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In this Brief Report, we investigate the collective synchronization of a system of coupled oscillators on a
Barabási-Albert scale-free network. We propose an approach of structural perturbations aiming at those nodes
with maximal betweenness. This method can markedly enhance the network synchronizability, and is easy to
realize. The simulation results show that the eigenratio will sharply decrease by one-half when only 0.6% of
those hub nodes occur under three-division processes when the network size N=2000. In addition, the present
study also provides numerical evidence that the maximal betweenness plays a major role in network
synchronization.
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I. INTRODUCTION

Many social, biological, and communication systems can
be properly described as complex networks with nodes rep-
resenting individuals or organizations and edges mimicking
the interactions among them �1�. One of the ultimate goals of
the current studies on the topological structure of networks is
to understand and explain the workings of systems built upon
those networks: for instance, to understand how the topology
of the Internet affects the spread of a computer virus �2�, how
the structure of power grids affects cascading behavior �3�,
how the connecting pattern of intercommunication networks
affects traffic dynamics �4–6�, and so on.

In the past few years, with the computerization of the data
acquisition process and the availability of high computing
power, scientists have found that many real-life networks
share some common statistical characteristics, the most im-
portant of which are called the small-world effect �7,8� and
scale-free property �9�. The recognition of the small-world
effect involves two facts, a small average distance �10�
�varying as L� ln N, where N is the number of nodes in the
network� and a large clustering coefficient �11�. The number
of edges incident from a node x is called the degree of x. The
scale-free property means the degree distribution of the net-
work obeys a power-law form, that is, p�k��k−�, where k is
the degree and p�k� is the probability density function for the
degree distribution. � is called the power-law exponent, and
is usually between 2 and 3 in the real world �1�. This power-
law distribution falls off much more gradually than an expo-
nential one, allowing for a few nodes of very large degree to
exist. Networks with power-law degree distribution are re-
ferred to as scale-free networks, although one can and usu-
ally does have scales present in other network properties.
The pioneer model of scale-free networks is the Barabási-
Albert �BA� model, which suggests that two main ingredi-
ents of self-organization of a network in a scale-free struc-
ture are growth and preferential attachment �9�. These point
to the facts that most networks grow continuously by adding
new nodes, which are preferentially attached to existing
nodes with a large number of neighbors.

Synchronization is observed in a variety of natural, social,
physical, and biological systems �12�. To understand how the
network structure affects the synchronizability of the net-
work is of not only theoretical interest, but also practical
value. There are many previous studies about collective syn-
chronization, with a basic assumption that the dynamic sys-
tem of coupled oscillators evolves either on regular networks
�13�, or on random ones �14�. Very recently, scientists have
focused on synchronization on complex networks, and found
that the networks with the small-world effect and scale-free
property may be easier to synchronize than regular lattices
�15–20�.

Since there are countless topological characters for net-
works, a natural question is addressed: What is the most
important factor by which the synchronizability of the net-
works is mainly determined? Some previous works indicated
that the average distance L is one of the key factors; a
smaller L will lead to better synchronizability �16,17,19�.
Other researchers focus on the role played by degree of het-
erogeneity. They found that that greater heterogeneity will
result in poorer synchronizability, and demonstrated that the
maximal betweenness �21,22� Bmax may be a proper quantity
to estimate the network synchronizability. With smaller Bmax,
the network synchronizability will be better �23,24�. How-
ever, the above results and conclusions are still debated.

In this Brief Report, we investigate the collective syn-
chronization of system of coupled oscillators on Barabási-
Albert scale-free networks �BA networks� �9�. We propose an
approach of structural perturbations, which can markedly en-
hance the network synchronizability, and is easy to realize. It
also provides numerical evidence that the maximal between-
ness plays a main role in network synchronization.

This paper is organized as follows. In Sec. II, the concept
of synchronizability will be briefly introduced. In Sec. III,
we will describe the approach of structural perturbations.
Next, the simulation results will be given. Finally, in Sec. V,
the conclusion is drawn, and the relevance of this approach
to some real-life problems is discussed.

II. SYNCHRONIZABILITY

We introduce a generic model of coupled oscillators on
networks and the master stability function �25�, which is of-*Electronic address: bhwang@ustc.edu.cn
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ten used to test the stability of complete synchronized states.
Each node of a network is located an oscillator; a link

connecting two nodes represents coupling between the two
oscillators. The state of the ith oscillator is described by xi.
We get the set of equations of motion governing the dynam-
ics of the N coupled oscillators:

ẋi = F�xi� + ��
j=1

N

GijH�x j� , �1�

where ẋi=F�xi� governs the dynamics of the individual os-
cillator, H�x j� is the output function, and � is the coupling
strength. The N�N coupling matrix G is given by

Gij = �− ki for i = j ,

1 for j � �i,

0 otherwise.
� �2�

All the eigenvalues of matrix G are nonpositive real values
because G is negative semidefinite, and the biggest eigen-
value �0 is always zero because the rows of G have zero
sum. Thus, the eigenvalues can be ranked as �0��1� ¯

��N−1, and the synchronization manifold is an invariant
manifold, that is, the fully synchronized state x1=x2= ¯

=xN=s satisfies ṡ=F�s�. It is worthwhile to emphasize that
�0=�1=0 if and only if the network is disconnected.

Let �i be the variation on the ith node, and the collection
of variation be �= ��1 ,�2 ,…=�N�. We get the variational
equation of �1�,

�̇ = �1N � DF + �G � DH�� , �3�

where � is the direct product. Diagonalizing G in the second
term of Eq. �3�, a block diagonalized variational equation is
obtained and each block has the form

�̇k = �DF + ��kDH��k, �4�

where D denotes the Jacobian matrix, �k is an eigenvalue of
G, and k=0,1 ,2 ,… ,N−1. k=0 corresponds to the mode
that is parallel to the synchronization manifold. Let �=��k,
and rewrite Eq. �4� as

	̇ = �DF + �DH�	 . �5�

Since DF and DH are the same for each block, the largest
Lyapunov exponent 
max of Eq. �5� only depends on �. The
function 
max��� is named the master stability function,
whose sign indicates the stability of the mode: the synchro-
nized state is stable if 
max����0 for all blocks.

For many dynamical systems, the master stability
function is negative in a single finite interval ��1 ,�2� and the
largest Lyapunov exponent is negative �26�. Therefore, the
network is synchronizable for some � when the eigenratio
r=�N−1 /�1 satisfies

r � �2/�1. �6�

The right-hand side of this equation depends only on the
dynamics of individual oscillators and the output function,
while the eigenratio r depends only on the coupling matrix
G. The problem of synchronization is then divided into two

parts: choosing suitable parameters of the dynamics to
broaden the interval ��1 ,�2� and the analysis of the eigenra-
tio of the coupling matrix. The eigenratio r of the coupling
matrix indicates the synchronizability of the network; the
smaller it is, the better the synchronizability, and vice versa.
In this paper, for universality, we will not address a particular
dynamical system, but concentrate on how the network to-
pology affects eigenratio r.

III. STRUCTURAL PERTURBATIONS

As mentioned above, nodes with very large betweenness,
namely, hubs, may reduce the network synchronizability. So
the present method of structural perturbations aims at these
hubs. For a hub x0, we add m−1 assistant nodes around it,
labeled by x1 ,x2 ,… ,xm−1. These m nodes are fully con-
nected. Then, all the edges incident from x0 will relink to a
random picked node xi �i=0,1 ,… ,m−1�. After this process,
the betweenness of x0 is divided into m almost equal parts
associating with those m nodes. We call this process m divi-
sion for short. A sketch map of a three-division process on
node x0 is shown in Fig. 1.

Due to the huge size of many real-life networks, it is
usually impossible to obtain the nodes’ betweenness. Fortu-
nately, previous studies showed that there exists a strongly
positive correlation between degree and betweenness in BA
networks and some other real heterogeneity networks
�27,28�, that is to say, the node with larger degree will sta-
tistically have higher betweenness. Therefore, for practical
reasons, we assume the node with higher betweenness is
surely of larger degree in BA networks. So hereinafter, all the
judgments and operations are based on the degree of nodes.

In order to enhance the network synchronizability, a few
nodes with highest degree will be divided. Rank each node
of a given network G according to its degree; the node that
has highest degree is arranged at the top of the queue. Then,
the network G�� ,m� can be obtained by the following N�
steps. First, carry out m division on the top node in G, lead-
ing to the network G�1/N ,m�. Second, calculate all nodes’
degree in G�1/N ,m�, and rank each node according to its
degree. Then, get the network G�2/N ,m� by dividing the top
node in G�1/N ,m�. Repeat this process N� times; when N�
nodes have been divided in total, one will reach the network
G�� ,m�. Since randomness is involved in the dividing pro-
cess, G�� ,m� is not unique. In this report, we focus on the
difference between G�� ,m� and G.

FIG. 1. Sketch maps for a three-division process on x0. The
solid circle in the left side is the node x0 with degree 6. After a
three-division process, x0 is divided into three nodes x0, x1, and x2

that are fully connected. The six edges incident from x0 redistribute
over these three nodes.
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IV. SIMULATIONS

To explore how the structural perturbations affect network
synchronizability, we compare the eigenratio r before and
after the dividing processes. BA networks of size N=2000
and average degree 	k
=12 are used for simulations. In Fig.
2, we report the ratio R=r� /r against the number of nodes
that are divided, where r is the eigenratio of the original
network and r� after the operation. Here we set m=3. With
the probability � or the number of divided nodes increasing,
the ratio R is observed to decrease, indicating the enhance-
ment of synchronizability. In Fig. 2, it can be seen that to
divide a very few nodes will sharply enhance the network
synchronizability. R decreases to 0.7 when only five nodes
are divided, and will drop to half after 0.6% nodes �i.e., 12
nodes� are divided.

To better understand the underlying mechanism of syn-
chronization and the reason why these structural perturba-
tions will greatly enhance network synchronizability, we in-
vestigate the behaviors of two extensively studied quantities,
the average distance L and maximal degree kmax. In BA net-
works, the node with maximal degree is most probably the
very node having maximal betweenness. As illustrated in
Fig. 3, L will increase with �, while kmax will decrease. This
result provides some evidence of how the two factors affect
the synchronization of systems. The maximal degree �i.e., the
maximal betweenness� may play the main role in determin-
ing network synchronizability. It is worthwhile to emphasize
that from the simulation results, we cannot say anything
about how the average distance affects the network synchro-
nizability. L varies slightly, and probably has nonsignificant
influence compared with the change of kmax. These results
suggest that reducing the maximal betweenness of networks
is a practical and effective approach to enhance the network
synchronizability.

V. CONCLUSION AND DISCUSSION

Motivated by practical requirements and theoretical inter-
est, numbers of scientists have begun to study how to en-

hance the network synchronizability, especially for scale-free
networks �29,30�. These methods keep the network topology
unchanged, while adding some weight into the system; thus
the coupling matrix is changed. These approaches do not
need any new nodes, new edges, or rewiring, but highly en-
hance the network synchronizability. In this Brief Report, we
propose an approach to enhance the network synchronizabil-
ity. This approach does not require any intelligence of nodes,
but the network structure will be slightly changed. In some
real-life communication networks such as the Internet, a long
length edge may cost much more than a node or a short
length edge �31,32�, so if all the nodes x1 ,x2 , ¯ ,xm−1 are in
x0 vicinal locations, our method is feasible.

Some recent work about network traffic dynamics reveals
that the communication ability of the network, called the
network throughput �5,6�, is mainly determined by the maxi-
mal betweenness, thus to steer clear of those hub nodes may
enhance the network throughput �6,33�. This is just the case
of network synchronization. Some methods that can enhance
the network throughput will enhance the network synchroni-
zability too �5,29,30,33�. Therefore, we guess there may ex-
ist some common features between network traffic and net-
work synchronization, although they seem completely
irrelevant. We believe our work will enlighten readers on this
subject, and is also relevant to traffic control on networks.
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FIG. 2. Behavior of the ratio of the eigenratio of network
G�N� ,m� to that of network G versus the number of divided nodes.
As the number increases, the ratio is shown to be reduced, leading
to better synchronization. The average is taken over 50 different
network realizations.

FIG. 3. The average distance L� and maximal degree kmax� in
G�� ,m� vs �. L and kmax denote the average distance and maximal
degree in the original network G. We plot the relative changes L� /L
and kmax� /kmax using squares and circles, respectively. One can see
clearly that the dividing processes reduce the maximal degree while
increasing the average distance. All the data are obtained by an
average over 20 independent runs.
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