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For most complex networks, the connection between a pair of nodes is the result of their mutual affinity and
attachment. In this letter, we will propose a mutual attraction model to characterize weighted evolving net-
works. By introducing the initial attractiveness A and the general mechanism of mutual attraction �controlled
by parameter m�, our model can naturally reproduce scale-free distributions of degree, weight, and strength, as
found in many real systems. Also, simulation results are consistent with theoretical predictions. Interestingly,
we obtain nontrivial clustering coefficient C and tunable degree assortativity r, depending on the values of m
and A. Our model appears as a more general one that unifies the characterization of both assortative and
disassortative weighted networks.
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The past few years have witnessed a great deal of interest
from the physics community to understand and characterize
the underlying mechanisms that govern the evolution of
complex networks �1–3�. Prototypical examples cover as di-
verse as the Internet �4�, the World Wide Web �5�, the scien-
tific collaboration networks �SCN� �6,7�, and worldwide air-
port networks �WAN� �8,9�. As a landmark, Barabási and
Albert �BA� proposed their seminal model that introduced
the linear preferential linking to mimic the topological evo-
lution of complex networks �10�. However, networks are far
from a Boolean structure. The purely topological character-
ization will miss important attributes often encountered in
real systems. For instance, the amount of traffic characteriz-
ing the connections of communication systems or large trans-
port infrastructure is fundamental for a full description of
these networks �11�. This thus calls for the use of weighted
network representation, which is often denoted by a
weighted adjacency matrix with element wij representing the
weight on the edge connecting vertices i and j. In the case of
undirected graphs, weights are symmetric wij =wji, as we will
focus on. A natural generalization of connectivity in the case
of weighted networks is the vertex strength defined as
si=� j���i�wij, where the sum runs over the set ��i� �neigh-
bors of node i�. This quantity is a natural measure of the
importance or centrality of a vertex in the network. Most
recently, the access to more complete empirical data and
higher computation capability allowed scientists to study the
variation of the connection weights of many real graphs. As
confirmed by measurements, complex networks not only ex-
hibit a scale-free degree distribution P�k��k−� with
2���3 �8,9�, but also the power-law weight distribution
P�w��w−� �12� and the strength distribution P�s��s−� �9�.
Highly correlated with the degree, the strength usually dis-
plays scale-free property s�k� with ��1 �9,13,14�. Moti-
vated by all those findings, Barrat et al. presented a model
�BBV for short� to study the growth of weighted networks
�15�. Controlled by a single parameter 	, the BBV model can

produce scale-free properties of degree, weight, and strength.
But its disassortative property �15,16� �i.e., the hubs are pri-
marily connected to less connected nodes�, as observed in
real technological and biological networks, can hardly give
satisfying interpretations to social networks like the SCN
where the hubs are very likely to be linked together �i.e.,
assortative mixing�. Previous models, to the best of our
knowledge, can generate either assortative networks �17–19�
or disassortative ones �15–17,20�, but rarely both. Thus,
some questions arise here: why are social networks all assor-
tative, while all biological and technological networks oppo-
site? Is there a generic explanation for the observed incom-
patible patterns, or does it represent a feature that needs to be
addressed in each network individually? Our work may shed
some light to these questions.

Former network models often impress on people such an
evolution picture: preexisting nodes are passively attached
by newly added ones according to the preferential linking
mechanism. This scenario, however, lacks the other side of
the fact that old nodes will choose the young at the same
time. In addition, this evolution picture also ignores the uni-
versal mutual attraction between existing components, which
leads to the creation and reinforcement of connections. This
idea has been partly reflected in the studies of Dorogovtsev
and Mendes �DM� �22� who proposed a class of undirected
and unweighted models where new edges are added between
old sites and existing edges can be removed. In this paper,
we will present a model to study the weighted network evo-
lution under the general mechanism of mutual attraction be-
tween nodes. In contrast with previous models where
weights are assigned statically �23,24� or rearranged locally
�15,16�, our model allows weights to be widely updated. It
can mimic the reinforcement and creation of internal links as
well as the evolution of many infrastructure networks. Spe-
cifically, the model can generate a diversity of scale-free
quantities, nontrivial clustering property, and tunable assor-
tativity coefficient, in good accord with the features of vari-
ous real networks.

The model starts from N0=m isolated nodes, each with
initial attractiveness A. At each time step, a new isolated
node n is introduced into the system. Then, every existing*Electronic mail: hubo25@mail.ustc.edu.cn
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node i preferentially selects m other nodes with the probabil-
ity


i→j =
sj + A

�
k��i�

�sk + A�
. �1�

Such selection is totally free and does not guarantee the cre-
ation of new links or an increase of edge weights between
node pairs. Unless two nodes mutually select each other �in
other words, unless they attract�, there will be no change to
the pair of nodes or their connection. If they do, then the
weight of their link w is supposed to increase by 1. As a
remark, w can be regarded as 0 if the nodes were not con-
nected before, and the mechanism is globally implemented
for all the nodes. After updating all the edge weights and
node strengths, the growth process is iterated by introducing
a new node, until the desired size of the network is reached.
Obviously, to guarantee the isolated nodes can be chosen by
others, the model requires A�0 which governs the probabil-
ity for “young” nodes to get new links and weights �25�.

From our model mechanism, it is easy to seek appropriate
interpretations to real networks. Take the SCN, for example:
the collaboration of scientists requires their common interest
and mutual acknowledgments. Unilateral effort does not
make effective activity. In terms of model language, though
the low-degree nodes like to connect to the large-degree
ones, the latter do not necessarily wish to be linked by the
former. On the other hand, two scientists both with strong
scientific potential and a long collaborating history are more
likely to write papers together. The above description of our
model may also satisfactorily explain the WAN, where the
edge weight denotes the relative magnitude of the traffic
along a flight line. During the evolution of WAN, the airlines
are more likely to open between metropolises that hold high
status in both economy and politics �with large strengths�.
With development of economy and population expansion,
the air traffic between connected metropolises will increase
much faster than that between smaller towns. Due to their
importance, there is an obvious need for smaller towns to
bridge those metropolises. But the limit of energy and re-
sources leaves the fact that each site can only afford a finite
number of connections. Therefore, they have to choose in
front of the vertex pool. For technological networks with
traffic taking place on them, the mutual attraction may be
caused by both the limit of resources and the internal de-
mand of traffic increment for maintaining the normal func-
tioning of the networks �20,21�.

One may find that the mathematical structure of the
present model is very close to our previous models �20,21�,
though different in model description. It is still worth notic-
ing that our previous models are generally defined by two
model parameters: one describes the increasing rate of inter-
nal traffic like W in Ref. �20� or m in Ref. �21�, while the
other captures the external growth of the network. As we
stated in our original paper �20�, the generated networks can
only describe technological networks such as the Internet
due to their disassortative mixing property. Differently, the
current model is defined based on the assumption of uniform
initial attractiveness A and the maximum of potential con-

nection m, which give rise to the tunable assortative mixing
patterns of weighted networks. Thus, it may be used to in-
terpret both assortative and disassortative patterns emerging
in complex networks. Anyway, considering their similarity in
mathematics, one may regard the current model as a mean-
ingful and generalized extension of our previous work.

The model time is measured with respect to the number of
nodes added to the graph, i.e., t=N−N0, and the natural time
scale of the model dynamics is the network size N. Using the
continuous approximation, we can treat k ,w ,s, and the time
t as continuous variables �10,15�. Considering the rule that
wij is updated only if node i and j select each other, the time
evolution of weight can be computed analytically as follows:

dwij

dt
= m

sj + A

�
k��i�

�sk + A�
� m

si + A

�
k��j�

�sk + A�

�
m2�si + A��sj + A�

�
k

�sk + A��
k

�sk + A�
. �2�

Hence, the strength si�t� is updated by the rate

dsi

dt
= �

j

dwij

dt
�

m2�si + A�

�
k

�sk + A�
=

m2�si + A�
�m2 + A�t

. �3�

The last expression is recovered by noticing that

�
i

si = �
0

t
d�

i

si

dt
dt = �

0

t
m2�

i

�si + A�

�
k

�sk + A�
dt = m2t .

From Eq. �3�, one can obtain the scaling of si�t� versus t as
si�t�� t
, which also implies the scale-free distribution of
strength P�s��s−� with the exponent �15� �=1+1/

=1+ �m2+A� /m2=2+A /m2. One can also obtain the evolu-
tion behaviors of weight and degree, and hence their power-
law distributions: P�w��w−� with �=2+2A / �m2−A� and
P�k��k−� with �→2+A /m2=� as t→� Ref. �26�.

We performed numerical simulations of networks gener-
ated by choosing different values of A and m. The results
well recover the above theoretical predictions. Figures
1�a�–1�d�, fixed A=1 and tuned by m, report the probability
distributions of strength, weight and degree, as well as the
strength-degree correlation. Specifically, Fig. 1�a� gives the
probability distribution P�s��s−�, which is in good agree-
ment with the theoretical expression. Probability weight dis-
tribution also recovers the power-law behavior P�w��w−�

�Fig. 1�b�� with � as predicted analytically. Figure 1�c� shows
the scale-free degree distribution P�k��k−� and Fig. 1�d�
reports the average strength of vertices with degree ki, which
displays a nontrivial power-law behavior s�k�. For m=10
and N=10000, � is near 1.5, as the empirical finding in
worldwide airport network �9�. The inset of Fig. 1�d� indi-
cates that the exponent � decreases very slowly with the
network size, which is noticeably different from the linear
correlation ��=1� as obtained in most previous models.
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Again, Figs. 2�a�–2�d� show the simulation results by fixing
a moderate value of A=5 and varying m. In comparison with
Figs. 1�a� and 1�b�, the distributions of strength and degree
for A=5 both behave as exponential corrections in the zone
of low degree. This phenomenon occurs at large A and the
exponential parts are interestingly very similar with the em-
pirical findings in some social networks like SCN �27�. The
larger the initial attractiveness A �vs m�, the larger the effect
of exponential correction at the head. In the zone of large
degree, however, we can still observe the power-law tail
which again recovers the theoretical exponent expressions. It
is worth remarking that the model at large A can generate the
assortative property too, which is a special feature of social
networks. Therefore, the introduction of A is essential for our
model to mimic social networks.

To better understand the architecture structure and degree
correlations of the model networks, we also studied the un-
weighted clustering coefficient C �which describes the statis-
tic density of connected triples �27,28�� and degree assorta-
tivity r �29� depending on the model parameters A and m. As
presented in Fig. 3�a�, C for fixed m monotonously decreases
with A, and C for fixed A monotonously increases with m.
Generally, it can be tuned in the range �0,1�. The clustering
property of our model is tunable in a broad range by varying
both m and A, which makes it more powerful in modeling
real networks. As shown in Fig. 3�b�, degree assortativity r
for fixed m, unlike the clustering case, increases with in-
creasing A, while r for given A decreases with m. For small

A and large m, the model generates disassortative networks
which can best mimic technological networks like the Inter-
net �4� and WAN or even biological networks. While at large
A and small m, assortive networks emerge and can be used to
model social graphs as the SCN. Actually, enhancing the
initial attractiveness A will considerably increase the chances
for “young” nodes to be linked and strengthened. Since low-
degree nodes take the majority in the system, larger A will
lead to the stronger affinity between “young” vertices, and
thus they can link together more easily. This explains the
origin of assortative mixing in our model and may also shed
some light on the old open question: why are social networks
different from other networks in degree assortativity? The
components of social networks are human beings who share
a complex nature. Take the SCN, for example; the attractive-
ness of a scientist could not be represented simply by his �or
her� total publications �as some previous models indicated
�15��, i.e., the strength of node in SCN. Actually, there are

FIG. 1. �Color online� Numerical simulations by choosing
A=1. Data are averaged over 10 independent runs of network size
N=8000: �a� Cumulative probability strength distribution P�s� with
various m. Data are consistent with a power-law behavior
P�s��s−�. The inset reports the values of � obtained by data fitting
�full circles� in comparison with the theoretical prediction
�=2+A /m2 �line�. �b� Cumulative probability degree distribution
P�k� with m=1 and m=2. Data fitting confirms its scale-free prop-
erty. �c� Cumulative probability distribution of weight with different
m, in agreement with the power-law tail P�w��w−�. As shown in
its inset, the data fitting also gives values of � �full circles� as
predicted by analytical calculation �line�. �d� The average strength si

of nodes with connectivity ki for different m. In the log-log scale,
we observe the nontrivial strength-degree correlation s�k�, with
the exponent � versus network size N �see the inset�.

FIG. 2. �Color online� Numerical simulations by choosing
A=5. Data are averaged over 10 independent runs of network size
N=8000: �a� P�s��s−� with different m. The inset reports � ob-
tained by data fitting �full circles� in comparison with the theoretical
prediction �line�. �b� P�k��k−� by choosing different m. Data fit-
ting confirms its scale-free property. �c� P�w��w−�. The data fitting
in the inset also gives values of � �full circles� as predicted analyti-
cally �line�. �d� The strength si vs connectivity ki. In the log-log
scale, we observe the nontrivial strength-degree correlation s�k�,
with � vs network size N shown in its inset.

FIG. 3. �Color online� �a� Clustering coefficient C depending on
both m and A with N=8000. �b� Degree assortativity r depending on
both m and A with N=8000.
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many other important qualities that will contribute to the
attractiveness of a scientist, for instance, his temper, scien-
tific environment, and social ability, etc. All of such elements
are not reflected in the item of node strength, but might be
integrated in our model as the introduction of initial attrac-
tiveness. Indeed, due to the indescribable complexity of hu-
man beings in the social networks, one can hardly give a
general explanation of the emergence of its assortative mix-
ing in contrast with the technological networks. Perhaps the
different initial attraction contributes to their fundamental
differences. On the other end, as m controls the interaction
frequency among the network internal components, increas-
ing m will make the hubs become busier and busier, as they
have to be linked by more and more “young” sites. It may
explain why the disassortativity of the model is increasingly
sensitive to m. In addition, the components of technological
networks are usually physical devices, interacting with each
other under standard technical rules. All too often, the node
strength �i.e., the total traffic a site handles� can already re-
flect their importance or attractiveness. So in this case, it
appears hard to appreciate the significance of initial attrac-

tiveness. Combining these two parameters together, our cur-
rent model integrates two competitive ingredients that may
be responsible for the mixing difference in complex net-
works.

In sum, the general dynamics of node interaction pro-
posed here produces a wide variety of scale-free behaviors,
nontrivial clustering, and degree assortativity. Our current
model may mimic both the assortative and disassortative net-
works under a unified evolution dynamics. Its obvious sim-
plicity and reproduced real-world variety will allow more
specific mechanisms to be integrated into future modeling
work, and it may also be meaningful for understanding phys-
ics processes �such as traffic congestion and synchronization�
on real networks which are both weighted and correlated.
Most importantly, the model may indicate the possible and
worthwhile efforts in exploring the simplified and unified
mechanisms behind various complex networks.
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