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Recent work has revealed that success-driven migration can promote cooperation among selfish individuals
in evolutionary games. This migration mechanism relies, however, on nonlocal information about the states of
the individuals and their computational capabilities for prediction. We investigate the role of adaptive migra-
tion in cooperative behavior in the framework of spatial game by proposing an alternative migration strategy
that requires only local information obtainable through game interactions. Our results demonstrate that adap-
tive migration can be effective in promoting cooperation in two ways. First, there exists an optimal degree of
migration associated with the density of empty sites and migration speed, which leads to the highest level of
cooperation. Second, adaptive migration can induce an outbreak of cooperation from an environment domi-
nated by defectors. These findings hold for common types of evolutionary games that involve pairwise
interactions.
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I. INTRODUCTION

Cooperation is a fundamental phenomenon in a variety of
biological, social, and economical systems that involve a
large number of interacting individuals �1–5�. The emer-
gence of cooperation among selfish individuals has been an
interesting problem, partly due to the well-known social di-
lemma that disfavors cooperation. Evolutionary games have
been an effective framework to address the conflict between
the interests of selfish individuals and cooperation �6–9�.
Two types of games that are commonly used in this context
are the prisoners’ dilemma game �PDG� and the snowdrift
game �SG� �10�. For both types of games, when all the indi-
viduals cooperate, a steady state can arise where the collec-
tive interest of all individuals is realized. But for a well
mixed ensemble of individuals, defection can always bring in
temporarily high payoffs, so individuals tend to take on this
strategy. When a sufficient number of individuals choose to
defect, the state of cooperation becomes unstable. This
would suggest that cooperation cannot be expected in com-
plex systems, the essence of the aforementioned social di-
lemma. To explore fundamental mechanisms for cooperation
has thus become an interdisciplinary topic of broad interest.
So far, a number of mechanisms have been explored, includ-
ing repeated interactions �1�, spatial extensions �11�, reci-
procity �12�, strategic complexity �13�, adaptive network
�14�, memory effects �15�, partially random contacts �16�,
teaching activity �17�, and social diversity �18�.

Quite recently, a new mechanism for stabilizing and sus-
taining cooperation has been discovered, which is based on
the idea of success-driven migration in evolutionary games
occurring on spatially extended environments �19�. The basic
hypothesis in �19� is that individuals tend to migrate to avail-
able spatial sites that can potentially bring in better payoff.
This can be regarded as an adaptive migration, in contrast to
random movement �20,21�. In particular, an individual ex-
plores the possible payoffs for empty sites, and move to the
empty site in a neighborhood area with the highest expected

payoff provided that it is higher than the current payoffs of
the individual. This behavior can be regarded as “fictitious
play.” As a result, cooperators are driven to form clusters that
are stable and resilient to the invasion of defectors, and co-
operation can be considerably enhanced, compared to the
situation of random migration �21�. The main finding in Ref.
�19� is that, when such migration is allowed in a noisy envi-
ronment, cooperation can emerge even in spatial regions that
are surrounded by defectors. This is quite significant, consid-
ering that migration is a central feature in real ecosystems
and in human societies.

To realize the “fictitious play,” nonlocal information is
required, such as the states of players around empty sites
which, however, may not be available. For example, if an
individual wants to identify better neighboring sites to mi-
grate into, information about the players in the neighbor-
hoods of these sites is needed, which usually cannot be ob-
tained directly through game interactions. To obtain such
information in real times, additional channel beyond the
framework of evolutionary game theory and intensive com-
putations may be required. At the present, the interplay be-
tween adaptive migration and cooperation in spatial games is
far from being well understood, a situation different from
games on adaptive networks, a relatively well-developed
area �14�.

A basic question is then whether cooperation can be fa-
cilitated by adaptive migration when only local information
is available to any individual. The purpose of this paper is to
address this issue by proposing an adaptive migration strat-
egy with the restrictions of local-information availability and
limited computational power. Under these constraints, indi-
viduals can perform an adaptive movement in order to gain
higher payoffs or enhance their fitness. Based on local infor-
mation, individuals can evaluate the advantages and disad-
vantages of their current sites by simply counting the number
of neighboring cooperators and defectors. Note that individu-
als can always gain more payoffs from playing with coop-
erators than selfish defectors, regardless of their own strate-
gies. The desire of playing with cooperators instead of
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defectors can be a driving force of population mobility, be-
sides success-driven migration �19�. For example, if an indi-
vidual is in an environment surrounded by defectors, the in-
dividual tends to move to possibly gain higher benefit. In
contrast, if an individual’s neighbors are cooperators, the in-
dividual would prefer not to migrate. In ecosystems, the
number of neighboring defectors can be a way to measure
the “risk” of a site and species have the natural tendency to
evade dangerous places or situations. This critical piece of
information can, however, be obtained through gaming inter-
actions with neighboring individuals of the target site. This
migration strategy thus distinguishes our work from that in
Ref. �19�. The migration probability can then be assumed to
be governed by the relative numbers of defecting and coop-
erating neighbors. We shall use both PDG and SG and focus
on the effect of population density on cooperation. Our find-
ings are that adaptive migration can generally lead to highest
level and outbreak of cooperation. We develop a phenomeno-
logical understanding by examining the organization of spa-
tial patterns emerging from the dynamics of evolutionary
games.

In Sec. II, we introduce a model to incorporate adaptive
migration in spatial games. In Sec. III, we present results of
optimal cooperation based on the density of empty sites and
spatial patterns. In Sec. IV, we demonstrate the occurrence of
outbreak of cooperation in our model. In Sec. V, we discuss
the effect of migration speed on cooperation. We finally con-
clude the work in Sec. VI.

II. SPATIAL GAMES WITH ADAPTIVE MIGRATION

For a typical two-player evolutionary game �PDG or SG�
on a spatial domain, individuals occupy sites of a square
lattice. Each individual can choose to cooperate �C� or defect
�D�, and the evolutionary dynamics is described by the fol-
lowing payoff matrix:

C D

C

D
�R S

T P
� ,

�1�

where the matrix elements represent the payoffs for the play-
ers in the row, R is the reward for mutual cooperation, P is
the punishment for mutual defection, T is the temptation to
defect, and S is the sucker’s payoff. A PDG differs from a SG
in the ordering of payoff values. In particular, for PDG, the
payoff ranking is T�R� P�S and it is T�R�S� P for
SG. For concreteness, equivalent rescaled payoff matrices
for the two types of games can be used �11�: for PDG, we
have R=1, S=0, T=b, and P=0; for SG, we have R=1, S
=1−r, T=1+r, and P=0. Each game is thus controlled by a
single parameter: b for PDG �1�b�2� and r for SG �0
�r�1�.

We start the evolutionary game by placing N individuals
on a square lattice of L�L sites with periodic boundary
conditions. Each site can be either empty or occupied by one
individual. Empty sites represent spatial regions that indi-
viduals can migrate into. In our simulations, the fraction of
empty sites is d0. The population density is given by 1−d0.

Individuals are updated asynchronously in a random sequen-
tial order by two processes at each time step: migration and
strategy updating. During the migration, we randomly select
an individual. To decide the site to move into, the chosen
individual counts the number of defectors in its own neigh-
borhood, nD. After that, the individual moves to an empty
site with the probability nD /4. If there are more than one
empty site, one is selected randomly. If all neighboring sites
are empty, one is selected randomly for the individual to
migrate into. After the migration, with probability 1−�, the
individual updates its strategy by comparing its payoff with
its neighbors’ payoffs resulted from all game interactions.
The individual is allowed to imitate the strategy with the
highest score among the individual itself and its immediate
neighbors �11�. With probability � ���1�, the individual
randomly reset its strategy. Here � characterizes the effect of
environmental noise or uncertainty in decision making.

III. COOPERATION INDUCED BY MIGRATION

In our simulations, initially nonempty sites are occupied
by defectors or cooperators randomly, and �C is the ratio of
the number of cooperators over the total number of individu-
als. Our computations reveal that the density of empty sites,
or equivalently, the population density in the system, can
affect the emergence of cooperation for both PDG and SG.
For d0=0, there is no migration. As d0 is increased from
zero, �C can increase. The dependence of the cooperation
level on both d0 and the temptation-to-defection parameter is
shown in Figs. 1�a� and 1�c� for PDG and SG, respectively.
We find that the �C can be maximized when d0 reaches some
optimal value, as shown in Fig. 1�b� for PDG and Fig. 1�d�
for SG.
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FIG. 1. �Color online� Color-coded values of �C for �a� PDG in
the �d0 ,b� parameter space and for �c� SG in �d0 ,r� space. The color
scale is linear. Panels �b� and �d� show the optimal value of d0

associated with the maximum value �C as a function of b for PDG,
and of r for SG, respectively. The lattice size is 50�50. The quan-
tity �c is obtained by averaging over 1000 time steps after 9000
time steps for one realization and each data point is averaged over
1000 different realizations. We have examined that after 9000 time
steps, the value of �c is stabilized.
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We note that for low densities of empty sites, our adaptive
migration strategy based on local information can lead to a
high cooperation level, which is similar to the results from
the migration strategy based on nonlocal information as pro-
posed by Herbing and Yu �19�. For high densities of empty
sites, e.g., d0�0.8, the migration strategy based on nonlocal
information can lead to stronger cooperation than our adap-
tive migration. This is due to the fact that the availability of
nonlocal information favors communication among sparsely
dispersed individuals, so the aggregation of individuals and
the formation of cooperator clusters become more likely in
the presence of nonlocal-information based migration. While
requiring no cost of acquiring nonlocal information, our mi-
gration strategy cannot induce the formation of cooperator
cluster for very low population densities. Since cooperator
clusters are key to sustaining cooperation, the nonlocal-
information based migration strategy tends to better promote
cooperation for low population densities.

An analytic understanding of the phenomenon of optimal
cooperation induced by adaptive migration appears difficult
at this time. We thus seek to explain the phenomenon quali-
tatively, with the aid of numerical simulations. For example,
we have examined the spatial patterns after the system
reaches a steady state, as shown in Fig. 2. For low values of
d0 �e.g., Fig. 2�a��, the patterns are similar to those in the
original spatial game in the absence of migration where co-
operators form small clusters to resist the invasion of defec-
tors �22�. Some empty sites are interspersed in the spatial
structure. For large values of d0 �e.g., Fig. 2�c��, cooperators
aggregate into a few clusters while defectors disperse in the
ocean of vacant sites. Because of the availability of space for
migration, the boundary of cooperator clusters can be trans-
formed under the aggression of defectors. For the optimal
value d0=0.4 �Fig. 2�b��, cooperators are interconnected and
form one large cluster that nearly fills the entire spatial do-

main. Defectors can hardly survive in the interspatial sites
among cooperators. We have also calculated the distribution
of normalized cluster sizes for different values of d0, which
is defined as SC=NC /Np, where NC is the number of coop-
erators in a cluster and Np is the number of individuals in the
system. Figure 2�d� shows the probability distribution of SC.
We see that for d0=0.4, there is an appreciable probability
for large clusters of cooperators to emerge. This indicates
that an appropriate population density can facilitate the for-
mation of large cooperator clusters. Theoretically, how adap-
tive migration promotes the formation of cooperator clusters
is an open question.

A related question is whether the migration mechanism is
effective to resist erosion of cooperator clusters by a small
number of defectors embedded within. To address this, we
study the evolution of spatial patterns for situations where a
small number of defectors are initially embedded in a large
cluster of cooperators. To assess the effectiveness of adaptive
migration, we shall compare with the case of random migra-
tion, as shown in Fig. 3�a�. We observe that defectors can
erode cooperators from inside and randomly moving coop-
erators fail to form compact clusters. Only a few filamentlike
clusters are aggregated. Ultimately, defectors dominate the
population. In contrast, for adaptive migration, as shown in
Fig. 3�b� for d0=0.4, the number of defectors increases only
at the early stage of evolution, while cooperators tend to
move away from the defectors. After the rising of some com-
pact cooperation clusters, defectors are overwhelmed by co-
operators. Due to the appearance of empty sites between co-
operators and defectors as a result of migration, defectors
cannot gain enough profits from neighbors and thus become
vulnerable to nearby cooperators. As a result, cooperators
tend to dominate eventually. Comparing Fig. 3�a� with Fig.
3�b�, we see that adaptive migration can be effective for
forming cooperator clusters, but random migration tends to
favor defection.

FIG. 2. �Color online� For b=1.4 in PDG, typical snapshots of
spatial patterns of cooperators and defectors on a 50�50 square
lattice obtained for different value of d0. The color coding is as
follows: green �light gray� represents a cooperator; blue �dark gray�
represents a defector; white represents an empty site. Panels �a�–�c�
correspond to d0=0.1, d0=0.4, and d0=0.8, respectively. Panel �d�
displays the probability distribution of SC, the normalized sizes of
various cooperator clusters. The distribution of SC is obtained from
5000 time steps after 10 000 time steps for one realization, and
1000 different realizations are carried out.

FIG. 3. �Color online� Evolution of spatial patterns for different
values of vacation density d0 for PDG on a 50�50 square lattice.
The color coding is as follows: green �light gray� represents a co-
operator; blue �dark gray� represents a defector; and white repre-
sents an empty site. The four panels in �a� are snapshots of different
time steps for d0=0.4 with random migration. With adaptive migra-
tion, snapshots of patterns at different time are shown in �b�–�d� for
d0=0.4 �approximately the optimal value�, d0=0.1, and d0=0.8,
respectively.
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Figures 3�c� and 3�d� provide an explanation as to why
the density of vacant sites can affect the degree of coopera-
tion in a significant way. In particular, in Fig. 3�c�, compact
cooperator clusters are formed associated with the increase
of defectors. However, due to the limited number of empty
sites, cooperators inside the large cluster can hardly move so
that no empty sites can arise between cooperators and defec-
tors. Despite the ability for cooperator clusters to resist the
invasion of defectors, they can exploit nearby cooperators to
gain much payoff and thus are not outperformed by coopera-
tors. This restriction in migration precludes the aggregation
of large cooperator clusters to sustain cooperation. On the
other hand, when there is a large number of empty sites, as
shown in Fig. 3�d�, cooperators have many choices for mi-
gration so that their chances to meet and form compact clus-
ters during the migration are small. Cooperators are erode by
nearby defectors gradually and become extinct ultimately.
Defection is favored again when the density of vacant sites is
large.

For random migration and adaptive migration with high
density of empty sites, the cooperation density �c can be
understood through a mean-field analysis. In both cases, in-
dividuals can be assumed to be well mixed and the evolution
of �c can be expressed as

��C

�t
= �C�1 − �C − d0��sgn�MC − MD� − sgn�MD − MC�� + � ,

�2�

where MC and MD denote the payoffs of cooperators and
defectors respectively, and sgn is a sign function. The mean-
field approximation yields MC=4�C and MD=4b�C, we thus
have

��C

�t
= − 2�C�1 − �C − d0�sgn�4�C − 4b�C� + � � 0, �3�

which indicates that �C will go to zero for random migration
on lattice. This analysis agrees with numerical simulations
that for random migration or adaptive migration with high
density of empty sites, and �C tends to assume near-zero
values asymptotically.

IV. OUTBREAK OF COOPERATION

Our computations reveal the phenomenon of spontaneous
outbreak of cooperation induced by local-information based
adaptive movement. Similar to Ref. �19�, defectors are set to
be the exclusive strategy at the beginning. After a period of
time that depends on the density of empty sites, cooperation
arises abruptly. The phenomenon is exemplified using PDG,
as shown in Figs. 4�a�–4�c� for three different values of d0.
In all three cases, we observe a sudden emergence of a large
number of cooperators at some critical time. The formation
of cooperator clusters can be effective in resisting invasion
of defectors at boundaries and protecting cooperators. The
dependence of steady density �c of the emergent cooperation
on d0 is exhibited in Fig. 4�d�. This finding is consistent with
that associated with evolution from well mixed population. A
quantity that can be used to quantify the degree or the

strength of outbreak of cooperation is the average transient
time toutbreak before outbreak occurs. Without loss of gener-
ality, toutbreak is defined to be the time for the cooperation
density �c to reach a large value, say 0.5. In a simulation run,
if �c cannot exceed the value, �toutbreak� is set to be �. In Fig.
4�e�, the strength of outbreak of cooperation is quantified by
�toutbreak� /n, where n is the number of random realizations in
which outbreak occurs, and �toutbreak� is obtained by averag-
ing over all realizations for which outbreak occurs. Thus the
lower the value of �toutbreak� /n, the more prevalent outbreak
is. The boundary of outbreak region can then be defined by
the abrupt transition of �toutbreak� /n in Fig. 4�e�. The outbreak
region is displayed in Fig. 4�d� in gray. It is noteworthy that
outbreak of cooperation can arise even though the average
value of �c is less than 0.5, as shown in Fig. 4�d�. This is
because the boundary is defined by the sharp transition of
�toutbreak� /n and the boundary of outbreak means that the
probability of occurrence of outbreak inside the outbreak re-
gion close to the boundary is much higher than that outside
the outbreak region close to the boundary. These results dem-
onstrate that suitable density d0 can promote the outbreak of
cooperation, and outbreak never occurs for both too small
and too large values of d0.

To understand the occurrence of outbreak for intermediate
values of d0, it is useful to analyze two limits, d0=0 and
d0→1. For d0=0, individuals cannot move, cooperator clus-
ters can be hardly established, so that toutbreak /n→�. In the
opposite limiting case �d0→1�, individuals are nearly sur-
rounded by empty sites and movement becomes purely ran-

FIG. 4. �Color online� For PDG with parameters L=50 and b
=1.4, evolution of pattern and cooperation fraction with time: for
�a� d0=0.1, �b� d0=0.4, and �c� d0=0.6. The color coding is as
follows: green �light gray� represents a cooperator; blue �dark gray�
represents a defector; and white represents an empty site. Fraction
of cooperation and average outbreak waiting time as a function of
empty sites’ density d0 are shown in panels �d� and �e�, respectively.
Results are obtained by averaging over 1000 independent
realizations.
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dom, so cooperation is not favored according to the mean-
field analysis. Thus, there should be an optimal value d0 that
leads to a maximum degree of cooperation. Our finding re-
veals that outbreak of cooperation is a robust phenomenon in
the presence of adaptive movement, even when the dynamics
of game is based on local information only so that the pre-
dicted payoff of empty sites is not available �19�.

V. SPEED OF MIGRATION

We have also generalized our model to investigate the
effect of migration speed on cooperation by assigning differ-
ent time scales to both strategy evolution and migration in
terms of a parameter p �21�. At each time step, individuals
migrate with probability p, and play games with probability
1− p. By increasing the values of p, migration speed is in-
creased. For p=0.5, the speed of migration is locked to the
speed of strategy evolution, recovering the model in Sec. II.
We observe that the migration speed p associated with d0 has
a great influence on cooperation �c. As shown in Fig. 5�a�,
for large values of p, for instance p=0.9 and p=0.95, �c
decreases as d0 increases. For small values of p, �c can be
maximized by d0 for different values of p. The dependence
of �c on p for different values of d0 is shown in Fig. 5�b�. We
see that suitable value of p can lead to highest �c for different
values of d0 as well. These results indicate that an appropri-
ate combination of migration speed and density of empty
sites can lead to optimal cooperation.

Another interesting phenomenon observed in Fig. 5�b� is
that there exists a sharp transition from domination of coop-
eration to nearly extinction of cooperators at about p=0.85.
This transition can be understood intuitively by examining
the spatial patterns, as displayed in Fig. 6. Without loss of

generality, we select two values of p right before and after
the transition, e.g., p=0.84 and p=0.86, with fixing d0=0.3.
In Fig. 6, initially individuals are randomly distributed for
both cases. After a short period of time, e.g., t=50, due to the
effect of adaptive migration, some cooperator clusters are
aggregated in both cases. Note that the number and the sizes
of the cooperator clusters are similar for both cases. How-
ever, after the formation of cooperator clusters, two different
evolution paths arise. In particular, for p=0.84, cooperator
clusters gradually expand and eventually occupy the whole
lattice, while for p=0.86, cooperator clusters shrink and fi-
nally disappear, and almost no cooperators survive at t
=10 000. The factor that causes the distinct evolution paths
lies in the attacks from defectors around cooperators after the
formation of the cooperator clusters. Cooperators within
clusters are relatively immobile but the defectors around
them are active and attempt to invade the clusters. The
strength of the invasion is determined by the contact fre-
quency of defectors with the clusters, which is determined by
the migration speed. As a result, for low migration speed,
e.g., p=0.84, cooperator clusters can successfully resist the
invasion of defectors and, due to adaptive migration, can
expand. On the contrary, for high migration speed, e.g., p
=0.86, the invasion is too strong to be defended, resulting in
extinction of cooperators. The present scenario is analogous
to water confinement by a dam: if the dam is sufficient solid,
water can be contained; otherwise, the dam breaks and water
is lost. There will be no intermediate state between the two
states. This explains the sharp transition in Fig. 5�b�.

VI. CONCLUSION

In summary, we have proposed the mechanism of adap-
tive migration to achieve effective cooperation in evolution-
ary games occurring on spatially extended scales. Adaptive
migration can be realized based solely on local information
obtainable through game interactions, which may be less re-
stricted than the recently proposed success-driven migration
mechanism �19�. Our main finding is the existence of some
optimal degree of migration �or population density� for co-
operation to be maximized, and this property appears to hold
regardless of the type of games �e.g., SG or PDG�. The op-
timal degree of migration depends on both the migration

FIG. 5. �Color online� For PDG, �a� fraction of cooperator �C as
a function of the density of empty sites d0 for different probability
p, and �b� fraction of cooperation �C as a function of the probability
p for different density of empty sites d0. In both cases, the model
parameters are L=50 and b=1.2.

FIG. 6. �Color online� Evolution of pattern with time for p
=0.84 �top� and p=0.86 �bottom�, d0=0.3. The color coding is as
follows: green �light gray� represents a cooperator; blue �dark gray�
represents a defector; and white represents an empty site. In both
cases, the model parameters are L=50 and b=1.2.
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speed and the density of empty sites. Our simulation results
are consistent with analysis based on the mean-field theory.
We have gained a qualitative understanding by examining
the evolution of spatial patterns, revealing that an appropriate
combination of the density of empty sites and migration
speed can lead to the aggregation of cooperation clusters that
play the key role in promoting and sustaining cooperation.
Our computations have indicated that adaptive migration can
be effective to counter erosion of defectors embedded inside
cooperator clusters. Another finding is the outbreak of coop-
eration from an environment of defectors in a wide range of
values of the density of empty sites. These results suggest

adaptive migration as a general mechanism for the emer-
gence of cooperation in complex dynamical systems.
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