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We study the relationship between dynamical properties and interaction patterns in complex oscillator

networks in the presence of noise. A striking finding is that noise leads to a general, one-to-one

correspondence between the dynamical correlation and the connections among oscillators for a variety

of node dynamics and network structures. The universal finding enables an accurate prediction of the full

network topology based solely on measuring the dynamical correlation. The power of the method for

network inference is demonstrated by the high success rate in identifying links for distinct dynamics on

both model and real-life networks. The method can have potential applications in various fields due to its

generality, high accuracy, and efficiency.
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Understanding the relationship between dynamics and
network structure is a central issue in interdisciplinary
science [1,2]. Despite the tremendous effort in revealing
the topological effect on a variety of dynamics [3–5], how
to infer the interaction pattern from dynamical behaviors is
still challenging as an inverse problem, especially in the
absence of the knowledge of nodal dynamics. Some meth-
ods aiming to address the inverse problem have been
proposed, such as spike classification methods for measur-
ing interactions among neurons from spike trains [6], and
approaches based on response dynamics [7], L1 norm [8],
and noise scaling [9]. For the inverse problem, a basic
question is whether sufficient topological information can
be obtained from measured time series of dynamics. In this
regard, the answer is negative when there is strong syn-
chronization as, in this case, the coupled units behave as a
single oscillator and interactions among units vanish so
that it is impossible to extract the interaction pattern from
measurements.

Quite surprisingly, we find that with the help of noise, in
general it becomes possible to precisely identify interac-
tions based solely on the correlations among measured
time series of nodes. In this sense, we say that noise bridges
dynamics and topology, facilitating the inference of net-
work structures. We note that noise is ubiquitous in physi-
cal and natural systems and understanding the noise effect
on dynamical systems has been a fundamental issue in
nonlinear and statistical physics. While there are recent
works on the interplay between collective dynamics and
topology of complex systems under noise [10–12], and on
predicting node degrees for complex networks [9], taking
advantage of noise to predict the full connecting topology
of an unknown complex network is an outstanding ques-
tion. Addressing this question not only is fundamental to
nonlinear science, but also can have significant applica-

tions in diverse areas such as computer networks, biomedi-
cal systems, neuroscience, socioeconomics, and defense.
In this Letter, we present a general and powerful method

to precisely identify links among nodes based on the noise-
induced relationship between dynamical correlation and
topology. Analytically, we find that there exists a one-to-
one correspondence between the dynamical correlation
matrix of nodal time series and the connection matrix of
structures, due to the presence of noise. This finding en-
ables an accurate prediction of network topology from time
series. Numerical simulations are performed using four
typical dynamical systems, together with several model
and real networks. For all cases examined, comparisons
between the original and the predicted topology yield a
uniformly high success rate of prediction. The advantages
of our noise-based method are then (i) high accuracy and
efficiency, (ii) generality with respect to node dynamics
and network structures, (iii) no need for control, and
(iv) applicability even when there is weak coherence in
the collective dynamics.
Our general approach to bridging dynamical correlation

and topology is as follows. We consider N nonidentical
oscillators, each of which satisfies _xi ¼ FiðxiÞ in the ab-
sence of coupling, where xi denotes the d-dimensional
state variable of the ith oscillator. Under noise, the dynam-
ics of the whole coupled-oscillator system can be ex-
pressed as

_x i ¼ FiðxiÞ � c
XN
j¼1

LijHðxjÞ þ �i; (1)

where c is the coupling strength, H:Rd ! Rd denotes the
coupling function of oscillators, �i is the noise term, Lij ¼
�1 if j connects to i (otherwise 0) for i � j, and Lii ¼
�PN

j¼1;j�i Lij. Because of nonidentical oscillators and
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noise, an invariant synchronization manifold does not ex-
ist. Let �xi be the counterpart of xi in the absence of noise,
and assume a small perturbation �i, we can write xi ¼
�xi þ �i. Substituting this into Eq. (1), we obtain

_� ¼ ½DF̂ð �xÞ � cL̂ �DĤð �xÞ��þ �; (2)

where � ¼ ½�1; �2; . . . ; �N�T denotes the deviation vector,

� ¼ ½�1; �2; . . . ; �N�T is the noise vector, L̂ names the

Laplacian matrix of coupling fLijg, DF̂ð �xÞ ¼
diag½DF̂1ð �x1Þ; DF̂2ð �x2Þ; � � � ; DF̂Nð �xNÞ� (DF̂i are d� d
Jacobian matrices of Fi), � denotes direct product, and

DĤ is the Jacobian matrix of the coupling function H.
Denoting the dynamical correlation of oscillators h��Ti

as Ĉ, whereinCij ¼ h�i�ji and h�i is time average, we have

0¼hdð��TÞ=dti¼�ÂĈ�ĈÂTþh��Tiþh��Ti; (3)

where Â ¼ �DF̂ð �xÞ þ cL̂ �DĤð �xÞ. To obtain the ex-
pression of h��Ti and h��Ti, we get the solution �ðtÞ
from Eq. (2): �ðtÞ¼ Ĝðt� t0Þ�ðt0Þþ

R
t
t0
dt0Ĝðt� t0Þ�ðt0Þ,

where ĜðtÞ ¼ expð�ÂtÞ. In the absence of divergence of

state variables, Ĝð1Þ ¼ 0. Setting t0 ! �1, without loss

of generality, we have �ðtÞ ¼ R
t
�1 Ĝðt� t0Þ�ðt0Þdt0.

Note that Ĝð0Þ ¼ Î; we hence obtain h��Ti ¼ R
t
�1 Ĝðt �

t0Þh�ðtÞ�Tðt0Þidt0 ¼ R
t
�1 Ĝðt � t0ÞD̂�ðt � t0Þdt0 ¼ D̂=2,

where D̂ is the covariance matrix of noise. Analogously,

we can obtain h��Ti ¼ D̂=2. Therefore, Eq. (3) can be
simplified to

Â ĈþĈÂT ¼ D̂: (4)

Since Â ¼ �DF̂ð �xÞ þ cL̂ �DĤð �xÞ, the above equality
reveals a general relationship between the dynamical cor-

relation Ĉ and the connecting matrix L̂ in the presence of

noise as characterized by D̂. The general solution of Ĉ can

be written as vecðĈÞ ¼ vecðD̂Þ=ðÎ � Âþ Â � ÎÞ, where
vecðX̂Þ is a vector containing all columns of matrix X̂ [13].

For illustrative purpose, we consider one-dimensional

state variable and linear coupling such that DĤ ¼ 1, with

Gaussian white noise D̂ ¼ �2Î, and further regard the in-

trinsic dynamics DF̂ as small perturbations. Then Eq. (4)

can be simplified to L̂ ĈþĈL̂T ¼ �2Î=c. For an undir-
ected network with symmetric coupling matrix, the solu-

tion of Ĉ can be expressed as

Ĉ ¼ �2

2c
L̂y; (5)

where L̂y denotes the pseudo inverse of the Laplacian

matrix. We note that the dynamic correlation matrix Ĉ is

closely related to the network connection matrix L̂, which
can be used to infer network structures when no knowledge

about the nodal dynamics is available. In fact, Ĉ acts as the
‘‘Green’s function’’ of the network and can be expressed as
some kind of path integral associated with the underlying

network topology (see [14]), as follows:

Cij ¼ �2

2c

X
path

Y
m2path

1

km
; (6)

where ‘‘path’’ means all paths from j to i, and m denotes
the nodes on them. This path-integral representation is
extremely useful for revealing the direct relation between

autocorrelation Cii in the matrix Ĉ and the local structure
ki. In particular, for nth-order approximation, we count all
paths whose lengths are equal to or less than n. Under
second-order approximation, we have

Cii ¼ �2

2c

�
1

ki
þ 1

k2i

X
q2�i

1

kq

�
’ �2

2cki

�
1þ 1

hki
�
; (7)

where mean-field approximation is applied and �i denote
the neighbors of node i. This dependence of the autocorre-
lation Cii on the degree ki, under the second-order approxi-
mation is consistent with the recently discovered noise-
induced algebraic scaling law in Ref. [9], derived there by a
power-spectral analysis.
To provide numerical support for the validity and gen-

erality of our theoretical results on the relationship be-
tween dynamical correlation and topology, we consider a
number of model and real-world network structures by
using four typical dynamical systems, as follows.
(i) Consensus dynamics [15]: _xi ¼ c

PN
j¼1 Pijðxj � xiÞ þ

�i; (ii) identical Rössler dynamics [16] (I-Rössler): _xi ¼
�yi � zi þ c

P
N
j¼1 Pijðxj � xiÞ þ �i, _yi ¼ xi þ 0:2yi þ

c
P

N
j¼1 Pijðyj � yiÞ, _zi ¼ 0:2þ ziðxi � 9:0Þ þ

c
PN

j¼1 Pijðzj � ziÞ; (iii) nonidentical Rössler dynamics

[17] (N-Rössler): _xi ¼ �!iyi � zi þ c
PN

j¼1 Pijðxj �
xiÞ þ �i, _yi ¼ !ixi þ 0:2yi þ c

P
N
j¼1 Pijðyj � yiÞ, _zi ¼

0:2þ ziðxi � 9:0Þ þ c
P

N
j¼1 Pijðzj � ziÞ, where !i gov-

erns the natural frequency of an individual oscillator i
and is randomly chosen from a range ½a1; a2�;
(iv) Kuramoto phase oscillators [18]: _�i ¼ !i þ
c
P

N
j¼1 Pij sinð�j � �iÞ þ �i, where �i and !i are the

phase and natural frequency of node i.
Numerical simulations are carried out to predict the

entire network structure based solely on time series, utiliz-
ing the one-to-one correspondence between the dynamical
correlation and Laplacian matrix of topology. From

Eq. (5), we have L̂ ¼ ½�2=ð2cÞ�Ĉy, where L̂ contains

full information about the network topology, and Ĉy is

the pseudo inverse. The matrix Ĉ can be obtained from
time series as Cij ¼ h½xiðtÞ � �xðtÞ� � ½xjðtÞ � �xðtÞ�i, where
�xðtÞ ¼ ð1=NÞPN

i¼1 xiðtÞ. For Kuramoto oscillators, xiðtÞ
denotes the phase variable �ðtÞ and for the Rössler dynam-
ics, xiðtÞ is the x component of the ith oscillator [19]. After

Ĉ is constructed, we are able to obtain L̂ through the
pseudo inverse.
Figure 1 shows the distribution of elements of

½�2=ð2cÞ�Ĉy. We observe a bimodal distribution with
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one peak centered at �1 corresponding to existent links
and the other peak centered at zero corresponding to zero

elements in L̂. There are also some positive values in the
distribution that disperse on the right side of the peak about

zero, which are due to the diagonal components in L̂. We

focus on nondiagonal elements in L̂. If L̂ were recon-

structed perfectly from ½�2=ð2cÞ�Ĉy, the two peaks would
be very sharp. A threshold can be set to distinguish existent
from nonexistent links by using Eq. (7). In particular, from
Eq. (7), we have S � PN

i¼1 1=Cii ¼ 2cl2=½�2ðN þ lÞ�,
where l ¼ P

N
i¼1 ki ¼ Nhki is twice the total number of

links. We can calculate l through l ¼ ðS�2 þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2�4 þ 8cNS�2

p
Þ=4c and keep its integral part. We

then rank all elements of the matrix Ĉy (or matrix

½�2=ð2cÞ�Ĉy) in an ascending order. For convenience, we

denote the ascending-ordered matrix elements by Cy
m, for

m ¼ 1; . . . ; N2. The threshold Cy
M (or ½�2=ð2cÞ�Cy

M) is

chosen such that
P

M
m¼1 �ðCy

mÞ ¼ l, where �ðCy
mÞ is the

unnormalized distribution of Cy
m. This means the rank of

Cy
M is l in the queue of ascending-ordered matrix elements

Cy
m. Then the connection matrix can be obtained by setting

all elements in Ĉy with values above the threshold Cy
M to

be zero and others to be �1, the latter corresponding to
existent links. As shown in Fig. 1, for different model and
real-world networks, thresholds so determined are able to

successfully separate the two peaks in the distributions of

elements of Ĉy, which in turn leads to predictions of links
with high success rates for various node dynamics, as
displayed in Table I. Alternatively, the threshold can be
empirically determined by the largest gap between the two
peaks, and we have obtained essentially the same success
rates. Table II exemplifies the success rates of our method
for different values of the average degree hki for different
types of networks. We see that the success rate increases
with hki.
For directed networks, there is no unique solution for L̂

from Ĉ, because the asymmetric L̂ has a twofold degree of

freedom as that of symmetric Ĉ. Thus, the global structure
of directed networks cannot be inferred solely depending
on the correlation. However, Eq. (7) is satisfied by replac-
ing node degree with in-degree, so that we still can infer the
local structure, the in-degree of each node, through kiin �
C�1
ii . As shown in Fig. 2, theory agrees well with numerical

results.

FIG. 1 (color online). Distribution of the values of
½�2=ð2cÞ�Cy

ij, where Cy
ij are the elements in the pseudo inverse

matrix of the dynamical correlation matrix Ĉ. Consensus dy-
namics [15] are used for (a) random [21], (b) small-world [22],
(c) scale-free model networks [23] and three real-world net-
works: (d) friendship network of karate club [25], (e) network of
American football games among colleges [26], and (f) the neural
network of C. Elegans [22]. The theoretical threshold
½�2=ð2cÞ�Cy

M is marked by red dashed lines. The sizes of model

networks are all 500. For random networks, the connection
probability among nodes is 0.024. For scale-free networks the
minimum degree is kmin ¼ 6. For small-world networks, hki ¼
12 and the rewiring probability is 0.1.

TABLE I. Success rates of existent links (SREL) and of non-
existent links (SRNL) [20] with our method for (i) Consensus,
(ii) I-Rössler, (iii) N-Rössler, and (iv) Kuramoto dynamics on
random [21], small-world [22], scale-free model networks [23],
and six real-world networks: network of political book purchases
(Book) [24], friendship network of karate club (Karate) [25],
network of American football games among colleges (Football)
[26], electric circuit networks (Elec. Cir.) [27], dolphin social
network (Dolphins) [28], and the neural network of C. Elegans
(C. Elegans) [22]. The noise strength is �2 ¼ 2. For the non-
identical Rössler system, ! ¼ ½0:8; 1:2� and for the Kuramoto
dynamics, ! ¼ ½0; 0:2�. Other parameters of model networks are
the same as Fig. 1.

SREL/SRNL Consensus I-Rössler N-Rössler Kuramoto

Random 1:00=1:00 1:00=1:00 0:995=1:00 0:977=0:999

Small-world 0:993=1:00 0:988=1:00 0:979=1:00 0:982=1:00

Scale-free 0:995=1:00 0:990=1:00 0:980=1:00 0:978=1:00

Book 0:971=1:00 0:977=1:00 0:964=1:00 0:967=1:00

Karate 0:962=1:00 0:962=1:00 0:936=1:00 0:949=1:00

Football 0:938=1:00 0:932=1:00 0:928=1:00 0:927=1:00

Elec. Cir. 0:976=1:00 0:973=1:00 0:971=1:00 0:965=1:00

Dolphins 0:984=1:00 0:981=1:00 0:984=1:00 0:973=1:00

C. Elegans 1:00=0:997 1:00=0:996 1:00=0:997 0:993=0:997

TABLE II. SREL with our method for consensus and
N-Rössler dynamics on random, small-world, scale-free net-
works with different average degree hki. SRNL for all cases
are 1.000 (not shown). Parameters are the same as Table I.

SREL Consensus N-Rössler

hki 8 10 12 8 10 12

Random 0.986 0.993 0.996 0.975 0.984 0.989

Small-world 0.952 0.977 0.993 0.935 0.966 0.977

Scale-free 0.986 0.995 0.997 0.964 0.980 0.987
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In conclusion, we have discovered a general relation
between the dynamical correlation among oscillators and
the underlying topology in the presence of noise. The
correlation matrix is inversely proportional to the
Laplacian matrix that contains full information about the
network structure. Reconstruction of the full network to-
pology based on time series then becomes possible, par-
ticularly for undirected networks. We have provided strong
numerical support by using four types of nodal dynamics
together with several model and real-world network struc-
tures. We find that the full network topology can be pre-
dicted with high success rate and efficiency for all
considered cases. Besides high success rates, advantages
making our method attractive and powerful include gen-
erality for a variety of nodal dynamics and network struc-
tures, validity in the existence of weak coherence,
applicability in the absence of knowledge about nodal
dynamics, and no need to control nodal dynamics as in
some existing method. We hope that our method can be
widely applied for inferring network structures and inspire
further research towards the understanding of noise effects
on networked dynamical systems.
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