their weights according to the strength-
coupling mechanism:

wij → 
wij + 1 with probability Wpij ,

wij with probability 1 − Wpij ,
�5�

where

pij =
sisj

�
a�b

sasb

�6�

couples the strength of vertices i and j and governs the in-
cremental probability of weight wij �if i and j are discon-
nected, wij =0�. The total weight of the edges in a statistical
sense is controlled by the amount ��i�j�wij�=W, which is
assumed to be consistent for simplicity. The exclusive pa-
rameter W reflects the growing speed of the total traffic load
in the network. For the Internet and the airport network, W
denotes the increasing rate of information flow and passen-
ger flow, respectively. Continuously growing traffic plays the
driving role in the network evolution. One may notice that
Wpij is very likely to exceed 1 if the number of initial nodes
N0 is too small. When this happens, Wpij is assumed to be 1.
This management of Wpij will have some influence on the
initial evolution of the network, but it has no effect on the

statistical properties, as they are nearly independent of initial
state.

�ii� Topological growth. At the same time step, a new
vertex n is added to the existing network with M edges that
are randomly attached to an existing vertex i according to the
strength preferential probability

�n→i =
snsi

�
j

snsj

=
si

�
j

sj

, �7�

where the sum runs over all existing vertices. The weight of
each new edge is set to be w0=1. In fact, the strength pref-
erential attachment is essentially the same as the mechanism
of strength-coupling interactions we have discussed.

The mechanisms �i� and �ii� capture the fact that the
weighted network has to be adaptive to its internal traffic
increment. Take the airport network for example. Due to so-
cial economic development, there is a need to build new
airports in some cities. The traffic demand from these new
cities to metropolises is obviously larger than that to small
cities; thus new connections will be preferentially attached to
cities of higher social status and population. Perhaps the
strength of an airport, representing the whole traffic load
passing through it, is the most reasonable element to charac-
terize the significance of the airport. All these phenomena
can be reflected by the topology growth mechanism, which
couples the evolution of the strength and the expansion of
the network. In parallel, traffic flow among existing airports
will keep growing, leading to the increment of weights along
edges, in particular the edges between metropolises. The traf-
fic increasing velocity of an edge is quantified by the
strength-coupling form, which considers both cities’ contri-
bution to the traffic load between them. The internal traffic
demand also results in the emergence of connections among
old airports to alleviate traffic congestion and improve traffic
efficiency. New airlines should be preferentially built be-
tween high-strength cities, because otherwise avoidable traf-
fic jams would occur among indirect routes with connections
to large cities. This internal evolution can be well captured
by our strength dynamics rule which describes, by adopting
the strength-coupling mechanism, the weight updating on
edges as well as the preferential building of new connections
among vertices, both driven by the traffic demand. Similarly,
for the Internet, information flow should not be judged to be
the subordinate of the network. From the viewpoint of self-
organization, the evolution of the network is driven by the
augmentation of information traffic in order to maintain the
efficiency and normal functioning of the network.

IV. THEORETICAL PREDICTIONS OF STRENGTH,
DEGREE, AND WEIGHT

In this section, we report theoretical predictions of evolu-
tionary behavior and distributions of strength, degree, and
weight.

Let si�t� be the average weight of the ith node at time t;
then si satisfies the following constraint:

FIG. 1. Illustration of the evolution dynamics. A new node n
connects to a node i with probability proportional to si=� jsj. The
thicknesses of nodes and links, respectively, represent the magni-
tudes of the strength and weight. New connections �dashed lines�
can be built between preexisting nodes, and the bilateral links rep-
resent the traffic growing process along links under the general
mechanism of strength couplings.
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�
j

sj = �2M + 2W�t , �8�

and the time evolution equation in the framework of the
mean field approximation is

dsi

dt
=

Msi

�
j

sj

+

2Wsi�− si + �
j

sj�
�

j

sj�
k

sk − �
j

sj
2


Msi

�
j

sj

+

2Wsi�
j

sj

�
j

sj�
k

sk

=
�M + 2W�si

�2M + 2W�t
. �9�

The validity of the approximation in the above equation is
proved in the Appendix. The solution of Eq. �9� can be easily
obtained:

si�t� = M� t

ti
��M+2W�/�2M+2W�

. �10�

Thus, the strength distribution can be written as

P�s� =
1

t
�

1

t

�„s − si�t�…dti, �11�

which yields the strength distribution P�s��s−	, with

	 = 2 +
M

M + 2W
. �12�

Let f ij�t� represent the average weight between the ith node
and the jth node at time t; here we assume i� j. Then the
initial condition is

f ij�t = j − 1� = 0 �13�

and in the framework of the mean field approximation, the
time evolution is described by

dfij

dt
= 2W

sisj

�
k

sk�
l

sl

. �14�

Substituting Eq. �10� into Eq. �14�, one easily obtains that

f ij�t� =
M2

2M + 2W
� tj

ti
��M+2W�/�2M+2W� 1

tj
+ �

tj

t

dt�
M22W

�2M + 2W�2t�2


� 1

titj
��M+2W�/�2M+2W�

t��2�M+2W��/�2M+2W�

=
M2

2M + 2W
� 1

titj
��M+2W�/�2M+2W�

t2W/�2M+2W�. �15�

The distribution of weight can be analogously obtained by

P�w� =
1

t2�
1

t

dtidtj�„f ij�t� − w… , �16�

which yields a power-law distribution of weight P�w��w−�

with

� = 2 +
M

M + 2W
. �17�

When j� i,

f ij = f ji. �18�

To calculate the degree of the ith node at time t, we need to
make the following approximation. Since f ij only represents
the average weight between the ith node and the jth node, the
actual weight between them should be described by a distri-
bution function. In this paper, we shall assume that this dis-
tribution function is a Poisson distribution with the average
weight given by f ij. Therefore, the average connectivity be-
tween the ith node and jth node is given by

pij�t� = 1 − e−f ij�t�. �19�

�Here, the connectivity is defined as 0 when the weight be-
tween the ith node and the jth node is 0, and 1 when the
weight is larger than 1.� It may be helpful to mention that
when W=0 our model is reduced to the BA model and Eq.
�19� is no longer valid. Actually, when W=0, the weight
distribution function between i and j can have nonzero prob-
ability only for the weight of 0 or 1 and highly deviates from
the Poisson distribution. However, when W�0, f ij�t� is
mostly contributed by the strength-coupling mechanism
when t� ti , tj and thus the weight distribution function can
be described by the Poisson distribution function. Conse-
quently, the average degree of the ith node at time t is

ki�t� = �
j=1

t

�1 − e−f ij�t�� �20�

in comparison with the average weight

si�t� = �
j=1

t

f ij�t� . �21�

We shall calculate the difference between si and ki. Since it is
difficult to evaluate the term e−f ij analytically, we shall make
the following approximation:

x − �1 − e−x� � = 
x2/2 if x � 1,

x if x � 1.
�22�

Then the difference between si and ki can be expressed as

si�t� − ki�t� � �
j=1



f ij�t� + �
j=

t
1

2
f ij

2 �t� , �23�

where  is given by the condition

f i�t� = 1, �24�

which yields
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 = � M2

2M + 2W
��2M+2W�/�M+2W�1

ti
t2W/�M+2W�. �25�

When

ti � � M2

2M + 2W
��2M+2W�/�M+2W�

t2W/�M+2W�, �26�

�1 and

si�t� − ki�t� = �
1

t

dtj
1

2
f ij

2 �t�

�
1

4

M4

2W�M + W�
� t2W/�M+2W�

ti
��2�M+2W��/�2M+2W�

,

�27�

which works correctly only for W�0. When

ti � � M2

2M + 2W
��2M+2W�/�M+2W�

t2W/�M+2W�, �28�

we have

si�t� − ki�t� = �
1



dtjf ij�t� +
1

2
�



t

dtj f ij
2 �t�

= D
1

ti
t2W/�M+2W�, �29�

with

D =
M�M + 4W�

4W
� M2

2M + 2W
�M/�M+2W�

, �30�

which works correctly only for W�0. From the above equa-
tions, one sees that �si�t�−ki�t�� /si�t�→0 in the large-time
limit t�1. Thus when t�1, we expect the linear relation-
ship si=ki.

V. SIMULATION RESULTS OF STRENGTH, DEGREE,
AND WEIGHT

The model time is measured with respect to the number of
nodes added to the graph, i.e., t=N−N0, and the natural time
scale of the model dynamics is the network size N. From
Eqs. �12�, �17�, and �29�, one can find the distributions of
strength, degree, and weight can be tuned by both parameters
M and W. Thus, in the following simulations, we fix M =3
and adjust the main parameter W which, as mentioned earlier
denotes the internal traffic increasing velocity, to study the
statistical properties of the weighted network. Correspond-
ingly, the number of initial vertices is set to be N0=M =3.
The initial weight of edges w0 is fixed to be 1 for simplicity.
We have checked that the scale-free properties of the gener-
ated networks are independent of initial arrangements for
large network sizes.

We first investigate the evolutionary behavior of the ver-
tex strength and weight, the difference between the two, and
the difference over vertex strength. The top panel of Fig. 2
reports the strength si as a function of evolutionary time t,

which is the same as the network size N, since a new node is
added to the network at each time step. Equation �10� has
predicted that si�t� follows a power law as time evolves, i.e.,
si�t���t / ti�� with �= �M +2W� / �2M +2W�. Here, ti denotes
the time when vertex i enters the system. Simulations are
performed by choosing ti=4 for different values of parameter
W with fixed M =3. The obtained results well display the
power-law behavior for large t. In the inset of the top panel,
the curve shows the theoretical predictions of � depending
on W based on the mean field theory while the data points
are the correspondent numerical fittings, which match the
analytical results. The second panel of Fig. 2 reports the
evolution of f ij by choosing i=4, j=5. The acquired power-
law behavior well reproduces the analytical predictions from
Eq. �15�, i.e., f ij�t�� t� with �=2W / �2M +2W�, as demon-
strated in the inset. Equation �29� indicates that the differ-
ence between vertex strength and degree si�t�−ki�t� will obey
a power law si�t�−ki�t�� t� with �=2W / �M +2W�. Relevant
numerical simulations are shown in the third panel of Fig. 2.
The simulation results are also in good accordance with the-
oretical predictions as shown in the inset. The difference be-
tween vertex strength and degree divided by strength is
shown in the bottom panel of Fig. 2. One can see that, for
large t, �si−ki� /si is a decreasing function of t. �Moreover,
according to Eqs. �10� and �29�, for large W, the decreasing
velocity is very slow.� Hence, when t tends to infinity, �si

FIG. 2. �Color online� Time evolution of vertex strength si,
weight f ij, the difference of vertex strength and degree si−ki, and
�si−ki� /si for different values of parameter W. Here i and j are
chosen as 4 and 5, respectively. Data points are obtained by aver-
aging over 100 network realizations. The dashed lines are the fitting
of the power-law behavior. The network size is 10 000. The insets
are the comparisons of theoretical predictions and simulation re-
sults. The continuous curve is the analytical expression, while data
points are the corresponding data fitting of the distribution.
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−ki� /si tends to zero, which is consistent with our analysis.
Below, we show numerical simulations of the statistical

properties of strength, weight, and degree as well as the cor-
relation between strength and degree, which are considered
the most important statistical features of weighted networks.
As shown in the left panel of Fig. 3, distributions of strength
follow good power-law behavior with the exponent 	 de-
pending on the value of W, which well reproduces the statis-
tical properties of empirical data. As indicated by Eq. �12�, 	
can be tuned in the range of 2–3, to which most real net-
works belong, making our model general for mimicking the
evolutionary dynamics of weighted technological networks.
The values of 	 obtained by data fitting and analytical ex-
pressions are reported in the inset of the left panel for com-
parison. From Eq. �12�, one can find that, in the case of W
=0, i.e., no strength dynamics, we recover the BA model
with the value 	=3 together with si=ki. The weight distribu-
tions for different values of W are displayed in the right
panel of Fig. 3, showing scale-free weight distributions. As
predicted by Eq. �17�, the tunable range of the exponent � of
the weight distributions is 2���3, which is the same as
that of strength. The comparison between simulations and
analytical predictions is reported in the inset of the right
panel. Figure 3 demonstrates the validity of our theoretical
predictions for the statistical distributions of strength and
weight. The tunable range of the exponents of the two dis-
tributions indicates that our microscopic mechanisms can
well capture the evolution of real weighted networks. �How-
ever, for a few very high-strength vertices, the distribution
cannot be well predicted by mean field theory, reflected by
the fluctuation in the tails.�

The simulation results for degree distributions and the
correlation between vertex strength and degree are shown in
Fig. 4. As shown in the right panel of Fig. 4, degree distri-
butions follow a power law with the exponent depending on
the value of the parameter W. In addition, one can find that

the vertex strength si is a nonlinear function of corresponding
degree ki, i.e., si�ki

� with ��1, which is in good agreement
with the real observations of the worldwide airport network.
Such nonlinear correlation indicates a rich get richer phe-
nomenon in the weighted networks, that is, a vertex of larger
degree usually affords a larger traffic load in weighted tech-
nological networks.

VI. STRENGTH CORRELATION AND CLUSTERING
STRUCTURE

Next, we investigate the strength correlation between a
vertex and its neighbors. This quantity is a natural extension
of the degree correlation. The average nearest-neighbor
strength is used to measure this correlation. Relevant detailed
definitions are already given in Sec. II. The strength correla-
tion can be obtained by adopting the mean field theory

sNN�i� =

�
j

pij�t�sj�t�

�
j

pij�t�
. �31�

Substituting Eqs. �10� and �19� into the above equation, we
get

sNN�i� =

�
j

�1 − e−f ij�M� t
tj
��M+2W�/2�M+W�

�
j

�1 − e−f ij�
, �32�

where

f ij =
M2

2�M + W�
� 1

titj
��M+2W�/2�M+W�

t2W/2�M+W�. �33�

Then, from Eq. �10�, we can get

FIG. 3. �Color online� Distributions of strength �left panel� and
weight �right panel� for different values of parameter W. Data
points are obtained by averaging over 20 network realizations. Here
we log-bin the data with bin sizes increased by multiplying with a
constant factor. The network size is 40 000. The insets are the com-
parisons of theoretical predictions and simulation results. The con-
tinuous curve is the analytical expression; while data points are the
corresponding data fitting of the distribution.

FIG. 4. �Color online� Distributions of vertex degree �left panel�
and the correlation between vertex strength and degree �right panel�
for different values of W. Data points are obtained by averaging
over 20 network realizations. The network size is 40 000. For de-
gree distributions, we log-bin the data with bin sizes increased by
multiplying with a constant factor.
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ti = t�M

si
�2�M+W�/�M+2W�

. �34�

Substituting Eq. �34� into Eq. �32�, we have

sNN�s� =

�
j

�1 − e−�s�M� t
tj
��M+2W�/2�M+W�

�
j

�1 − e−�s�
, �35�

where

�s =
Ms

2�M + W�
� 1

ttj
��M+2W�/2�M+W�

t2W/2�M+W�. �36�

Simulation results and corresponding analytical results of
the strength correlation are shown in the left panel of Fig. 5.
One can find that both the numerical and theoretical results
exhibit a power-law decay in the range of large values of s,
which indicates a disassortative behavior. However, the the-
oretical prediction differs from the simulation result despite
the same qualitative trend. In order to explain this difference,
we investigate the evolution of vertex strengths, i.e., si�t�
� t. As shown in the right panel of Fig. 5, the mean field
theory has predicted that si�t� will follow

si�t� = M� t

ti
��M+2W�/�2M+2W�

� i−�M+2W�/�2M+2W�. �37�

While the simulation results have shown that the strength
evolution of some oldest vertices does not obey the analyti-
cal results based on the mean field theory. While, for the
younger vertices �i�100�, the simulation results are well
consistent with the theoretical predictions. Since the mean
field theory can predict the strength evolution of most verti-
ces, the numerical results for distributions of strength, as
well as the degree and weight, are in good agreement with
the analytical results. However, for the strength correlations,
those oldest vertices play a significant role and the inaccurate

predictions of their strengths will have strong influence on
the final results for the correlation properties, which is be-
cause the oldest vertices are usually of highest strengths and
degrees, and most of their neighbors are small-degree verti-
ces. Hence, the underestimation of the strengths of old ver-
tices results in lower values of sNN of small-strength vertices
compared to the simulation results, as displayed in the left
panel of Fig. 5.

In order to well predict the correlation property, we give a
more accurate theoretical method for the evolution of vertex
strength. In the case of 1� i�M, we have

si�t = 1� = M , �38�

while for t�2,

si�t� = M�
j=0

t−2 �1 +
M + 2W

M2 + 2�M + W�j
� . �39�

In the case of i�M, we have

si�t = i − M + 1� = M , �40�

while for t� i−M +2,

si�t� = M �
j=i−M

t−2 �1 +
M + 2W

M2 + 2�M + W�j
� . �41�

The comparison of the accurate prediction and the simulation
result is shown in the left panel of Fig. 5. Accordingly, the
strength correlation can be obtained by substituting si�t� into
Eq. �31�. In the left panel of Fig. 5, one can find good agree-
ment between the theoretical prediction and simulation re-
sults.

Now we study the clustering coefficient of the network
for different values of W and various network sizes. As
shown in the left panel of Fig. 6, the clustering coefficient C
for each value of W follows a power-law function of network
sizes and higher values of W correspond to higher values of
C. Moreover, the higher is the value of W, the slower the
decay velocity of C. In the case of very low values of W, our
model recovers the BA model, so that the generated network

FIG. 5. �Color online� Left panel: strength correlation sNN ver-
sus s. Right panel: vertex strength si as a function of vertex number
i. The red �solid� lines are the accurate theoretical predictions and
the blue �dashed� lines are the mean field theory. The parameter
values are W=4 and M =2. The network size N=1000. Simulation
results are obtained by averaging over 500 different realizations.

FIG. 6. �Color online� Clustering coefficient C as a function of
network size N �left panel� and the dependence of vertex clustering
C�k� on degree k �right panel� for different values of parameter W.
The line is of slope −1. Data points are obtained by averaging over
100 different realizations.
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possesses few clustering structures. With increment of the
network size, the clustering coefficient decreases to zero
quickly. In contrast, for high values of W, the clustering co-
efficient is close to 1 and nearly independent of the network
size. This indicates that our traffic-driven mechanism can
effectively promote the construction of clustering structures,
which are widely observed in real networks.

The correlation between the clustering and the degree of
vertices is shown in the right panel of Fig. 6. One can see
that, in the large-degree range, power-law behavior emerges
with slope close to −1. More interestingly, our model can
well mimic the flat behavior in the small-degree range ob-
served in many real networks, such as actor networks, the
semantic web, and the Internet �39�. As far as we know, few
previous models can generate the power-law clustering-
degree correlation together with flat head behavior. This is
one of the most important properties successfully generated
by our model.

VII. CONCLUSION

We have proposed a simple model by introducing univer-
sal interactions among vertices spurred by the increment of
traffic demands in weighted technological networks. The
model can generate a wide variety of scale-free properties of
distributions of strength, degree, and weight, as well as the
correlation between vertex strength and degree, which are all
supported by empirical data. Theoretical predictions of these
properties are also provided, which are in good accordance
with the simulation results. Furthermore, we have studied the
strength correlation between a vertex and its neighbors and
found disassortative behavior. Corresponding analytical re-
sults are given for comparison. In addition, we have investi-
gated the clustering coefficient and the correlation of cluster-
ing and degree of vertices. Power-law scaling and the
anticorrelation between vertex clustering and degree proper-
ties are observed, which demonstrate the validity of our mi-
croscopic mechanism for modeling weighted technological
networks. Due to the reproduction of all kinds of weighted
and topological features of real-world weighted networks,
our model may be very beneficial for future understanding or
characterization of real networks.
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APPENDIX

In this appendix, we prove the validity of dropping the
terms in Eq. �9�. We define

Q�t� = �
k=1

t

sk
2�t� , �A1�

s�t� = �
k=1

t

sk�t� = 2�M + W�t . �A2�

Hence, we have

dsi

dt
=

�M + 2W�si

�2M + 2W�t
+ F�t�siQi�t� , �A3�

where si�t= i�=M and

F�t� =
2W

s�t��s2�t� − Q�t��
� 0, �A4�

which can be obtained from the first line of Eq. �9�. Define

Qi�t� = Q�t� − sis�t� . �A5�

We can assume

s1 � s2 � ¯ � sN, �A6�

which yields

Q1 � Q2 � ¯ � QN, �A7�

with

Q1 � Q2 � ¯ � QI � 0, �A8�

0 � QI+1 � QI+2 � ¯ � QN. �A9�

Thus, we have

�
i

siQi�t� = 0, �A10�

�
i

si
2Qi � SI�i

SiQi = 0. �A11�

Thus Eq. �A3� can be simplified to

ds�t�
dt

= M +
�M + 2W�s�t�
�2M + 2W�t

, �A12�

which yields

s�t� = �2M + 2W�t . �A13�

Similarly, from Eq. �A3�, we have

dQ�t�
dt

= M2 +
�M + 2W�Q�t�

�M + W�t
+ 2F�t��

i

si
2Qi�t� ,

�A14�

which yields

dQ�t�
dt

� M2 +
�M + 2W�Q�t�

�M + W�t
, �A15�

which results in

Q�t� � Ct�M+2W�/�M+W� �A16�

in the case of t→�, where C is a constant. So we have
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Q�t� � s2�t� �t → � � . �A17�

Then, from Eq. �A3�, we obtain

ds1

dt
=

�M + 2W�s1

�2M + 2W�t
+ F�t�s1Q1�t� , �A18�

which yields

ds1

dt
�

�M + 2W�s1

�2M + 2W�t
. �A19�

Hence, we have

s1 � Ct�M+2W�/2�M+W� �t → � � , �A20�

which results in

F�t�siQi�t�
��M + 2W�si/s�

�
Q − sis

s2 − Q
→ 0, �A21�

when t→�. Therefore, the term F�t�siQi�t� can be safely
dropped from Eq. �A3�.
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