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An extremely challenging problem of significant interest is to predict catastrophes in advance of their
occurrences. We present a general approach to predicting catastrophes in nonlinear dynamical systems
under the assumption that the system equations are completely unknown and only time series reflecting
the evolution of the dynamical variables of the system are available. Our idea is to expand the vector field
or map of the underlying system into a suitable function series and then to use the compressive-sensing
technique to accurately estimate the various terms in the expansion. Examples using paradigmatic chaotic

systems are provided to demonstrate our idea.
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It has been recognized that nonlinear dynamics are
ubiquitous in many natural and engineering systems. A
nonlinear system, in its parameter space, can often exhibit
catastrophic bifurcations that ruin the desirable or ‘“‘nor-
mal” state of operation. Consider, for example, the phe-
nomenon of crisis [1] where, as a system parameter is
changed, a chaotic attractor collides with its own basin
boundary and is suddenly destroyed. After the crisis, the
state of the system is completely different from that on the
attractor before the crisis. Suppose that, for a nonlinear
dynamical system, the state before the crisis is normal and
desirable, and the state after the crisis is undesirable or
destructive. The crisis can thus be regarded as a catastrophe
that one strives to avoid at all cost. Catastrophic events, of
course, can occur in different forms in all kinds of natural
and man-made systems. A question of paramount impor-
tance is how to predict catastrophes in advance of their
possible occurrences. This is especially challenging when
the equations of the underlying dynamical system are
unknown and one must then rely on measured time series
or data to predict any potential catastrophe.

In this Letter, we articulate a strategy to address the
problem of predicting catastrophes in nonlinear dynamical
systems. We assume that an accurate model of the system
is not available, i.e., the system equations are unknown, but
the time evolutions of the key variables of the system can
be accessed through monitoring or measurements. Our
method consists of three steps: (i) predicting the dynamical
system based on time series, (ii) identifying the parameters
of the system, and (iii) performing bifurcation analysis
using the predicted system equations to locate potential
catastrophic events in the parameter space so as to deter-
mine the likelihood of system’s drifting into a catastrophe
regime. In particular, if the system operates at a parameter
setting close to such a critical bifurcation, catastrophe
is imminent as a small parameter change or a random
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perturbation can push the system beyond the bifurcation
point. To be concrete, in this Letter we regard crises as
catastrophes. Once a complete set of system equations has
been predicted and the parameters have been identified,
one needs to examine the available parameter space. In
general, to explore the multiparameter space of a dynami-
cal system can be extremely challenging, which can often
lead to the discovery of new phenomena in dynamics. An
early example in this area of research is the work by
Stewart et al. [2], which investigated the phenomenon of
double crises in two-parameter dynamical systems. More
recent efforts include the investigation of hierarchical
structures in the parameter space [3]. The present focus
of our work, however, is on predicting the dynamical
systems based on compressive sensing.

The problem of predicting dynamical systems based on
time series has been outstanding in nonlinear dynamics
because, despite previous efforts [4] in using the standard
delay-coordinate embedding method [5] to decode the
topological properties of the underlying system, how to
accurately infer the underlying nonlinear system equations
remains largely an unsolved problem. In principle, a non-
linear system can be approximated by a large collection of
linear equations in different regions of the phase space,
which can indeed be achieved by reconstructing the
Jacobian matrices on a proper grid that covers the phase-
space region of interest [6,7]. However, the accuracy and
robustness of the procedure are challenging issues, includ-
ing the difficulty with the required computations. In order
to be able to predict potential catastrophes, local recon-
struction of a large set of linearized dynamics is not
sufficient but rather, an accurate prediction of the under-
lying nonlinear equations themselves is needed.

Our framework to fully reconstruct dynamical systems
using time series alone is based on the assumption that the
dynamics of many natural and man-made systems are
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determined by functions that can be approximated by
series expansions in a suitable base. The major task is
then to estimate the coefficients in the series representa-
tion. In general, the number of coefficients to be estimated
can be large but many of them are zero (the sparsity
condition). According to the conventional wisdom this
would be a difficult problem as a large amount of data is
required and the computations involved can be extremely
demanding. However, the recent paradigm of compressive
sensing developed by Candeés et al. [8-12] provides a
viable solution to the problem, where the key idea is to
reconstruct a sparse signal from a small number of obser-
vations [8—12], as measured by linear projections of the
original signal on a few predetermined vectors. Since the
requirements for the observations can be considerably
relaxed as compared with those associated with conven-
tional signal reconstruction schemes, compressive sensing
has received much recent attention and it is becoming a
powerful technique to obtain high-fidelity signal for appli-
cations where sufficient observations are not available.
Here, we shall articulate a general methodology to cast
the problems of dynamical-system prediction into the
framework of compressive sensing and we demonstrate
the power of our method by carrying out bifurcation analy-
ses on the predicted dynamical systems to locate potential
catastrophes using exemplary chaotic systems.

Generally, the problem of compressive sensing can be
described as the reconstruction of a sparse vector a € R
from linear measurements X about a in the form X = Ga,
where X € R", G is a w X v matrix and most components
of a are zero. The compressive-sensing theory ensures
that the number of components of the unknown signal
can be much larger than the number of required measure-
ments for reconstruction, i.e., v > w. Accurate recon-
struction can be achieved by solving the following
convex optimization problem [8]: min|la]|; subject to
X = Ga, where ||a||; = v, la;| is the L, norm of a.
Solutions to the convex optimization problem have been
worked out recently [8-13].

We first show that the inverse problem of predicting
dynamical systems can be cast in the framework of com-
pressive sensing so that optimal solutions can be obtained
even when the number of base coefficients to be estimated
is large and/or the amount of available data is small. In the
following, we present a typical example to illustrate our
method. Assume that the dynamical system can generally
be written as x = F(x), where x € R™ represents the set of
externally accessible dynamical variables and F is a
smooth vector function in R™. The jth component of
F(x) can be represented as a power series:

[F(x)]; = Z Z Z (aj)llwlmxll‘xéz X (D
!

=05L=0  1,=0

where x; (k=1,...,m) is the kth component of the
dynamical variable, and the scalar coefficient of each
product term (a;); ;, € R is to be determined from

measurements. Note that the terms in Eq. (1) are all pos-
sible products of different components with different
powers, and there are (1 + 7)™ terms in total.

To better explain our method, without loss of generality,
we focus on one dynamical variable of the system.
(Procedures for other variables are similar.) For example,
to construct the measurement vector X and the matrix G
for the case of m =3 (dynamical variables x, y, and z) and
n = 3, we have the following explicit dynamical equation
for the first dynamical variable: [F(x)]; = (a)o,0,0x°y°z° +
(ar)00x'y°2% + ...+ (a;)333x°y’z>. We can denote the
coefficients of [F(x)]; by a;=[(a)o00 (@1)1.00 -
(a1)333]". Assuming that measurements of x(7) at a
set of time 7, 1,,...,t, are available, we denote g(r) =
[x(0)°y(0)°z(2)°, x(1)' y(1)°2(2)°, ... ., x(1)*y(2)*2(¢)*],  such
that [F(x(7))], = g(¢)a,. From the expression of [F(x)];,
we can choose the measurement vector as X =
[x(t)), x(t5), ..., x(t,,)]', which can be calculated from
time series. Finally, we obtain the following equation in
the form X = Ga;:

N
x(.tz) _ g(:lz) (@), )
x(tw) g(tw)

To ensure the restricted isometry property [8], we normal-
ize G by dividing elements in each column by the L,

norm of that column: (G’);; = (G);;/L,(j) with L,(j) =

>rLG); j]2, so that X = G'a/. After the normalization,

aj =a;L, can be determined via some standard
compressive-sensing algorithm [13]. As a result, the coef-
ficients a; are given by a}/L,. To determine the set of
power-series coefficients corresponding to a different dy-
namical variable, say y, we simply replace the measure-
ment vector by X = [y(¢,), ¥(t2), ..., ¥(t,,)]" and use the
same matrix G. In this way all coefficients a;, a,, and a3 of
three dimensions can be estimated.

We now present a number of physically relevant ex-
amples to illustrate our strategy. The first example is the
Hénon map [14], a classical model that has been used to
address many fundamental issues in chaotic dynamics. The
prediction of map equations resembles that of a vector
field. The map is given by (x,.1, y,41) = (1 —ax2 +
Yn bx,), where a and b are parameters. For b = 0.3, the
map exhibits periodic and chaotic attractors for a < a, =
1.426 25, where a, is the critical parameter value for a
boundary crisis [1], above which almost all trajectories
diverge. The crisis can then be regarded as a catastrophe
in the system evolution. Assuming, e.g., that the normal
operation of the system corresponds to a chaotic attractor,
we choose a = 1.2. Now suppose that the system operates
at this parameter value and the system equations are com-
pletely unknown but the time series {x},, {y}, can be
obtained in real time. The goal is to assess, based on the
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FIG. 1. For the Hénon map, in (a) x dimension and (b) y

dimension, distributions of the predicted values of ten power-
series coefficients up to order 3: constant, y, y%, y°, x, xy, xy2, x2,
x%y, and x°.

time series only, how “close” the system is to a potential
catastrophe. (If measurements of only one dynamical
variable can be obtained, one has to resort to the delay-
coordinate embedding method [5].) For illustrative pur-
pose, we assume power-series expansions up to order 3
in the map equations. Figure 1 shows the distributions of
the estimated power-series coefficients, where we observe
extremely narrow peaks about zero, indicating that a large
number of the coefficients are effectively zero, which
correspond to nonexistent terms in the map equations.
Coefficients that are not included in the zero peak corre-
spond then to existent terms and they determine the pre-
dicted map equations. Figure 2 shows the bifurcation
diagram from the predicted Hénon map, which is impres-
sively consistent with the original diagram. In particular,
the predicted system gives the value of the critical bifurca-
tion point to within 1073, where a boundary crisis occurs.
Note that, to predict correctly the map equations, the
number of required data is extremely low, not seen before
in any method of dynamical-system reconstruction.
Similar results have been obtained for the chaotic Lorenz
[15] and Rossler [16] oscillators, as shown by the predicted
bifurcation diagrams in Figs. 3(a) and 3(b), respectively.
These agree with the original bifurcation diagrams ex-
tremely well, so that all possible critical bifurcation points
can be predicted accurately based on time series only.

FIG. 2. Bifurcation diagrams of the predicted Hénon map. The
predicted map equations are x,;.; =0.999999996105743 +
1.000000008610316y, —ax? and y,;; = 0.299999 99837 x,,.
The number 7,, of measurements used for prediction is 8 and
the total number n,, + n, of terms to be predicted is 16.

To quantify the performance of our method with respect
to the amount of required data, we investigate the prediction
errors which are defined separately for nonzero (existing)
and zero terms in the dynamical equations. The relative
error of a nonzero term is defined as the ratio to the true
value of the absolute difference between the predicted and
true values. The average over the errors of all terms in a
component is the prediction error E,, of nonzero terms for
the component. In contrast, the absolute error E,, is used for
zero terms. Figures 4(a) and 4(b) show E,,, as a function of
the ratio of the number n,, of measurements to the total
number n,,, + n, of terms to be predicted, for the standard
map [17] and the Lorenz system, respectively. Note that, for
the standard map, it is necessary to explore alternative bases
of expansion so that the sparsity condition can be satisfied.
Our strategy is that, assuming a rough idea about the basic
physics of the underlying dynamical system is available, we
can choose a base that is compatible with the knowledge. In
the case of the standard map, we thus choose the base which
includes the trigonometric functions. We obtain that, when
the number n,, of measurements exceeds a threshold n,, E,,,
becomes effectively zero. Without loss of generality, we
define n, by using the small threshold value E,, = 1073 so
that n, is the minimum number of required measurements
for an accurate prediction. In Figs. 4(a) and 4(b), we observe
that n, is much less than n,, + n, if n,,, the number of
nonzero terms, is small. The performance of our method can
thus be quantified by the threshold with respect to the
numbers of measurements and terms to be predicted. As
shown in Figs. 4(c) and 4(d) for the standard map and the
Lorenz system, respectively, as the nonzero terms become
sparser among all terms to be predicted [characterized by
a decrease in n,,./(n,. + n.) when n,_. + n, is increased],
the ratio of the threshold rn, to the total number of terms
n,, + n, becomes smaller. These results demonstrate the
advantage of our compressive-sensing based method to pre-
dict dynamical systems, i.e., high accuracy and extremely
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FIG. 3. Bifurcation diagram of (a) the predicted Lorenz system
given by x=10.000548307 148881y — 10.001897 147696283 x,
y = x(a — 1.000933 186 801 829 z) — 1.000 092 963 203 845 y,
z = 0.999 893 761 636 553 xy — 2.666 477 325 955 504 z and
of (b) the predicted Rossler system given by
X = —0.999959701293536y —0.999978902248041z, y =
1.000 004 981 649 221 x + 0.200 005 996 113 158 y, z=
0.199997011 085648 + 0.999999 156496251 z(x — a). In both
cases, n, = 18 and n,, + n, = 35.
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FIG. 4 (color online). Prediction errors E,, in dynamical equa-
tions as a function of the ratio of the number n,, of measure-
ments to the total number n,, + n, of terms to be predicted for
(a) the standard map and (b) the Lorenz system. The ratio of the
threshold 7, to n,, + n, for different equations as a function of
the ratio n,./(n,. + n.) for (c) the standard map and (d) the
Lorenz system. In (a) and (b), n,, + n, is 20 and 35, respec-
tively. The error bars represent the standard deviations obtained
from 30 independent realizations. In (c) and (d), n,, + n, can be
adjusted by the order of power series. In (c), the data points range
from order 3 to order 11, and in (d) from order 2 to order 7.

low required measurements. In general, to predict the non-
linear dynamical system as accurately as possible, many
reasonable terms should be assumed in the expansions,
insofar as the percentage of nonzero terms is small so that
the sparsity condition of compressive sensing is satisfied.

In addition, we examine the resistance of the method to
measurement errors by inserting noise into time series. The
prediction errors as a function of noise amplitude are
shown in Figs. 5(a) and 5(b) for the Hénon map and the
standard map, respectively. The results demonstrate that
our method is robust against noise, due to the optimization
nature of the compressive-sensing method.

There are also situations where the system is high di-
mensional or stochastic, for which the current method may
not work. A possible solution is to employ the Bayesian
inference to determine the system equations. In general the
computational challenge associated with the approach can
be formidable, but the power-series or more general ex-
pansion based compressive-sensing method developed in
this Letter may present an effective strategy to overcome
the difficulty.

In summary, we have articulated a general approach to
predicting catastrophes in nonlinear dynamical systems.
Our idea is to approximate the equations of the underlying
system by series expansion and then to formulate the
problem of estimating the various terms in the expansions
using compressive sensing. The merit of our approach is
then that, due to the nature of the compressive-sensing
method, a large number of terms can be accurately
estimated even with short available time series, enabling
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FIG. 5 (color online). Prediction errors E,, as a function of
noise amplitude for (a) the Hénon map and (b) the standard map.
Uniform noise is added to the time series. The values of n,, and
n,, + n, for (a) are 8 and 16, respectively, and for (b) are 10 and
20, respectively. The prediction errors in the zero terms show
similar behaviors.
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potential implementation in real time. We have presented a
number of examples from chaotic dynamics to demonstrate
the effectiveness of our method. Predicting catastrophe is a
problem of uttermost importance in science and engineer-
ing and of extremely broad interest as well, and we hope
our work will stimulate further efforts in this challenging
area.
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