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Much recent empirical evidence shows that community structure is ubiquitous in the real-world networks. In
this paper we propose a growth model to create scale-free networks with the tunable strength �noted by Q� of
community structure and investigate the influence of community strength upon the collective synchronization
induced by Susceptive-Infected-Recovery-Susceptive �SIRS� epidemiological process. Global and local syn-
chronizability of the system is studied by means of an order parameter and the relevant finite-size scaling
analysis is provided. The numerical results show that a phase transition occurs at Qc�0.835 from global
synchronization to desynchronization and the local synchronization is weakened in a range of intermediately
large Q. Moreover, we study the impact of mean degree �k� upon synchronization on scale-free networks.
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I. INTRODUCTION

The study of networked systems, including technological,
social, and biological networks of various kinds, has at-
tracted much attention in the physics community �1–4�. How
the properties of networks, such as the lengths of the shortest
paths between vertices, degree distribution, clustering coef-
ficient, degree-degree correlation, and so on, affect dynami-
cal processes taking place upon the networks �5–10� has
been one of the most important subjects of the body of this
work. Recently, it has been determined that many real-world
networks show community structure �11,12�, i.e., groups of
vertices that have a high density of edges within them, but a
lower density of edges between groups. However, there are
few works about the influences of various degree of commu-
nity structure upon dynamics.

In this paper we intend to fill this gap by investigating
synchronization behavior induced by the SIRS epidemiologi-
cal dynamics �13,14� on the scale-free networks with various
strength �noted by Q� of community structure. In Ref. �15�,
the authors have studied the SIRS on small-world networks
and found that when p, which characterizes the degree of
disorder of the network, reaches an intermediately large
value pc, synchronization of the system emerges. Compara-
tively, we focus on global and local �inside each community�
dynamics, and discover that no synchronization comes forth
when the network possesses a strong enough community
structure, i.e., the communities are connected by a few edges
among them. Moreover, the vertices inside each community
behave with weaker synchronization when Q is in a range of
intermediately large values.

II. Network Model

To generally characterize the community structure of
scale-free networks, we propose a growth model to create a

network with a tunable parameter denoting the strength of
community structure. Inspired by two ingredients of the
Barabasi-Albert model �BA for short�, i.e., growth and pref-
erential attachment �16�, the rules of our model are as fol-
lows: Starting with c communities, noted by
U1 ,U2 , . . . ,Uc−1 ,Uc, and each community with a small num-
ber �m0� of vertices, and at every time step, we add into each
community a new vertex with m��m0� edges that link the
new vertex to n different vertices in this community and
m−n different vertices in other c−1 communities already
existing in the system. The initial m0�c vertices link to each
other to keep the connectivity of the network. The values of
m and n are not necessary integers �take m, for example, the
fractional part of m denotes the probability to link m�+1
different vertices, where m� is the integral part of m�. When
adding a new vertex into community Ul, first choose n dif-
ferent vertices in community Ul according to “preferential
attachment,” which means the probability � that the new
vertex will connect to vertex i �i�Ul� depend on the degree
ki of vertex i, such that ��ki�=ki /	 j�Ul

kj. Then for each one
of the other m-n edges of the new vertex, choose a commu-
nity Uh��Ul� randomly and connect the new vertex to one
vertex in Uh following the preferential attachment mecha-
nism referred to above.

The scaling behavior of the degree distribution can be
calculated by using several approaches �17–19�. In our
model, the degree distributions p�k� of vertices of the global
network, as well as the local vertices �inside each commu-
nity�, are power law with exponent 3.0, i.e., p�k��k−3.0 �see
Fig. 1�. The analytic procedure is simple and not shown here.

As proposed by Newman and Girvan �20� and modified
by Kashtan and Alon �21�, the strength of community struc-
ture can be quantified by

Q = 	
1

c 
 ls

L
− � ds

2L
�2 , �1�

where c is the number of communities, L is the number of
edges in the network, ls is the number of edges between*Electronic address: zqfu@ustc.edu.cn
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nodes in community Us, and ds is the sum of the degrees of
the nodes in community Us. Roughly speaking, Q is the ratio
of the number of edges intra-community to the total number
of the edges. Obviously, if the network is divided into some
communities more clearly, i.e., there are fewer edges among
different communities, the value of Q is larger. In our
model, for large N �the number of all vertices�, L=mN, ls

= nN
c , and ds=2n+ �m−n�+ �m−n��c−1� / �c−1�= 2mN

c . Substi-
tuting these results into Eq. �1�, we obtain

Q =
n

m
−

1

c
. �2�

Thus, for fixed m and c, we modulate the value of n to obtain
the networks with various community strength Q.

III. EPIDEMIC MODEL

We analyze SIRS epidemic model and aim to point out
the role of community structure on the temporal dynamics of
the epidemic spreading. The disease has three stages: suscep-
tible �S�, infected �I�, and refractory �R�. A vertex of the
networked population is described by a single dynamical
variable adopting one of these three values. Susceptible ele-
ments can pass to the infected state through contagion by an
infected one. Infected elements pass to the refractory state
after an infection time TI. Refractory elements return to the
susceptible state after a recovery time TR. The contagion is
possible only during the S phase, and only by an I element.
During the R phase, the elements are immune and do not
infect. The system evolves with discrete time steps. Each
vertex in the network is characterized by a time counter
�i�t�=0,1 , . . . ,TI+TR�T, describing its phase in the cycle of
the disease. The epidemiological state �i �S, I, or R� of the
vertex depends on the phase in the following way:

�i�t� = S if �i�t� = 0,

�i�t� = I if �i�t� � �1,TI� ,

�i�t� = R if �i�t� � �TI + 1,T� . �3�

The state of a vertex in the next step depends on its cur-
rent phase in the cycle, and the state of its neighbors in the

network. A susceptible vertex stays as such, at �=0, until it
becomes infected. Once infected, it goes �deterministically�
over a cycle that lasts T time steps. During the first TI time
steps, it is infected and can potentially transmit the disease to
a susceptible neighbor. During the last TR time steps of the
cycle, it remains in state R, immune and not contagious.
After the cycle is complete, it returns to the susceptible state.
As mentioned in Ref. �15�, if vertex i is susceptible and it has
ki neighbors, of which kinf are infected, then i will become
infected with probability kinf /ki.

IV. RESULTS AND ANALYSIS

Specifically we study the behavior of the infected sites
with respect to Q. A typical realization starts with the gen-
eration of the network characterized by Q and the initializa-
tion of the states of the vertices. The initial fraction of in-
fected vertices ninf�0�=0.1 and the rest susceptible, was used
in all the simulations here.

After a transient period, a stationary state is achieved. We
find that the pronounced fluctuations of the fraction of in-
fected vertices is a function of time. Figure 2 shows three
time series displaying the fraction of infected vertices in the
network with varying community strength Q. When Q
=0.46 �see Fig. 2�a1��, the network has a weak strength of
community structure. It is similar to the real-world networks
where the community strength Q falls in the range from
about 0.3 to 0.7 �20�. In such a condition, the fraction of
infected vertices exhibits large amplitude oscillations. For
strong community structure, such as Q=0.81,0.935 �see
Figs. 2�b1 and c1�, respectively�, the time series have regular
periods, but the amplitudes are small and disordered. In ad-
dition, we study the local dynamics that is the epidemic pro-
cess inside each community. Figures 2�a2�, 2�b2�, and 2�c2�
show the time evolution of the fraction of infected vertices in
a community, for Q=0.46, 0.81, and 0.935, respectively. The
amplitudes are almost the same. Since the amplitude is re-
lated to the synchronization of the system, we will give a
measure below and make it clearer. Figures 2�d1� and 2�d2�
show the clear periodic oscillations of the fraction of local
and global infected vertices vs the scaled time t /T while Q
=0.46, respectively. One can see that the period T0 is larger
than the natural period T of the infection cycle, which is
different from the result on small-world networks presented
in Ref. �22�. Moreover, we have done the Fourier power
analysis for different Q and find that there is a sharp peak in
the frequency 1/T0 �not shown here�, which reveals that the
series have regular temporal periods although the amplitudes
are variable. As the difference between T0 and T is the time
staying at the state S and T is of the same value for all
vertices, we could analyze the reason of regular T0 by esti-
mating the probability Pi�t� of a vertex i changing state from
S to I at time t. We obtain here pi�t� by using the mean-field
estimation as the following: pi�t�=kinf /ki�ninf�t�. That result
implies that all the vertices update their states at almost the
same time which induces the regular temporal cycles. Be-
sides the parameter-free infection mechanism, there may be
other reasonable choices. For example, if the susceptible had
a probability � of contagion with each infected neighbor,

FIG. 1. The global �left� and local �right� degree distribution of
the network with N=105, c=10, m=4.0, and n=3.0, where Q
=0.65. It is worthwhile to point out that, for different values of Q,
the distributions do not change.
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then the probability of infection is �1− �1−��kinf�. For small
�, we have pi�t�= �1− �1−��kinf���kinf �ninf�t�. Obviously,
that does not affect the qualitative results here.

To quantify the amplitudes of the oscillation series, we
define the relevant order parameter

��t� = � 1

N
	
j=1

N

ei�j�t�� , �4�

where � j =2��� j −1� /T is a geometrical phase corresponding
to � j. The states �=0 have been left out of the sum in Eq. �4�.
We obtain the synchronization order parameter � by averag-
ing over 104 time steps after the transient to a stationary state
and subsequently by averaging over 400 different realiza-
tions of the system. Here the synchronization is a measure of
the collective order. If at any time t all the vertices are almost

at the same state, i.e., �i is equal to the same value for all i,
the system is synchronous. While the vertices are at different
states equally, the system is not synchronous. Obviously,
when the system is not synchronized, the phases are widely
spread in the cycle and the complex numbers ei� are corre-
spondingly spread in the unit circle which leads to a low
value of �. In contrast, when a significant part of the vertices
are synchronized in the cycle, � is large. The full synchroni-
zation, i.e., �=1, will be achieved only when all the vertices
enter the same state simultaneously. For the local synchroni-
zation, we calculate the above order parameter over the ver-
tices in one community.

Precise calculation of the critical community strength Qc
separating synchronized and desynchronized states requires
considering the finite-size effect. In the thermodynamic limit,
the order parameter displays the critical behavior ���Q
−Qc�	, with the critical exponent 	. While in a finite system

FIG. 2. The time series of the fraction of in-
fected vertices. The systems have N=104, c=25,
and m=4.0, and the infection cycle with TI=8
and TR=5. The left three figures �a1�, �b1� and
�c1� showed the global fluctuations of ninf�t� on
the network with Q=0.46, 0.81, and 0.935, re-
spectively. The right three figures show the local
fluctuations correspondingly. It is obvious that
the global and local fluctuations are very differ-
ent. The detailed analysis is presented in the text.
The two bottom figures show the clear global �d1�
and local �d2� periodic oscillations on the net-
work with weak community structure �Q=0.46�.
The time steps have been scaled by the natural
period T of the infection cycle. T0 is the period of
the oscillations. It is manifest that T0
T, which
is different from the result T0=T presented for
small-world �SW� networks in Ref. �22�.

FIG. 3. �Color online� �a� The order parameter
for global synchronization plotted as �N	/�̄ with
	 / �̄=0.25 vs Q for different network size N with
fixed Nc=200, where Nc is the number of verti-
ces in each community. There is given a unique
crossing point at Qc=0.83�5�. From �b� we ob-
tained �1−	� / �̄=0.57�2�. These yield 	�0.30
and �̄�1.22. �c� The order parameter for local
synchronization vs Q for different network mean
degree �k�=6,8 ,10 �from bottom to top�.
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with size much larger than the additional length scale, the
critical scaling form is

� = N−	/�̄F��Q − Qc�N1/�̄� , �5�

where the exponent � describes the divergence of correlation
volume �v at Qc, �v��Q−Qc�−�̄. Since at Q=Qc the function
F in Eq. �5� has a value independent of N, plotting �N	/�̄ vs
Q for various sizes, one can obtain the value of 	 / �̄ that
gives a unique crossing point at Qc. One then uses

ln � d�

dQ
�

Qc

=
1 − 	

�̄
ln N + const �6�

in order to determine the value of �1−	� / �̄. Then the expo-
nent 	 and �̄ can be figured out. Figure 3�a� displays the
determination of Qc for the global synchronization using the
finite-scale form Eq. �5�. Varying the value of 	 / �̄ we find
that 	 / �̄�0.25 gives a well-defined crossing point at Qc
�0.835. In Fig. 3�b�, the least-square fit to Eq. �6� gives
�1−	� / �̄�0.572. These yield 	�0.30 and �̄�1.22. More-
over, as shown in Fig. 3�c�, for different mean degree �k�, the
local synchronization parameter falls into the pit around a
value Q�0.75. This implicates that, when the communities
are almost unattached �i.e., for very large Q� the local dy-
namic lies on the inner structure of community indepen-
dently, while the communities couple each other strongly
�for small Q�, the local dynamic is almost the same as the
global one, and in the midst the local synchronization is the
weakest.

Furthermore, we have studied the impact of the mean de-
gree �k� of scale-free networks upon the synchronization. We
start the simulation with a generation of scale-free networks
with Q=0, that is the BA model or our model with n /m
=1/c, and the initial fraction of infected vertices ninf�0�
=0.1. We let the number of vertices m that a new added
vertex will connect be real number, as referred in Sec. II.
Obviously, �k�=2m. Figure 4�a� shows the order parameter �
vs m for different period T of the infection cycle. For a fixed
period T, a transition in the synchronization can be observed
as m increases. Moreover, the larger the period T, the less the
critical value of mc at which the transition occurs. We set T
=10 to analyze the critical scaling by using standard finite-
size analysis mentioned above. Figure 4�b� shows when
	 / �̄=0.16 the curves with different sizes N give a unique
crossing point at mc�2.8 �where �k�c�5.6�. In Fig. 4�c�, the
fit gives �1−	� / �̄�0.35. Hence 	�0.31 and ��1.95.

V. CONCLUSION

To summarize, we have investigated the influence of the
strength of community structure �Q� on global and local syn-
chronization induced by the SIRS epidemic dynamics. The

numerical results have shown that small Q induces better
global synchronization and a phase transition occurs at Qc
�0.835 estimated by using finite-size analysis, while for the
local synchronization there exists a minimal value of order
parameter � around Q�0.75. This result is in accordance
with Ref. �23� in which a modified simulated annealing al-
gorithm is applied to optimize the synchronizability and
well-defined communities do not exit in the emerging net-
works. That implies the networks with small Q are of strong
synchronizability. It is also worth mentioning that, as in the
synchronization process, well-defined communities of nodes
emerge in different time scales, Arenas et al. have used the
synchronization to reveal the community structure �24�.

Moreover, we have studied the synchronization order pa-
rameter vs �k� on scale-free networks with Q=0. The simu-
lation results demonstrate that, for a fixed period T, a transi-
tion in the synchronization can be observed as �k� increases.
The larger period T corresponds to a smaller critical value of
transition point �k�c.
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FIG. 4. �Color online� �a� The order parameter vs m for different
natural period T=8,10,12, where m= �k� /2. �b� The order param-
eter � for natural period T=10 plotted as �N	/�̄ with 	 / �̄=0.16 vs
m for different network size N. There is given a unique crossing
point at mc=2.80. From �c� we obtained �1−	� / �̄=0.35�0�. These
yield 	�0.31 and �̄�1.95.
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