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For most networks, the connection between two nodes is the result of their mutual affinity and attachment.
In this paper, we propose a mutual selection model to characterize the weighted networks. By introducing a
general mechanism of mutual selection, the model can produce power-law distributions of degree, weight, and
strength, as confirmed in many real networks. Moreover, we also obtained the nontrivial clustering coefficient
C, degree assortativity coefficient r, and degree-strength correlation depending on a single parameter m. These
results are supported by present empirical evidence. Studying the degree-dependent average clustering coeffi-
cient C�k� and the degree-dependent average nearest neighbors’ degree knn�k� also provide us with a better
description of the hierarchies and organizational architecture of weighted networks.
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I. INTRODUCTION

In the past few years, physicists have been greatly de-
voted to understanding and characterizing the underlying
mechanisms of complex networks, e.g., the Internet �1�, the
World Wide Web �WWW� �2�, the scientific collaboration
networks �SCN� �3–5�, and the world-wide airport networks
�WAN� �6–8�. Until now, network researchers have mainly
focused on the topological aspect of graphs, that is, un-
weighted networks. Typically, Barabási and Albert proposed
a famous model �BA model� that introduces the linear degree
preferential attachment mechanism to study unweighted
growing networks �9–11�. However, this model is still insuf-
ficient to describe real networks’ structure if considering the
properties of clustering coefficient and assortive mixing. The
hypothesis of a linear attachment rate is empirically sup-
ported by measuring different real networks, but the origin of
the ubiquity of the linear preferential attachment is not clear
yet. Recently, the availability of more complete empirical
data has allowed scientists to consider the variation of the
weights of links that reflect the physical characteristics of
many real networks. It is well-known that networks are not
only specified by their topology but also by the dynamics of
weight taking place along the links. For instance, the hetero-
geneity in the intensity of connections may be very important
in understanding network systems. Traffic amount character-
izing the connections of communication systems or large
transport infrastructure is fundamental for a full description
of these networks. Take the WAN for example: each given
edge weight wij �traffic� is the number of available seats on
direct flight connections between the airports i and j. In the
SCN, the nodes are identified with authors and the weight
depends on the number of coauthored papers. Obviously,
there is a tendency of modeling complex networks that goes
beyond the purely topological point of view, and investigat-
ing how the weight distribution affects the dynamics upon
networks. In the light of this need, Barrat et al. presented a

model �BBV model� that integrates the topology and weight
dynamical evolution to study the growth of weighted net-
works �12–14�. Their model yields scale-free properties of
the degree, weight, and strength distributions, controlled by
an introduced parameter �. However, its weight dynamical
evolution is triggered only by newly added vertices, hardly
resulting in satisfying interpretations to the collaboration net-
works or the airport systems.

The properties of a graph can be expressed via its adja-
cency matrix aij, whose elements take the value 1 if an edge
connects the vertex i to the vertex j, and 0 otherwise. The
data contained in the previous data sets permit one to go
beyond this topological representation by defining a
weighted graph. A weighted network is often described by a
weighted adjacency matrix wij, which represents the weight
on the edge connecting vertices i and j, with i , j=1, . . . ,N,
where N is the size of the network. We will only consider
undirected graphs, where the weights are symmetric �wij

=wji�. As confirmed by measurements, complex networks
often exhibit a scale-free degree distribution P�k�k−�, with
2���3 �6,7�. The weight distribution P�w� that any given
edge has weight w is another significant characterization of
weighted networks, and it is found to be heavy tailed, span-
ning several orders of magnitude �15�. A natural generaliza-
tion of connectivity in the case of weighted networks is the
vertex strength described as si=� j���i�wij, where the sum
runs over the set ��i� of neighbors of node i. The strength of
a vertex integrates the information about its connectivity and
the weights of its links. Take the WAN for example: the
strength represents the actual traffic going through a vertex
and the measure of the size and importance of each airport is
obvious. For the SCN, the strength is a measure of scientific
productivity, since it is equal to the total number of publica-
tions of any given scientist. This quantity is a natural mea-
sure of the importance or centrality of a vertex in the net-
work. Empirical evidence indicates that in most cases the
strength distribution has a fat tail �7�, similar to the power
law of degree distribution. Highly correlated with the degree,
the strength usually displays scale-free property s�k�
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The previous models of complex networks always incor-
porate the �degree or strength� preferential attachment
mechanism, which may result in scale-free properties. Essen-
tially speaking, this mechanism just describes interactions
between the newly added node and the old ones. The fact is
that such interactions also exist among old nodes. This per-
spective has been practiced in the work of Dorogovtsev and
Mendes �DM� �21�, who proposed a class of undirected and
unweighted models where new edges are added between old
sites �internal edges� and existing edges can be removed
�edge removal�. On the other hand, we argue that any con-
nection is a result of mutual affinity and attachment between
nodes, while many network models seem to ignore this point.
Traditional models often present us such an evolution pic-
ture: pre-existing nodes are passively attached by newly add-
ing nodes according to linear degree �or strength� preferential
mechanism. This picture is just a partial aspect for most
complex networks. It is worth nothing that the creation and
reinforcement of internal connections is an important aspect
for understanding real graphs �22�.

In this paper, we shall present a model for weighted net-
works that considers the topological evolution under the gen-
eral mechanism of mutual selection and attachment between
vertices. It can mimic the reinforcement of internal connec-
tions and the evolution of many infrastructure networks. The
diversity of scale-free characteristics, nontrivial clustering
coefficient, assortativity coefficient, nonlinear strength-
degree correlation, and hierarchical structure that have been
empirically observed can be well explained by our micro-
scopic mechanisms. Moreover, in contrast with previous
models where weights are assigned statically �23,24� or re-
arranged locally �12�, we allow weights to be widely up-
dated.

II. THE MUTUAL SELECTION MODEL

The model starts from an initial configuration of N0 ver-
tices fully connected by links with assigned weight w0. The
model is defined on two coupled mechanisms: the topologi-
cal growth and the mutual selection dynamics

A. Topological growth

At each time step, a new vertex is added with n edges
connected to n previously existing vertices, choosing prefer-
entially nodes with large strength; i.e., a node i is chosen
according to the strength preferential probability

�new→i =
si

�k
sk

. �1�

The weight of each new edge is also fixed to w0.

B. Mutual selection dynamics

According to the probability

�i→j =
sj

�k
sk − si

, �2�

each existing node i selects m other old nodes for potential
interaction. If a pair of unlinked nodes is mutually selected,

then an internal connection will be built between them. Or, if
two connected nodes select each other, then their existing
connection will be strengthened; i.e., their edge weight will
be increased by w0. Mutual selection means that the interac-
tion between components i and j is due to their common
choice and attachment. Here, the parameter m is the number
of candidate vertexes for creating or strengthening connec-
tions. Later, we will see that m also controls the growing
speed of the network’s total strength, for example, the in-
creasing rate of total information in a communication sys-
tem. Remark: considering the normalization requirement and
that vertices are not permitted to connect themselves, the
denominator of �i→j contains the term −si.

We argue that connections in most real networks are due
to the mutual selections and attachments between nodes.
Take the SCN for example: collaboration among scientists
requires their common interest and mutual acknowledg-
ments. Unilateral effort does not promise collaboration. Two
scientists with strong scientific potentials �large strengths�
and long collaborating history are more likely to publish pa-
pers together during a certain period. Likewise, for the
Movie Actor Collaboration Networks �MACN�, two actors
that both have high popularity are more likely to boost up the
box office if they costar. So, it is reasonable to assume that
each node is more likely to choose those nodes with large
strength when building or strengthening connections. This
also indicates that pre-existing nodes with large strength will
not be passively attached by nodes with small strength. There
is competition and adaptation in such complex systems. Both
natural and social networks bear such a property or mecha-
nism during their evolutions. The above description of our
model also could satisfactorily explain the WAN. The weight
here denotes the relative magnitude of the traffic on a flight
connection. At the beginning of the airport network construc-
tion, the air line is usually built between metropolises with
high status in both economy and politics. Once a new air line
is created between two airports, it will trigger more intense
traffic activities depending on the specific nature of the net-
work topology and the microdynamics. Due to the improve-
ment of national economy and the expansion of population,
the air traffic between metropolises will increase. There is an
obvious need for other cities to build new airports to connect
the metropolises for their great importance. Indeed, it is rea-
sonable that the traffic between metropolises will grow faster
than that between other cities, each of which possesses lower
economical and political status and a smaller population who
can afford airplane tickets. But, due to the limit of energy
and resources, each node can only afford a limited number of
connections. Hence facing the vertex pool, they have to
choose. Take the WAN for example: an airport cannot afford
the cost of connecting all the other airports.

The network provides the substrate on which numerous
dynamical processes occur. Technological networks provide
a large empirical database that simultaneously captures the
topology and the dynamics taking place on it. For the Inter-
net, the information flow between routers �nodes� can be
represented by the corresponding edge weight. The total in-
formation load that each router deals with can be denoted by
the node strength, which also represents the importance of a
given router. The increasing information flow as an internal
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demand always spurs the expansion of technological net-
works. Specifically, the largest contribution to the growth is
given by the emergence of links between already existing
nodes. This clearly points out that the Internet growth is
strongly driven by the need for a redundancy wiring and an
increasing need of available bandwidth for data transmission
�17�. On one hand, newly built links �between existing rout-
ers� are supposed to preferentially connect high-strength
routers; otherwise, it would lead to unexpected traffic con-
gestion along indirect paths that connect those high-strength
nodes. Naturally, information traffic along existing links be-
tween high-strength routers, in general, increases faster than
that between low-strength routers. This phenomenon also
could be reproduced in our model. On the other hand, new
routers preferentially connect to routers with larger band-
width and traffic handling capabilities �the strength-driven
attachment�. This characteristic also exists in an airport sys-
tem, power grid, and railroad network, and they could be
explained by our mechanisms.

III. PROBABILITY DISTRIBUTIONS AND STRENGTH
EVOLUTION

The network growth starts from an initial seed of N0
nodes, and continues with the addition of one node per unit
time, until a size N is reached. Hence, the model time is
measured with respect to the number of nodes added to the
graph, i.e., t=N−N0, and the natural time scale of the model
dynamics is the network size N. Using the continuous ap-
proximation, we can treat k, w, s, and the time t as continu-
ous variables �1,9�. Then, the edge weight wij is updated
according to this evolution equation:

dwij

dt
= m

sj

�k
sk − si

� m
si

�k
sk − sj

=
m2sisj

��k
sk − sj���k

sk − si�
. �3�

There are two processes that contribute to the increment of
strength si. One is the creation or reinforcement of internal
connections incident with node i, the other is the attachment
to i by newly added node. So, the rate equation of strength i
can be written as below:

dsi

dt
= �

j

dwij

dt
+ n �

si

�k
sk

�
m2si

�k
sk

� j
sj

�k
sk

+
nsi

�k
sk

= �m2 + n�
si

�k
sk

. �4�

This equation may be written in a more compact form by
noticing that

�
i=1

t

si = �
0

t

�
k�	

dsk

dt
dt + 2nt � �m2 + 2n�t , �5�

where 	 represents the set of existing nodes at time step t.
By plugging this result into Eq. �4�, we obtain the following
strength dynamical equation:

dsi

dt
=

m2 + n

m2 + 2n

si

t
, �6�

which can be readily integrated with initial conditions si�t
= i�=n, yielding

si�t� = n	 t

i

�m2+n�/�m2+2n�

. �7�

The equation �isi��m2+2n�t also indicates that the total
strength of the vertices in the statistical sense is uniformly
increased with the size of network. As one see, can the grow-
ing speed of the network’s total strength load is mainly de-
termined by the model parameter m.

The knowledge of the time evolution of the various quan-
tities allows us to compute their statistical properties. Indeed,
the time ti= t at which the node i enters the network is uni-
formly distributed in �0, t� and the degree probability distri-
bution can be written as

P�s,t� =
1

t + N0
�

0

t

�„s − si�t�…dti, �8�

where ��x� is the Dirac delta function. Using the equation
si�t����t / i�
� obtained from Eq. �7�, one obtains in the infi-
nite size limit t→� the distribution P�s��s� with �=1
+1/


� = 2 + n/�m2 + n� . �9�

Obviously, when m=0 the model is topologically equivalent
to the BA network and the value �=3 is recovered. For
larger values of m, the distribution is gradually getting
broader with �→2 when m→�.

We performed numerical simulations of networks gener-
ated by choosing different values of m and fixing n=5 and
w0=1. Considering that every vertex strength can at most
increase by m from internal connections, and a newly added
node can connect with no more than n existing nodes, it is
easy to conclude that the initial network configuration must
satisfy N0max�m+1,n�. For example, if m=10, then N0

11. In the following simulations, we will simply take N0
=max�m+1,n�. We have checked that the scale-free proper-
ties of our model networks are independent of the initial
conditions. Numerical simulations are consistent with our
theoretical predictions, which verify again the reliability of
our present results. Figure 1 gives the probability distribution
P�s��s�, which is in excellent agreement with the theoreti-
cal predictions. In Fig. 2 we show the behavior of the verti-
ces’ strength versus time for different values of m, recovering
the behavior predicted by analytical methods. We also report
the average strength si of vertices with degree ki, which dis-
plays a nontrivial power-law behavior s�k� as confirmed by
empirical measurement. Unlike BBV networks �where �=1�,
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the exponent � here varies with the parameter m in a non-
trivial way as shown in Fig. 3. The nontrivial s�k� correla-
tion demonstrates the phenomenon of “rich gets richer” con-
formed by real observation. More importantly, one could
check the scale-free property of degree distribution �P�k�
�k−�� by combining s�k� with P�s��s−�. Considering the
conservation of probability

�
0

�

P�k�dk = �
0

�

P�s�ds , �10�

we can easily calculate the exponent �

P�k� = P�s�
ds

dk
= s−��k�−1 = �k−����−1�+1�, �11�

giving �=���−1�+1. The scale-free properties of degree
obtained from simulations are presented in Fig. 4. Together,
the power-law distribution of weight P�w� �implying the
probability of finding a link with weight w� is shown in Fig.
5. The simulation consistency of scale-free properties indi-
cates that our model can indeed produce power-law distribu-
tions of degree, weight, and strength. In this case, the nu-
merical simulations of the model reproduce the behaviors
predicted by the analytical calculations.

IV. CLUSTERING AND CORRELATION

Many real networks in nature and society share two ge-
neric properties: scale-free distributions and high degree of

FIG. 1. �Color online� Probability distribution P�s�. Data are
consistent with a power-law behavior s−�. In the inset we give the
value of � obtained by data fitting �filled circles�, together with the
analytical expression �=2+n / �m2+n�=2+5/ �m2+5� �line�. The
data are averaged over ten independent runs of network size N
=5000.

FIG. 2. �Color online� Evolution of strength of vertices during
the growth of network for various of m. In the inset we give the
value of 
 obtained by data fitting �filled circles�, together with the
analytical expression 
= �m2+n� / �m2+2n�= �m2+5� / �m2+10�
�line�.

FIG. 3. �Color online� Strength si versus ki for different m �log-
log scale�. Linear data fitting gives slope 1.04, 1.16, 1.26, and 1.41
�from bottom to top�, demonstrating the correlation of s�k�.

FIG. 4. �Color online� Probability distribution of the degrees
P�k��k−� for different m. The data are averaged over ten indepen-
dent runs of network size N=5000.
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clustering. Along with the general vertices hierarchy im-
posed by the scale-free strength distribution, complex net-
works show an architecture imposed by the structural and
administrative organization of these systems, which is math-
ematically encoded in the various correlations existing
among the properties of different vertices. For this reason, a
set of topological and weighted quantities is usually studied
in order to uncover the network architecture. The first and
widely used quantity is given by the clustering of vertices.
The clustering of a vertex i is defined as

ci =
1

ki�ki − 1��j,h aijaihajh, �12�

and measures the local cohesiveness of the network in the
neighborhood of the vertex. Indeed, it yields the proportion
of interconnected neighbors of a given vertex. The average
over all vertices gives the network clustering coefficient,
which describes the statistics of the density of connected
triples. Further information can be gathered by inspecting the
average clustering coefficient C�j� restricted to classes of
vertices with degree k

C�k� =
1

NP�k� �
i,ki=k

ci. �13�

In many networks, the average clustering coefficient C�k�
exhibits a highly nontrivial behavior with a power-law decay
as a function of k �19�, indicating that low-degree nodes
generally belong to well-interconnected communities �high
clustering coefficient�, while high-degree sites are linked to
many nodes that may belong to different groups which are
not directly connected �small clustering coefficient�. This is
generally the feature of a nontrivial architecture in which
hubs �high degree vertices� play a distinct role in the net-
work. Numerical simulations indicate that for large m, the
clustering coefficient C�N� is almost independent of N �as we
can see in Fig. 6�, which agrees with the finding in several

real networks �9�. Generally, when the network size N is
larger than 5000, the clustering coefficient is nearly stable.
So, most computer runs are assigned 5000. Still, it is worth
noting that for the BA networks, C�N� is nearly zero, far
from the practical nets that exhibit a variety of small-world
properties. In the present model, however, clustering coeffi-
cient C is fortunately found to be a function of m �see Fig.
7�, also supported by empirical data in a broad range.

Finally, the clustering coefficient C�k� depending on con-
nectivity k for increasing m is also interesting and shown in
Fig. 8. For clarity, we add the dashed line with slope −1 in
the log-log scale. These simulation results are supported by
recent empirical measurements in many real networks. For
the convenience of comparison with Fig. 8, we use two fig-
ures from Ref. �19� as our Fig. 9, from which one can see the
agreement between simulation results of clustering-degree
correlation and empirical evidence is quite excellent. Though
some previous models �25,26� can generate the power-law
decay of the clustering-degree correlation, none of them as
far as we know can produce the flat head as found in real

FIG. 5. �Color online� Probability distribution of the weights
P�w��w−� for various m. The data are averaged over ten indepen-
dent runs of network size N=5000.

FIG. 6. �Color online� The evolution of clustering coefficient �or
C versus N� which converges soon.

FIG. 7. Clustering coefficient C depending on the parameter
m.
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graphs. This is a special property that our model successfully
obeys.

Another important source of information is the degree
correlation of vertex i and its neighbor. The average nearest-
neighbor degree is proposed to measure these correlations

knn,i =
1

ki
�

j

aijkj . �14�

Once averaged over classes of vertices with connectivity k,
the average nearest-neighbor degree can be expressed as

knn�k� = �
k�

P�k��k� , �15�

providing a probe on the degree correlation function. Here,
P�k� �k� denotes the conditional probability that a k-degree
vertex connects to a k�-degree neighboring vertex. If degrees
of neighboring vertices are uncorrelated, P�k� �k� is only a
function of k� and thus knn�k� is a constant. When correla-
tions are present, two main classes of possible correlations
have been identified: assortative behavior if knn�k� increases
with k, which indicates that large degree vertices are prefer-
entially connected with other large degree vertices, and dis-
assortative if knn�k� decreases with k, which denotes that
links are more easily built between large degree vertices and
small ones. The above quantities provide clear signals of a
structural organization of networks in which different degree
classes show different properties in the local connectivity
structure. In light of this measure, we also perform computer
simulations to test the knn�k�−k correlation, as shown in Fig.
10. As knn�k� decreases with k, one may find that our model
can best illustrate disassortative networks in reality, i.e., tech-
nological networks �e.g., Internet, WAN� and biological net-
works �e.g., protein folding networks�. As for the social net-
works, connections among people may be assortative by
language or by race. Newman proposed some simpler mea-
sures to describe these types of mixing, which we call assor-
tativity coefficients �27�. Almost all the social networks stud-
ied show positive assortativity coefficients while all the
others, including technological and biological networks,
show negative coefficients. It is not clear if this is a universal
property; the origin of this difference is not understood ei-

FIG. 8. �Color online� The clustering coefficient C�k� depending
on connectivity k for increasing m. For comparison, the dashed line
has slope −1 in the log-log scale.

FIG. 9. The scaling of C�k� with k for two real networks �19�:
�a� Actor network, two actors being connected if they acted in the
same movie according to the www.IMDB.com database. �b� The

semantic web, connecting two English words if they are listed as
synonyms in the Merriam Webster Dictionary. The dashed line in
each figure has slope −1.

FIG. 10. �Color online� Average connectivity knn�k� of the near-
est neighbors of a node depending on its connectivity k for different
m.
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ther. In our view, it represents a feature that should be ad-
dressed in each network type individually. In the following,
we use the formula proposed by Newman in Ref. �27�:

r =

M−1�i
jiki − �M−1�i

1

2
�ji + ki�2

M−1�i

1

2
�ji

2 + ki
2� − �M−1�i

1

2
�ji + ki�2 , �16�

where ji ,ki are the degrees of vertices at the ends of the ith
edges, with i=1, . . . ,M �M is the total number of edges in
the observed graph�. We calculate the degree assortativity
coefficient �or degree-degree correlation� r of the graphs
generated by our model. For large N �e.g., N�5000�, the
degree-degree correlation r is almost independent of the net-
work size �see Fig. 11�. Simulations of r depending on m are
given in Fig. 12 and supported by empirical measurements
for disassortative networks �27�.

V. CONCLUSION AND OUTLOOK

In sum, integrating the mutual selection mechanism be-
tween nodes and the growth of strength preferential attach-
ment, our network model provides a wide variety of scale-
free behaviors, tunable clustering coefficient, and nontrivial
�degree-degree and strength-degree� correlations, just de-

pending on the parameter m which governs the total weight
growth. All the results of network properties are found to be
supported by various empirical data. Interestingly and spe-
cially, studying the degree-dependent average clustering co-
efficient C�k� and the degree-dependent average nearest-
neighbors’ degree knn�k� also provides us with a better
description of the hierarchies and organizational architecture
of weighted networks. Our model may be very beneficial for
future understanding or characterizing real networks. Though
our model can just produce disassortative networks �most
suitable for technological and biological ones�, which is one
of its limitations, we always expect some model versions or
variations that generate weighted networks with assortative
property. Due to the apparent simplicity of our model and the
variety of tunable results, we believe that some of its exten-
sions will probably help address �e.g., social� networks.
Therefore, we believe our present model, for all practical
purposes, might demonstrate its application in future
weighted network research.
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