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We present a memory-based snowdrift game �MBSG� taking place on networks. We found that, when a
lattice is taken to be the underlying structure, the transition of spatial patterns at some critical values of the
payoff parameter is observable for both four- and eight-neighbor lattices. The transition points as well as the
styles of spatial patterns can be explained by local stability analysis. In sharp contrast to previously reported
results, cooperation is promoted by the spatial structure in the MBSG. Interestingly, we found that the fre-
quency of cooperation of the MBSG on a scale-free network peaks at a specific value of the payoff parameter.
This phenomenon indicates that properly encouraging selfish behaviors can optimally enhance the cooperation.
The memory effects of individuals are discussed in detail and some nonmonotonous phenomena are observed
on both lattices and scale-free networks. Our work may shed some new light on the study of evolutionary
games over networks.
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I. INTRODUCTION

Evolutionary game theory has been considered an impor-
tant approach to characterizing and understanding the emer-
gence of cooperative behavior in systems consisting of self-
ish individuals �1�. Such systems are ubiquitous in nature,
ranging from biological to economic and social systems.
Since the groundwork on repeated games by Axelrod �2�,
the evolutionary prisoner’s dilemma game �PDG� as a
general metaphor for studying the cooperative behavior
has drawn much attention from scientific communities. Due
to the difficulties in assessing proper payoffs, the PDG
has some restriction in discussing the emergence of coopera-
tive behavior. Thus, the proposal of the snowdrift game �SG�
was generated to be an alternative to the PDG. The SG,
equivalent to the hawk-dove game, is also of biological in-
terest �3�. However, in these two games, the unstable coop-
erative behavior is contrary to the empirical evidence. This
disagreement motivates a number of extensions of the origi-
nal games to provide better explanations for the emergence
of cooperation �2,4�.

The spatial game, introduced by Nowak and May �5�, is a
typical extension, which can result in emergence and persis-
tence of cooperation in the PDG. Motivated by the idea of
the spatial game, many interests have been given to the ef-
fects of spatial structures, such as lattices �6� and networks
�8�, on cooperative behavior. In a recent paper �9�, Hauert
and Doebeli found that compared to the PDG, cooperation is
inhibited by the spatial structure. The surprising finding is in
sharp contrast to one’s intuition, since in comparison with
the PDG, the SG favors cooperation. More recently, Santos
and Pacheco �10� discovered that scale-free networks pro-
vide a unified framework for the emergence of cooperation.
In addition, Szabó et al. �11� presented a stochastic evolu-
tionary rule to capture the bounded rationality of individuals
for better characterizing the dynamics of games in real
systems.

Among the previous work, the effects of individuals’
memory have not received much attention in the study of
evolutionary games on networks. We argue that individuals
usually make decisions based on the knowledge of past
records in nature and society, and the historical memory
would play a key role in an evolutionary game. Therefore, in
the present work, we propose a memory-based snowdrift
game �MBSG�, in which players update their strategies based
on their past experience. Our work is partially inspired by
Challet and Zhang �12�, who presented a so-called “minority
game,” in which agents make decisions exclusively accord-
ing to the common information stored in their memories. It is
found that finite memories of agents have crucial effects on
the dynamics of the minority game �13�. We focus on the
evolutionary SG for its general representation of many social
and biological scenarios. The MBSG on different network
structures, including lattices and scale-free networks, is stud-
ied. Transitions of spatial patterns with relevant sudden de-
creases of the frequencies of cooperation are observed in
lattices. Local stability analyses are provided for explaining
such phenomena. In a scale-free network, cooperation level
peaks at a specific value of payoff parameter, which is dif-
ferent from previously reported results. For both lattices and
scale-free networks, we found that memory effects play dif-
ferent roles on the frequency of cooperation for distinct
ranges of the payoff parameter.

II. THE MODEL

We first briefly describe the original SG model. Imagine
that two cars are trapped on either side of a huge snowdrift.
Both drivers can either get out of the car to shovel �cooper-
ate: C� or stay in the car �defect D� in any one negotiation. If
they both choose C, then they both gain benefit b of getting
back home while sharing labor c of shovelling, i.e., both get
payoff b−c /2. If both drivers choose D, they will still be
trapped by the snowdrift and get nothing. If one shovels �C�
while the other one stays in the car �D�, then they both can
get home but the defector pays no labor cost and gets a*Electronic address: gchen@ee.cityu.edu.hk
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perfect payoff b, while the cooperator gets b−c. Without
losing generality, b−c /2 is usually set to be 1 so that the
evolutionary behavior of the SG can be investigated with a
single parameter, r=c /2=c / �2b−c�. Thus, one has a
rescaled payoff matrix

C D

C 1 1 − r ,

D 1 + r 0

where 0�r�1. Though, compared with the PDG, the payoff
rank of the SG favors the emergence of cooperation, coop-
eration is still unstable, which results from the highest payoff
of defectors.

Here, we introduce the rules of the evolutionary MBSG.
Consider that N players are placed on the nodes of a certain
network. In every round, all pairs of connected players
play the game simultaneously. The total payoff of each
player is the sum over all its encounters. After a round
is over, each player will have the strategy information �C or
D� of its neighbors. Subsequently, each player knows its
best strategy in that round by means of self-questioning,
i.e., each player adopts its antistrategy to play a virtual game
with all its neighbors, and calculates the virtual total payoff.
Comparing the virtual payoff with the actual payoff, each
player can get its optimal strategy corresponding to the high-
est payoff and then record it into its memory. Taking into
account the bounded rationality of players, we assume that
players are quite limited in their analyzing power and can
only retain the last M bits of the past strategy information. At
the start of the next generation, the probability of making a
decision �choosing C or D� for each player depends on the
ratio of the numbers of C and D stored in its memory, i.e.,
PC=

NC

NC+ND
=

NC

M and PD=1− PC, where NC and ND are the
numbers of C andD, respectively. Then, all players update
their memories simultaneously. Repeat the above process and
the system evolves.

III. MBSG ON LATTICES

The key quantity for characterizing the cooperative be-
havior is the frequency of cooperation fC, which is defined as
the fraction of C in the whole population. fC can be obtained
by counting the number of cooperators in the whole popula-
tion after the system reaches a steady state, at which the
number of cooperators shows slight fluctuations around an
average value. Hence, fC is the ratio of the cooperator num-
ber and the total number of individuals N. One can easily see
that fC ranges from 0 to 1, where 0 and 1 correspond to cases
of no cooperators and entire cooperator state. First, we in-
vestigate the MBSG on two-dimensional square lattices of
four and eight neighbors with periodic boundary conditions.
Simulations are carried out for a population of N=10 000
individuals located on nodes. Initially, the strategies of C and
D are uniformly distributed among all players. The memory
information of each player is randomly assigned, and we
have checked that this assignment has no contributions to the
stable behavior of the system. Each data point is obtained by
averaging over 40 different initial states. Figures 1�a� and

1�b� show fC as a function of the parameter r on the lattices
of four and eight neighbors, respectively. In these two fig-
ures, four common features should be noted: �i� fC has a step
structure, and the number of steps corresponds to the number
of neighbors on the lattice, i.e., four steps for the four-
neighbor lattice and eight steps for the eight-neighbor lattice;
�ii� the two figures have 180°-rotational symmetry about the
point �0.5, 0.5�; �iii� the memory length M has no influences
on the dividing point rc between any two cooperation levels,
but has strong effects on the value of fC in each level; �iv� for
a large payoff parameter r, the system still behaves in a high
cooperation level, contrary to the results reported in Ref. �9�.
It indicates that although selfish individuals make decisions
based on the best choices stored in their memories to maxi-
mize their own benefits, the cooperative behavior can emerge
in the population in spite of the highest payoff of D.

The effects of memory length M on fC in the four-
neighbor lattice are shown in the insets of Fig. 1. Since fC is
independent of r within each cooperation level, we simply
choose a value of r in each level to investigate the influence
of M on fC. Moreover, due to the inverse symmetry of fC
about the point �0.5, 0.5�, we concentrate on the range of 0
�r�0.5. The top inset of Fig. 1�a� reports fC as a function
of M for the ranges of 0�r�0.25 and 0.25�r�0.5. One
can find that fC is a monotonous function of M for both
levels and the decreasing velocity of fC in the first level is
faster than that in the second one. In contrast, in the eight-
neighbor lattice, fC exhibits some nonmonotonous behaviors
as M increases. As shown in the bottom inset of Fig. 1�b�,
there exists a minimum fC in the first level corresponding to
M =23, and fC is an increasing function of M in the second

FIG. 1. �Color online�. The frequency of cooperation fC as a
function of the payoff parameter r for two-dimensional �a� four-
neighbor and �b� eight-neighbor lattices, respectively. ���, ���, and
��� are for M =2, 7, and 30, respectively. Each data point is ob-
tained by averaging over 40 different initial states and fC for each
simulation is obtained by averaging from MC time step t=5000 to
t=10 000, where the system has reached a steady state. The top
inset of �a� is fC as a function of memory length M for two different
cooperation levels. The bottom inset of �a� is a time series of fC for
r=0.4 in the case of M =1. Since for M =1, fC as a function of t
displays a big oscillation, we do not compute the fC over a period of
MC time steps. The inset of �b� is fC depending on M for four
cooperation levels in the range of 0�r�0.5. The network size is
N=10 000.
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level. A maximum value of fC exists in the third and fourth
levels when M is chosen to be 5, as shown in the top inset of
Fig. 1�b�. Thus, memory length M plays a very complex role
in fC reflected by the remarkably different behaviors in four
cooperation levels. It is worth to point out that in case of
M =1, the evolutionary behavior of the system sharply differs
from that of M �1, since each individual will definitely
adopt the exclusive strategy stored in its memory to play the
game at the next time step. A typical example with M =1 for
two types of lattices is shown in the bottom inset of Fig. 1�a�.
A big oscillation of fC is observed. The unstable behavior
will be explained in terms of the evolution of spatial patterns
later.

We give a heuristic analysis of local stability for the di-
viding points rc of different levels. At each critical point rc
between any two levels, the payoff of an individual with
strategy C should equal that of the individual with D. We
assume the number of C neighbors of a given node to be
m, thus in the K-neighbor lattice, the quantity of defector
neighbor is K−m. Accordingly, we get the local stability
equation m+ �K−m��1−rc�= �1+rc�m, where the left side is
the payoff of the given individual with C, and the right side
is the payoff of the individual with D. This equation results
in rc= �K−m� /K. Considering all of the possible values of m
in the four-neighbor lattice, the values of rc are 0.25, 0.5 and
0.75, respectively. Similarly, the dividing points of the eight-
neighbor lattice are obtained as 1/8 ,2 /8 , . . . ,7 /8. As shown
in Figs. 1�a� and 1�b�, the simulation results are in good
accordance with the analytical predictions. Moreover, it
should be noted that there exists a sharp decrease of fC at rc,
which implies the sudden transformation of the evolutionary
pattern of the system.

To gain some intuitionistic insights into the evolution of
the system, we investigate the spatial patterns for different r
on lattices. Figure 2 illustrates typical patterns of two coop-
eration levels on the four-neighbor lattice. The patterns are

statistically static, independent of initial states. Figure 2�a�,
for 0�r�0.25, is a typical spatial pattern of “C lines”
against a background of “chessboard” form, i.e., a site
is surrounded by antistrategy neighbors. Figure 2�b� is for
the range of 0.25�r�0.5. In contrast to Fig. 2�a�, “C lines”
are broken in some places by D sites, and some flowerlike
local patterns are observed. The patterns in the ranges of
0.5�r�0.75 and 0.75�r�1 are the patterns of Figs. 2�b�
and 2�a� with C and D site exchanged, respectively, which
are not shown here. Therefore, there exist four kinds of spa-
tial patterns with typical features corresponding to four lev-
els of fC. The pattern formation can be explained in terms of
steady local patterns. In Fig. 2�c�, we show the steady local
patterns existing in the first cooperation level. From the pay-
off ratio by choosing C and D of individual A, i.e.,WC :WD,
the third local pattern is the most stable one with the highest
payoff ratio. In parallel, the fourth local pattern is the coun-
terpart of the third one, so that it is also very stable. Hence,
the pattern in Fig. 2�a� has a chessboardlike background to-
gether with C lines composed of the first and second local
patterns. Similarly, the chessboardlike background in Fig.
2�b� is also attributed to the strongest stability of the fourth
and fifth local patterns, and the probability of the occurrence
of other local patterns is correlated with their payoff ratios.
Whereafter, we study the spatial patterns on the eight-
neighbor lattice. In Fig. 3, we figured out that each coopera-
tion level exhibits a unique pattern and the difference be-
tween the patterns of r�0.5 and r�0.5 is the exchange of C
and D sites. For the first and second levels, D sites take the
minority and submerge into the ocean of C sites. While in the
third and fourth levels, interesting patterns emerge. As shown
in Fig. 3�a�, D sites form zonary shapes, surrounded by C
lines. Figure 3�b� is for the range of 0.375�r�0.5. The
pattern shows a shape of labyrinth, and the fraction of C sites
is slightly larger than that of D sites. The pattern style can
also be explained by the stability of local patterns as that in
the four-neighbor lattice.

We have discussed the static patterns on lattices, next we
will provide a description of patterns in the case of M =1,
where the patterns are unstable, reflected by a big oscillation
in the inset of Fig. 1�a�. Two typical patterns for M =1 on a
four-neighbor lattice are displayed in Fig. 4. One can see that
a large fraction of adjacent defectors �denoted by the white

FIG. 2. Typical spatial patterns in two distinct payoff parameter
ranges �a� 0�r�0.25, �b� 0.25�r�0.5. The C is in black and the
D is in white. A 50�50 portion of the full 100�100 lattice
with four neighbors is illustrated. �c� and �d� are the relevant stable
local patterns of �a� and �b�. WC and WD are the payoffs of the
center individual A by choosing C and D with fixing strategies of
neighbors for each local pattern. r=0.25 in �c� and 0.5 in �d�.

FIG. 3. Typical spatial patterns in two distinct payoff parameter
ranges �a� 0.25�r�0.375; �b� 0.375�r�0.5. The color coding is
the same as Fig. 2. A 50�50 portion of the full 100�100 lattice
with eight neighbors is illustrated.
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area in Fig. 4�a�� switch to cooperators together at the next
time step �denoted by the large area in black in Fig. 4�b��,
which contributes to the big oscillation of fC. The strategy-
switch behavior of large proportional individuals can be eas-
ily explained by noting the fact that individuals will update
their strategies by adopting the exclusive strategy in their
memories �M =1�. Moreover, individuals record the strategy
on the basis of their neighbors’ strategy at the last time step.
In the strategy-switch area, individuals have identical strate-
gies at each time step. Therefore, at the next step, each indi-
vidual should choose the antistrategy of its neighbors to gain
more payoffs since each one only records its last step’s his-
tory. Once the drastic strategy switch occurs, it will maintain
forever.

In addition, we should briefly introduce a recent work of
Sysi-Aho et al. �7�, which is correlated with the present
MBSG model. In Ref. �7�, the authors proposed a spatial
snowdrift game played by myopic agents. In such model,
lattices are used and each individual can adopt its current
anti-strategy at the next time according to its neighbors’ strat-
egies with a probability p. Similar spatial patterns are ob-
served for eight-neighbor lattices, as well as the step struc-
ture of fC depending on r. However, we note that p in this
model nearly has no effect on the cooperative behavior,
while in our model the memory length M plays different
roles in each cooperation level. Furthermore, in the case of
no memory length, i.e., M =1, our model doesn’t recover the
spatial snowdrift game with myopic agents, confirmed by the
big oscillation of fC in the inset of Fig. 1�a�.

IV. MBSG ON SCALE-FREE NETWORKS

Going beyond two-dimensional lattices, we also investi-
gate the MBSG on scale-free �SF� networks, since such
structural property is ubiquitous in natural and social sys-
tems. Figure 5 shows the simulation results on the Barabási-
Albert networks �14�, which are constructed by the preferen-
tial attachment mechanism. Each data point is obtained by
averaging over 30 different network realizations with 20 dif-
ferent initial states of each realization. Figures 5�a1� and
5�a2� display fC depending on r on BA networks in the cases
of average degree �k�=4 and �k�=8 for different memory

lengths M. There are some common features in these two
figures. �i� In sharp, contrast to the cases on lattices, fC is a
nonmonotonous function of r with a peak at a specific value
of r. This interesting phenomenon indicates that properly en-
couraging selfish behaviors can optimally enhance the coop-
eration on SF networks. �ii� It is the same as the cases on
lattices that the continuity of fC is broken by some sudden
decreases. The number of continuous sections corresponds
to the average degree �k�. �iii� Two figures have a
180°-rotational symmetry about the point �0.5, 0.5�. �iv� The
memory length M does not influence the values of r, at
which sudden decreases occur, as well as the trend of fC, but
affects the values of fC in each continuous section. Then,
we investigate the effect of M on fC in detail. Due to the
inverse symmetry of fC about point �0.5,0.5�, our study fo-
cus on the range of 0�r�0.5. We found that in both SF
networks, there exists a unique continuous section, in which
M plays different roles in fC. For the case of �k�=4, the
special range is from r=0.34 to 0.49, as shown in Fig. 5�a1�.
In this region fC as a function of M is displayed in Fig. 5�b1�.
One can find that for r=0.42, fC is independent of M. For
0.34�r�0.42, fC is a decreasing function of M; while for
0.42�r�0.49, fC becomes an increasing function of M.
Similar phenomena are observed in the SF network with
�k�=8, as exhibited in Fig. 5�b2�. r=0.45 is the dividing

FIG. 4. Typical patterns for the time step t=8001 and
t=8002 in the case of memory length M =1, r=0.4. C is in black
and D is in white. A 50�50 portion of the full 100�100 lattice
with four neighbors is illustrated.

FIG. 5. �Color online� fC as a function of r in BA networks with
�a1� average degree �k�=4 and �a2� �k�=8 for different M. A time
series of fC for M =1 is shown in the inset of �a2�. �b1� and �b2� are
fC as a function of M in the case of �k�=4 and �k�=8 for a special
range of r. �c1� and �c2� are average degrees �ks� of C and D players
depending on r in the case of M =7 for �k�=4 and �k�=8, respec-
tively. The network size is 10 000. Each data point is obtained by
averaging over 30 different network realizations with 20 different
initial state of each realization. fC for each simulation is obtained by
averaging from MC time step t=5000 to t=10 000, where the sys-
tem has reached a steady state.
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point, and for r�0.45 and r�0.45, fC shows decreasing and
increasing behaviors respectively as M increases. In the case
of M =1, the system has big oscillations as shown in the inset
of Fig. 5�a2�. Similar to the cases on lattices, the behavior of
large proportion of individuals’ strategy switches that
induces the big oscillation of fC in the SF network.

In order to give an explanation for the nonmonotonous
behaviors reported in Figs. 5�a1� and 5�a2�, we study the
average degree �ks� of cooperators and defectors depending
on r. In Figs. 5�c1� and 5�c2�, �ks� of D vs r shows almost the
same trend as that of fC in Figs. 5�a1� and 5�a2�, also the
same sudden decreasing points at specific values of r. When
r is augmented from 0, large-degree nodes are gradually oc-
cupied by D, reflected by the enhancement of D’s �ks�. The
detailed description of the occupation of nodes with given
degree can be seen in Fig. 6. One can clearly find that on the
four-neighbor lattice, in the case of low value of fC �Fig.
6�a��, almost all high degree nodes are occupied by coopera-
tors and most low degree nodes are occupied by defectors;
while at the peak value of fC �Fig. 6�b��, cooperators on most
high degree nodes are replaced by defectors and on low de-
gree nodes cooperators take the majority. Similarly, as

fCincreases in the eight-neighbor lattices, defectors gradually
occupy those high degree nodes, together with most very low
degree nodes taken by cooperators �Figs. 6�c� and 6�d��.
Moreover, note that in SF networks, large-degree nodes take
the minority and most neighbors of small-degree nodes are
those large-degree ones, so that when more and more large-
degree nodes are taken by D, more and more small-degree
nodes have to choose C to gain payoff 1−r from each D
neighbor. Thus, it is the passive decision making of small-
degree nodes which take the majority in the whole popula-
tions that leads to the increase of fC. However, for very large
r, the poor benefit of C results in the reduction of fC. There-
fore, fC peaks at a specific value of r on SF networks. In
addition, it is worthwhile to note that in the case of high fC,
the occupation of large degree nodes in the MBSG on SF
networks is different from the recently reported results in
Ref. �15�. The authors found that all �few� high degree nodes
are occupied by cooperators, whereas defectors only manage
to survive on nodes of moderate degree. While in our work,
defectors take over almost all high degree nodes, which
induces a high level of cooperation.

V. CONCLUSION

In conclusion, we have studied the memory-based snow-
drift game on networks, including lattices and scale-free net-
works. Transitions of spatial patterns are observed on lat-
tices, together with the step structure of the frequency of
cooperation versus the payoff parameter. The memory length
of individuals plays different roles at each cooperation level.
In particular, nonmonotonous behavior are found on SF net-
works, which can be explained by the study of the occupa-
tion of nodes with give degree. Interestingly, in contrast to
previously reported results, in the memory-based snowdrift
game, the fact of high degree nodes taken over by defectors
leads to a high cooperation level on SF networks. Further-
more, similar to the cases on lattices, the average degrees of
SF networks is still a significant structural property for
determining cooperative behavior. The memory effect on
cooperative behavior investigated in our work may draw
some attention from scientific communities in the study of
evolutionary games.
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