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Decoupling process for better synchronizability on scale-free networks
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We propose a decoupling process performed in scale-free networks to enhance the synchronizability of the
network, together with preserving the scale-free structure. Simulation results show that the decoupling process
can effectively promote the network synchronizability, which is measured in terms of eigenratio of the coupling
matrix. Moreover, we investigate the correlation between some important structural properties and the collec-
tive synchronization, and find that the maximum vertex betweenness seems to be the most strongly correlated
with the synchronizability among the major structural features considered. We explain the effect of the decou-
pling process from a viewpoint of coupling information transmission. Our work provides some evidence that
the dynamics of synchronization is related to that of information or vehicle traffic. Because of the low cost in
modifying the coupling network, the decoupling process may have potential applications.
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Complex networks can describe a wide range of systems
from nature to society. Prototypical examples cover as di-
verse as the Internet, scientific collaboration networks, neural
networks and gene regulation networks [1-6]. A large
amount of empirical observations indicate that many net-
works share two common structural features, i.e., small-
world (SW) [4] and scale-free (SF) [1] properties. Under-
standing the effect of networks on the dynamical processes
taking place on them is a central issue [3]. Intensive investi-
gations reveal that small-world and scale-free properties play
significant roles in variety of dynamical processes [6].

Synchronization behavior is ubiquitous in natural and so-
cial systems. Much attention has been given to the oscillator
networks [7], which are natural representations of real sys-
tems consisting of coupling units. Previously reported results
have shown that the ability to synchronize is remarkably
promoted in both SW and SF networks compared to regular
networks, which is ascribed to the short average distance in
SW and SF networks [8]. While in contrast to SW networks,
SF networks tends to inhibit the synchronization, even
though the average distance in SF networks is smaller than in
SW networks [9]. This interesting result indicates that het-
erogeneity of degree distribution suppresses the synchroniza-
tion, and the degree distribution may be more significant
than the average distance for better synchronizability. More
recently, oscillator networks with weighted coupling strength
have drawn much interest. The influence of coupling strength
on the collective synchronization has been investigated, and
different coupling strength assignments have been proposed
to enhance the synchronizability [10]. The advantage of
weighted coupling is that the system can achieve the maxi-
mum synchronizability with keeping scale-free networks
fixed, so that the advantages of scale-free structure in other
dynamics can be held, such as navigation.

In this paper, we concentrate on the synchronizability of
scale-free networks. Aiming to enhance the synchronizabil-
ity, we propose a decoupling process. Simulation results
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show that by performing this process, synchronizability of
scale-free networks is considerably promoted, together with
unchanged degree distribution and network size. Our work
also reveals that the synchronizability of scale-free networks
is closely related to some key edges. In order to understand
the effect of the decoupling process on synchronizability, we
study the changes of some important structural characteris-
tics induced by the process, including average distance, clus-
tering coefficient, assortative mixing, and the maximum ver-
tex betweenness. Simulation results show that the maximum
vertex betweenness seems to be a good predictor for syn-
chronizability.

We first introduce a generic model of oscillators placed on
networks with edges representing couplings. We consider a
diffusively coupled dynamical network consisting of identi-
cal oscillators. The state of ith oscillators is controlled by the
following equation:

N
xl‘:f(.xl‘)‘FCE aijF(Xj), i=1,2, ...,N, (1)
j=1

where f(x) describes the dynamics of each individual oscil-
lator, I'(x) is the output function, A=(a;;) is the coupling
matrix, and c is the coupling strength.

In the case of symmetric and unweighted coupling net-
works, the elements of A is defined as (i) if vertex i and j are
connected, then a;;=a;;=1; (ii) otherwise, a;;=a;=0. The di-
agonal entries are a;=—k;, where k; is degree of vertex i. In
graph theory, —A is usually called Laplace matrix. In the case
of connected networks, A is negative semidefinite, so that all
the eigenvalues of A are nonpositive real values and the larg-
est eigenvalue is zero. The synchronization manifold is an
invariant manifold, i.e., the completely synchronized state
X1 (D) =x,(2) =+ =x)(1)=5(z) satisfies s(r)=1(s(r)),

Linearize Eq. (1) about s(z) [12], we get

N
8= Df(s)8,+ 2 cayDI(s)8,
j=1
where Df(s) and DI'(s) are the Jacobi matrixes of f(s) and

I'(s) about s, respectively, &; is the variation of x;. Let A
=[6,,55,...,6y], Eq. (2) is rewritten as

i=1,2,...,N, (2
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A =Df(s)A + ¢cDT'(s)AAT, (3)

where AT=SAS™!, A=diag(\|,\5, ..., \y), and {\}, is the
eigenvalues of matrix A and A;=0. Then, let AS
=[7,m,...,my], and we get

M. =[Df(s) + c\ DI (s) ],

Note that in Eq. (4), only \; and 7, depend on k. In the
case of symmetric coupling, i.e., a;;=a;;, the main stability
equation of the system can be defined as

k=23,...,N. (4

y=[Df(s) + caDI'(s)]y. ()

The largest Lyapunov exponent L., of Eq. (5) is a function
of a, and L, is named main stability function, which de-
termines the linear stability of the synchronized state. The
synchronized state is stable if L., <0 [12]. The eigenvalue
A\, corresponds to a mode parallel to the synchronization
manifold.

For many oscillatory dynamical systems, L, is negative
in a single, finite interval («;,a,). The network is thus syn-
chronizable for some c if the condition a; <c\, <, is sat-
isfied so that L,,,,(c\;) <O for all k=2. This is equivalent to
the condition

RE)\N/A2<CY2/CY1, (6)

where eigenratio R depends only on the network structure
and the range from «a; to a, depends on the dynamics. Then
synchronizability can be investigated through the simple
eigenratio of coupling matrix. The smaller the eigenratio of
the matrix, the stronger the synchronizability of the network
[12].

Here, we introduce the decoupling process (DP) per-
formed in scale-free networks. Without losing generality, we
construct the scale-free network by using the simplest and
well-known Barabdsi-Albert (BA) network model [13]. In
this model, starting from m, fully connected vertices, one
vertex with m edges is attached at each time step in such a
way that the probability II; of being connected to the existing
vertex i is proportional to the degree k; of vertex i, i.e., II;
=k;/2k;, where the sum runs over all the existing vertices.
The typical structural characteristic of BA networks is that
the degree distribution follows a power law P(k)~ k™Y with
y=3, which is independent of parameter m. m only controls
the connectivity density of BA networks [1]. The DP is real-
ized among small number of key edges. We define the sig-
nificance of an edge G;; by the product of the degrees of two
vertices i and j at both sides of the edge, i.e., G,-j=k,-kj. After
calculating the significance of all the edges, we rank the
edges according to their values G;;. Subsequently, at each
time step, we cut an edge with the highest rank, i.e., de-
couple the two vertices at both sides of the edge. Thus, we
can calculate the synchronizability of the network in terms of
the eigenratio of the coupling matrix and observe the change
of structural features induced by the DP. Then repeating this
process, the correlation between the synchronizability and
the number of cut edges N, as well as structural features as
a function of N, can be obtained.
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FIG. 1. (Color online) The change of synchronizability as a
function of the proportion of cut edges N, /N for different values
of m. Network size n=2000.

All simulations are carried out for the network size N
=2000. Each data point is obtained by averaging over 20
network realizations. Figure 1 shows the ratio of the syn-
chronizability R’ /R, after and before the DP as a function of
the proportion of cut edges N,,/N. One can see that as N
increases, the synchronizability is considerably promoted,
which is reflected by the decrease of the eigenratio. More-
over, for different values of m, R'/Ry vs N.,/N exhibits
nearly the same decreasing trend with slight difference. The
lower the value of m, the slightly faster the decreasing ve-
locity. This m-independent behavior provides a criterion for
the correlation between the synchronizability and the struc-
tural characteristics. Suppose that the change of a structural
feature for different m demonstrates remarkable distinctions;
it means that such structural feature is independent of the
network synchronizability.

We turn to the effect of the DP on the network structure.
We first investigate the degree distribution of the networks
before and after the DP. As shown in Fig. 2, the degree
distribution remains unchanged, so that the DP has slight
influence on the scale-free property of the network. Average
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FIG. 2. (Color online) Degree distributions of networks before
and after the decoupling process in the case of m=S5.
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FIG. 3. (Color online) Average distance (L) as a function of
N/ N for different values of m.

distance of a network has been deemed to be crucial for the
synchronizability of the network, i.e., shorter average dis-
tance (L) results in stronger synchronizability for the same
network size [8]. This is why SW networks are in favor of
synchronization. We report (L) as a function of N_,/N, as
shown in Fig. 3. (L) is a slow increase function of N_,/N,
which demonstrates that the DP process has slight influences
on (L) and (L) does not play the main role in the enhance-
ment of the synchronizability [11].

High clustering coefficient (denoted by C) is a common
property in many real networks [14]. Thus, we study the
change of C induced by the DP. Figure 4 shows C'/C, de-
pending on N.,/N. The decreasing trend of C'/C, for dif-
ferent values of m is inconsistent with that of the synchroni-
zability, which indicates C is not the most closely correlated
with the synchronizability among the considered topological
features. Moreover, C in original BA networks is very close
to zero, the absolute change of C by the DP is neglectable.

Degree-degree (D-D) correlation is an important struc-
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FIG. 4. (Color online) The change of average clustering coeffi-
cient C'/Cy as a function of N /N for different m.
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FIG. 5. (Color online) The change of degree-degree correlation
r'/ry as a function of N /N for different m.

tural feature that classifies the real-world networks into two
communities, i.e., social networks with positive correlation,
and technological and biological networks with negative one
[15]. A detailed definition can be seen in Ref. [15]. Figure 5
clearly shows that the synchronizability as a function of
N,/ N obviously depends on m, so the D-D correlation is not
the best indicator for synchronizability.

Finally, we explore the maximum vertex betweenness
Bpax [14] depending on N, /N, as exhibited in Fig. 6. It is
found that the decreasing trend of B, /B, slightly depends
on m, which is in accordance with that of synchronizability.
Therefore, B, seems to be a good factor to predict the
synchronizability of BA networks. We further investigate the
relationship between the change of synchronizability and that
of B Simulation results are shown in the inset of Fig. 6.

We find an universal correlation, i.e., R'/R,
~0.65B! /B’ ., which is independent of m. In Ref. [16],

Pecora and Barahona have studied the synchronization be-
havior on several types of networks by adding edges to the
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FIG. 6. (Color online) The change of maximum vertex between-
ness B/ /B% as a function of N /N for different m. The inset
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existent network. They found the ratio of maximum and
minimum vertex degree helps determine the bound of eigen-
ratio R. This finding can partially explain the effect of the DP
on the synchronizability in the present work, where the DP
usually performed among large degree vertices, so that the
maximum degree is reduced while the minimum degree
keeps unchanged, leading to better synchronizability. How-
ever, we have checked that removing edges between the
maximum degree vertices and the minimum degree ones
nearly has no influences on the network synchronizability.
From a viewpoint of coupling information transmission, the
edges among large degree vertices usually afford high traffic
load, so that the coupling information transmission will be
suppressed along these edges. In the language of traffic sys-
tems, congestion generally occurs at the edges among hubs.
An effective way to alleviate the traffic congestion is to set
up tollgates at both sides of the roads. This idea is essentially
the same with the DP that allows the coupling information to
avoid highly jammed edges to improve the transmission ef-
ficiency of the coupling information, so that the synchroniz-
ability of the network is enhanced. Perhaps vertex between-
ness is the most reasonable way to measure traffic loads; that
is why vertex betweenness seems to be the best predictor for
the network synchronizability among the major structural pa-
rameters considered in this paper.

In conclusion, we have proposed a decoupling process
performed in BA networks to enhance the network synchro-
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nizability. We have investigated the synchronizability in
terms of the eigenratio of the coupling matrix affected by the
decoupling process. Simulation results indicate that the de-
coupling process can effectively promote the synchronizabil-
ity together with holding the scale-free structural property of
the network. Some important statistical features of the net-
work structure have been studied, including average dis-
tance, clustering coefficient, degree-degree correlation, as
well as the maximum vertex betweenness. It is found that the
maximum vertex betweenness seems to be the best indicator
for the network synchronizability among the studied struc-
tural features by the comparison to the decreasing trend of
the network synchronizability for different m. The effect of
the decoupling process on the synchronization behavior is
explained from the viewpoint of coupling information trans-
mission. Our work also suggests that there are some essential
relations between the network synchronization and the dy-
namics of traffic systems [17]; additionally, the decoupling
process may have potential applications for its low cost in
modifying the network structure.
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