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The dynamics of two-phase flows have been a challenging problem in nonlinear dynamics and fluid me-
chanics. We propose a method to characterize and distinguish patterns from inclined water-oil flow experiments
based on the concept of network motifs that have found great usage in network science and systems biology.
In particular, we construct from measured time series phase-space complex networks and then calculate the
distribution of a set of distinct network motifs. To gain insight, we first test the approach using time series from
classical chaotic systems and find a universal feature: motif distributions from different chaotic systems are
generally highly heterogeneous. Our main finding is that the distributions from experimental two-phase flows

tend to be heterogeneous as well, suggesting the underlying chaotic nature of the flow patterns. Calculation of
the maximal Lyapunov exponent provides further support for this. Motif distributions can thus be a feasible
tool to understand the dynamics of realistic two-phase flow patterns.
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I. INTRODUCTION

Oil-water two-phase flow is commonly observed in well
bores, and its behaviors under a wide range of flow condi-
tions and inclination angles constitute an outstanding inter-
disciplinary problem with significant applications to the pe-
troleum industry. Understanding the dynamics of flow
patterns is crucial to important problems such as predicting
the pressure drop in inclined oil wells. Due to the interplay
among many complex factors such as fluid turbulence, phase
interfacial interaction, local relative movements between
phases, and the existence of a gravitational component nor-
mal to the flow direction, an inclined oil-water flow exhibits
highly irregular, random, and unsteady flow structure as
compared with a vertical two-phase flow.

Earlier investigations of inclined oil-water two-phase flow
were mainly focused on experimental observations. For ex-
ample, Hill and Oolman [1] observed, in a 152-mm-inner-
diameter (ID) pipe, a kind of segregated flow patterns where
the water phase exists in most of the pipe but the flow tends
to reverse near the bottom of the pipe. They observed that a
small change in the deviation angle can cause a large change
in the velocity profile distribution. Vigneaux et al. [2] mea-
sured the inclined oil-water flows in a 200-mm-ID pipe by
using a high-frequency impedance probe and observed the
occurrence of two main flow patterns: dispersed oil in water-
pseudoslug (PS) flow and in water-countercurrent (CT) flow.
Flores et al. [3] conducted a comprehensive experimental
study of vertical and inclined oil-water flows with a 50.8-
mm-ID pipe, and classified seven flow patterns in inclined
oil-water flows with four water-dominated, two oil-
dominated, and a transitional flow (TF) pattern.

In the 1990s, numerical simulation methods began to be
widely used in the study of inclined oil-water flows. For
example, Mobbs and Lucas [4] proposed, for inclined liquid-
liquid flow, a large-amplitude turbulence model that incorpo-
rates qualitatively Kelvin-Helmholtz eddy characteristics.
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They found that the eddies grow and collapse periodically
and their amplitudes can reach the value of the pipe diameter.
Lucas [5] proposed a mathematical model of velocity profile
for inclined oil-water flows, where predictions of local ve-
locities agree with experiments but only for the upper and
central parts of the pipe. Lucas and Jin [6,7] studied a drift-
velocity model and homogeneous velocity measurement in
inclined oil-water pipe flows, and demonstrated that the
phase-distribution parameter and single-droplet terminal rise
velocity can be greatly affected by inclination angles.

Despite the existing results, significant challenges in the
study of oil-water two-phase flow remain. For example, de-
tecting transitional flow is still an unsolved problem. Due to
the complexity of the problem, analytical approaches are
usually infeasible. The approach of nonlinear time series
analysis [8] also has severe limitations as applied to oil-water
two-phase flows, mainly due to the occurrence of CT flow
pattern triggered by the gravitational component normal to
the flow direction. In particular, in Ref. [9]. we pointed out
that, although dispersion oil-in-water PS and CT flows can
be distinguished by the methods of recurrence plot [10,11]
and attractor-geometry morphological mapping [12], these
methods appear to be ineffective for transitional flows. So far
there has been no satisfactory understanding of the underly-
ing dynamics leading to the formation and governing the
evolution of patterns in such flows.

Quite recently, the approach of complex networks has
been introduced into the study of two-phase flows [13], in-
spired by the general approach [14-21] of mapping time
series to complex networks which are capable of character-
izing many types of systems in nature and technology that
contain a large number of components interacting with each
other in a complicated manner [22-29]. In particular, in Ref.
[14], Zhang and Small found that noisy periodic signals cor-
respond to random networks and chaotic time series tend to
generate small-world and scale-free network features. Bridg-
ing time series analysis and complex networks can be an
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appealing approach for experimental data analysis and pat-
tern recognition. Based on experimental measured time se-
ries from a two-phase flow, an artificial network can be con-
structed. Global features of the network, such as the degree
distribution and community structures, can then be exploited
to characterize the dynamical states of the flow [13]. The
global characterization, however, totally ignores any local
structural properties of the reconstructed network, which
may contain important information about the underlying dy-
namics. It is thus of interest to develop an approach taking
into account local structures in the reconstructed network.

In this paper, we exploit the concept of network motifs
[30,31] to characterize two-phase flow patterns. Network
motifs have been found to be fundamental to gene regulatory
networks in systems biology [32] and are also useful for
characterizing networks from other disciplines [17,33,34].
Our study is inspired by Ref. [17] which reported that distri-
butions of subgraphs in complex networks transformed from
time series can characterize and distinguish different types of
continuous dynamics such as periodic, chaotic, and noisy
periodic dynamics. Here, we develop a different network
construction approach and apply it to experimental two-
phase flows to identify different flow patterns in terms of
motif distributions. Specifically, given a set of time series
from a two-phase flow, typically conductance fluctuating sig-
nals from some inclined oil-water two-phase flow experi-
ment, our first step is to reconstruct phase-space complex
networks (PSCNs) using the general method developed in
Ref. [35]. We then search for possible motifs from the recon-
structed network and calculate their distributions. Our main
result is that motif distributions do exist in the reconstructed
networks and, strikingly, they tend to be highly heteroge-
neous, a feature that has been found to be common for
PSCNs constructed from low-dimensional deterministic cha-
otic systems. The motif distribution can thus faithfully rep-
resent the distinct dynamical states of the two-phase flow.
For example, when a transition in the flow pattern occurs, a
characteristic change in the motif distribution arises. Our re-
sults suggest that motif distribution can potentially be a pow-
erful tool for revealing the nonlinear dynamics of two-phase
flows.

In Sec. II, we outline the basic procedure of reconstruct-
ing PSCNs from measured time series and illustrate how
network motif distribution can be obtained to characterize
typical deterministic chaotic systems. In Sec. III, we describe
our inclined oil-water experimental flow loop facility and
data acquisition method. We then construct PSCNs from con-
ductance fluctuating signals and demonstrate that motif dis-
tributions are heterogeneous and can be used to distinguish
flow patterns in different dynamical regimes. In Sec. V, we
present conclusions.

II. RECONSTRUCTION OF PHASE-SPACE COMPLEX
NETWORKS FROM TIME SERIES AND MOTIF
DISTRIBUTIONS

Our method [13,35] to construct a complex network from
measured time series can be described as follows. Given a
time series z(ir) (i=1,2,...,M), where t is the sampling in-
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terval and M is the sample size, we construct a sequence of
phase-space vectors according to the standard delay-
coordinate embedding method [36-38],

X= {x(1),x4(2), ... . xi (m)}
={z(kt),z(kt + 7), ..., z(kt + [m - 1]7)}, (1)

where 7 is the delay time, m is the embedding dimension,
k=1,2,...,N, and N=M—-(m—1)7/t is the total number of
vector points in the reconstructed phase space. There are
various empirical criteria for choosing the delay time 7, and
we have used a correlation-integral-based method (see, e.g.,
Ref. [39]) for this purpose. For the choice of the embedding
dimension, there exists a rigorous mathematical criterion
[36,38]. For noisy time series it is convenient to use some
heuristic criterion such as the one based on distinguishing
false nearest neighbors (FNNs) [40] in the reconstructed
phase space. The FNN method can generate a minimum em-
bedding dimension m that ensures unfolding of orbits in the
phase space, so that there are no false nearest neighbors for
every orbit point. In contrast, if the embedding dimension is
less than m, orbits in the phase space cannot be fully un-
folded. After m is determined, we employ the correlation-
integral-based algorithm [39] to determine 7. We note that if
7 is too small, the reconstructed attractor can be compressed
along the identity line and, if 7 is too large, trajectories on
the attractor may become disconnected. Our choice of 7
avoids these undesirable situations.

To construct a network, we regard each vector point as a
node and use the phase-space distance to determine the

edges. Given two vector points fi and X, the phase-space
distance is defined to be

m

dij= 2 Xi(n) - X;(n)
n=1

. 2)

where X;(n)=z[i+(n—1)7] is the nth element of )?i. This gen-
erates, for all nodes (vector points) in the network, a distance
matrix D=(d,;). By choosing a proper threshold value r.,
where a distance is regarded as one or zero if it is greater
than or less than r,, respectively, we obtain the adjacency
matrix A=(a;;),

1, if|dij| =r,
Aij = . (3)
0, ifld;|>r..
Thus, an edge connecting node i and j exists if |dy|=r,
while there is no edge between i and j if |d;;|>r.. The to-
pology of the reconstructed PSCN is determined entirely by
A.

A key issue in extracting network from deterministic cha-
otic time series is then the choice of the threshold r,. In this
regard, the method of choosing the threshold presented in
Ref. [35] is effective for small-size networks. For large net-
works, the method can result in unrealistic values of the
threshold, leading possibly to loss of information about the
local phase-space or motif structure. Take, for example, net-
works reconstructed from chaotic systems. We are interested
in exploring the interplay between network motifs and the
fundamental building blocks of chaotic set: unstable periodic
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orbits (UPOs). In order for UPOs to be represented ad-
equately, the measured time series need to be long, resulting
in large phase-space networks. In particular, for a chaotic
attractor, a typical trajectory tends to approach different
UPOs in different times, which constitute the “skeleton” of
the attractor. In the network representation, the UPOs are
effectively motifs that determine the cluster structure of the
network. In order to represent the cluster structure, it is nec-
essary that the reconstructed trajectory approach different
UPOs a number of times. It is thus useful to choose a some-
what larger threshold: we choose r. to be about 18—20 % of
the root-mean-square (rms) value of the measured signal. Tt
should be noted that in a recent method [17], for each phase-
space point (node), a fixed number of nearest neighbors are
chosen for defining connections. Our approach is different in
that we use a fixed threshold to construct networks for flows
of different patterns.

To illustrate the structure of PSCNs from typical chaotic
systems, we consider three classical examples: (1) chaotic
Lorenz system [41] given by x=16(y—x), y=x(45.92-z) -y,
and z=xy—4z; (2) driven Duffing oscillator described by x
=y, y=—-0.05y+0.5x—0.5x+7.5 cos(z), and z=1; and (3)
chaotic Rossler oscillator [42] defined by x=-y-x, y=x
+0.2y, and 7=0.2+(x—5.7)z. To visualize the PSCNs, we use
the Kamada-Kawai spring embedding algorithm [43]. The
results are shown in Fig. 1. For each example, we observe
some resemblance between the PSCN and the original cha-
otic attractor. After PSCNs are obtained, we employ the soft-
ware FANMOD to detect network motifs. The software is de-
veloped using the Wernicke algorithm proposed in Refs.
[44,45]. To be concrete, we focus on six different motifs of
size four (i.e., four nodes) and calculate their frequencies of
occurrence, as shown in Fig. 2. We observe a common fea-
ture among three examples: the motif distribution is highly
heterogeneous. For example, the frequencies of motifs A and
B are apparently much higher than those of others (e.g., mo-
tifs E and F). The heterogeneity originates from the UPOs
embedded in the chaotic attractor. It has been known that,
while the infinite set of periodic orbits embedded in a chaotic
set are all unstable, their stabilities as determined by the
corresponding largest eigenvalues are typically quite hetero-
geneous. In fact, a small set of UPOs can be significantly less
unstable than the others. In the phase space, a UPO appears
as a closed loop. A chaotic trajectory tends to spend substan-
tially more time near weakly unstable orbits. As a result,
there can be many recurrences near such a UPO, giving rise
to a cluster in the corresponding PSCN, as can be seen from
Fig. 1 and 2. We have also tested numerically that the motif
distributions are robust with respect to variation in the net-
work size, insofar as there are at least a few thousands of
nodes.

Will weak noise affect the heterogeneous nature in the
motif distribution of PSCN from chaotic time series? To ad-
dress this question, we add Gaussian white noise to the cha-
otic Rossler time series to generate two time series whose
signal-to-noise ratios (SNRs) are 20 and 10 dB, respectively.
We find that, for SNR=20 dB, the network structure and
motif distribution are essentially the same, as shown in Fig.
3(a). In particular, the strong heterogeneity in the motif dis-
tribution and the existence of motifs E and F are unchanged.
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(b)

FIG. 1. (Color online) PSCN of 2000 nodes from (a) Lorenz
system with m=3, 7=6, r.=2.285, and r=20; (b) Duffing system
with m=3, =7, r.=0.439, and t=100; and (c) Rossler system with
m=3, 7=7, r,=1.176, and t=200. The resulting networks are drawn
by the software UCINET and PAJEK [46,47].

For larger noise amplitude, i.e., SNR=10 dB, distortion in
the network structure arises, as shown in Fig. 3(b), but the
feature of heterogeneity still remains. It is noteworthy that
the presence of noise tends to suppress the heterogeneity of
motif distributions in PSCNs for chaotic systems, as demon-
strated in Fig. 3(b). In particular, under noise an unstable
periodic orbit may not close on itself and the transitions
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FIG. 2. (Color online) Motif distributions from the three chaotic

PSCNs in Fig. 1. The inset shows the motif distributions on loga-
rithmic scale.
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FIG. 3. (Color online) PSCN of 2000 nodes from Rossler cha-
otic time series corrupted by Gaussian white noise. (a) SNR
=20 dB and (b) SNR=10 dB.

among different orbits are randomized. The distribution of all
motifs will be influenced by the randomization but, statisti-
cally, the motifs with higher frequencies are influenced more
than those with lower frequencies. This can be understood by
noting that the distortions to individual motifs occur with
approximately the same probabilities, regardless of the motif
type. As a result, the motif with the highest frequency (motif
A) is much more sensitive to noise than other motifs, reduc-
ing considerably its absolute number. Despite this effect un-
der strong noise, for weak noise, the heterogeneous distribu-
tion of motifs appears to be robust, which can then be used
as a fingerprint for distinguishing chaotic time series.

In addition, we note that the ranking of six motifs for
chaotic time series is in agreement with that in Ref. [17],
except for the reverse order between motifs D and E. This
similarity illuminates that most motifs are insensitive to the
definitions of connections among nodes in the phase space,
either by fixing the number of nearest neighbors [17] or by
the current distance threshold. Nevertheless, the connecting
scheme plays an important role in the frequencies of motifs

—
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D and E, which can be used as a criterion for classifying
different dynamics [17]. However, the intensities of hetero-
geneity in motif distributions for different chaotic time series
are distinctly different from our method. In this regard, our
approach complements the approach in Ref. [17] for dynami-
cal pattern recognition.

III. EXPERIMENTAL FLOW PATTERN ANALYSIS BASED
ON NETWORK MOTIF DISTRIBUTION

A. Inclined oil-water two-phase flow experiment

The inclined oil-water two-phase flow experiment in a
125-mm-diameter pipe was carried out in the multiphase
flow loop laboratory in Tianjin University. The measurement
system consists of several parts: a vertical multielectrode ar-
ray (VMEA) conductance sensor (Fig. 4) that was specifi-
cally designed for the two-phase flow experiment [48], mini-
conductance probes, signal generating circuit, signal
modulating module, data acquisition device (PXI 4472 card,
National Instruments), and signal analysis software. The
measurement system uses a 20 kHz constant voltage (1.4 V)
sinusoidal wave to excite the flow. The signal modulating
module consists of three submodules: differential amplifier,
sensitive demodulation, and low-pass filter. The data pro-
cessing part is realized through graphical programming lan-
guage LABVIEW 7.1 embedded in the data acquisition card,
which can display, store, and analyze data wave forms in real
time.

Experiments were performed by initially introducing both
water and oil flows into the pipe. The water flow rate was
fixed and oil flow rate was gradually increased. Each time
when the ratio between the oil and water flow rates reached a
certain preset value, conductance fluctuating signals were ac-
quired from the VMEA sensor. In our experiment, the in-
clined angle was set to 45° and the water phase flow rate was
between 0.0057 and 0.3306 m/s and the oil phase rate was
from 0.0052 to 0.3306 m/s. The sampling frequency was 400
Hz and the sampling data recording time for one measuring
point was 60 s. Based on the flow pattern definition proposed
by Flores er al. [3], we have observed three different inclined
oil-water two-phase flow patterns in the experiment, as
shown in Fig. 5, i.e., CT, PS, and transitional flow patterns.

FIG. 4. (Color online) Experimental flow loop
facility and VMEA conductance sensor.

. Sensor

C

H, |

016210-4



MOTIF DISTRIBUTIONS IN PHASE-SPACE NETWORKS ...

Dispersion oil in
water-Pseudosliug

Dispersion oil in
water-Countercurrent

Transitional flow

FIG. 5. Experimentally observed flow patterns: from left to right
are PS, CT, and TF, respectively.

The conductance fluctuating signals corresponding to the
three flow patterns are shown in Fig. 6, where Uy, and U,
represent oil superficial velocity and water superficial veloc-
ity, respectively.

B. Two-phase flow PSCN and motif distribution

Figure 7 shows the PSCNs associated with the three dis-
tinct types of two-phase flow patterns. The respective motif
distributions are shown in Fig. 8. We observe a common
feature among the distributions: heterogeneity. The similarity
to the motif distributions from typical chaotic systems leads
us to speculate that the dynamics underlying the three flow
patterns may be chaotic. While the observed motif distribu-
tions all appear heterogeneous, the degrees of heterogeneity
are apparently different for different flow patterns, where the
transitional flow exhibits the most heterogeneous distribu-
tion. To give credence to our proposition that the dynamics
of two-phase flows are chaotic, we have computed the maxi-
mal Lyapunov exponent (MLE) from time series by using a
standard method [49]. The MLE is computed by abandoning
the first 1000 transient data points and using the following
10 000 data points. The estimate MLEs are 0.084 = 0.008,
0.055%0.003, and 0.037=0.003 for TF, CT, and PS flows,
respectively. All MLEs are positive, suggesting strongly the
chaotic nature of the underlying flows. More remarkably, the
flow with the largest value of MLE corresponds to the most
heterogeneous PSCN motif distribution.
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FIG. 6. Conductance fluctuating signals corresponding to PS,
CT, and TF patterns.
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(b)

FIG. 7. (Color online) PSCNs associated with three distinct
types of two-phase flow patterns: (a) PS flow (U,
=0.01899 m/s, U,,=0.006 15 m/s), (b) CT flow (U,
=0.098 13 m/s, U,,=0.006 05 m/s), and (c) transitional flow
(U,,=0.125 69 m/s, U,,=0.006 14 m/s). Each network is con-
structed by setting threshold r, to be 20% of the rms value of the
measured conductance fluctuating signal and contains 2000 nodes.

PS flow occurs at slightly higher superficial water veloci-
ties than those for CT flows. For low to moderate superficial
oil velocities, the sequence of oil droplets originally ob-
served in CT flow patterns is interrupted by water breaks,
with the oil droplets grouping closer and forming packs at
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FIG. 8. (Color online) PSCN motif distributions of three distinct
flow patterns (two signals for each flow pattern). The inset shows
the motif distributions in logarithmic scale.
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the top of the pipe (see Fig. 5). Due to the approximately
periodic switch between oil-plug and water-plug movements,
the flow also exhibits approximately regular dynamics to
some extent, leading to the smallest MLE value and, conse-
quently, to the weakest heterogeneity in the motif distribu-
tion as characterized by, e.g., low frequencies of occurrences
of motifs A and B as compared with those of the CT and
transitional flows.

CT flows appear for low to moderate superficial oil and
water velocities. In this flow pattern, oil disperses in the con-
tinuous water in the form of discrete well rounded droplets
of mostly small to medium size (see Fig. 5). Because of the
density difference between oil and water, the droplets pass
the upper regions of the pipe in an uninterrupted sequence
with nearly uniform vertical spread. The prominent charac-
teristic of CT flow patterns is the local countercurrent flow of
water, which usually occurs at the bottom side of the pipe.
The countercurrent phenomenon is due to the increasing
magnitude of the gravitational component in the direction
opposite to the main flow, which partially overcomes the
linear momentum of the water phase. Reflected in the motif
distribution, we observed that the frequencies of motifs A
and B increase as the flow pattern evolves from PS to CT.
Indeed, we find that the values of MLE for CT flows tend to
be larger than those for PS flows.

Transitional flows arise at moderate oil superficial veloci-
ties associated with low to moderate superficial water veloci-
ties, which appear in the regime between the water-
dominated and oil-dominated flow patterns. In the TF
regime, oil regions form at the top side of the pipe, while
water exists at the bottom of the pipe with a few recirculating
oil droplets. In the middle region the oil and water phases
appear alternatively as a continual phase (Fig. 5). TF patterns
thus appear more complex than PS and CT flows. Indeed, we
find that the values of the MLE associated with transitional
flows are generally larger. As can be seen from Fig. 8, the
motif distributions associated with the TFs are more hetero-
geneous than those with PS and CT flows.

We now provide the motivation for our network-
characterization method by comparing with the approach
proposed in Ref. [17], in which a fixed number of nearest
neighbors are selected for defining connections for each
phase-space node. In this scheme, different dynamical fami-
lies can be distinguished by the subgraph distributions. In
each family, e.g., a chaotic family, the subgraph distributions
of different chaotic systems overlap but the distributions dif-
fer among distinct families. Although the approach is effec-
tive for different types of dynamics, there is a need to de-
velop an alternative method to identify different dynamical
systems belonging to the same class, which can then be ap-
plied to experimental two-phase flows exhibiting similar cha-
otic features (e.g., with approximately the same MLEs). This
consideration motivates us to exploit network-construction
methods based on the distances among points (nodes) in the
phase space and motif distributions. The heterogeneity
present in the distributions for three types of flow patterns
demonstrates the effectiveness of our method in characteriz-
ing complex dynamics associated with two-phase flows.
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FIG. 9. (Color online) Dependence of (top) Lempel-Ziv com-
plexity and (bottom) approximate entropy on the oil superficial ve-
locity Uy, under different water superficial velocities U,,,, for three
flow patterns TF, PS, and CT.

IV. COMPLEXITY MEASURES

We investigate complexity measures to provide further
support for the effectiveness our motif-distribution-based
method in characterizing and distinguishing different flow
patterns. In particular, we use two measures: Lempel-Ziv
complexity and approximate entropy.

The Lempel-Ziv complexity was proposed for character-
izing stochastic time series [50,51]. Briefly, the measure
tends to unity for completely random sequences and zero for
regular and periodic signals (for details, see Refs. [50,51]).
The approximate entropy is a “regularity statistic” that quan-
tifies the unpredictability of fluctuations in a time series. In-
tuitively, it can be expected that the presence of repetitive
patterns of fluctuation in a time series renders it more pre-
dictable than a time series in which such patterns are absent.
The approximate entropy reflects the likelihood that ““simi-
lar” patterns of observations will be followed by additional
similar observations. The more repetitive patterns a time se-
ries contains, the smaller is the value of the approximate
entropy. The approximate entropy can be computed by fol-
lowing the processes detailed in Ref. [52].

Figure 9 shows the Lempel-Ziv complexity and the ap-
proximate entropy calculated from 39 conductance fluctuat-
ing signals of three flow patterns versus the oil superficial
velocity U,, for different values of water superficial velocity
U,,- It demonstrates that TF flows possess the highest degree
of complexity while PS flows have the lowest value, with
values from the CT flows lying in between, providing sup-
port for our results based on motif distributions in that more
heterogeneous distributions indicate behaviors associated
with higher values of the complexity measures.

V. CONCLUSIONS

Despite tremendous knowledge about fluid flows, our un-
derstanding of two-phase flows is still quite limited. We have
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proposed a scheme based on network motifs to characterize
and distinguish three typical two-phase patterns observed in
water-oil flow experiment. Given a measured time series
from a flow pattern, our idea is to construct a phase space
and then a network based on a distance metric, and examine
the frequency distribution of a number of network motifs.
The method is first validated by using classical chaotic sys-
tems and then applied to experimental two-phase flow pat-
terns. We find that the three most commonly occurring pat-
terns in two-phase flows all exhibit heterogeneous motif
distributions, mimicking those from chaotic systems. More
remarkably, the degrees of the heterogeneity in the distribu-
tion are distinctly different for the three types of flow pat-
terns, consistent with the Lyapunov-exponent estimates. We
have also computed two measures of complexity, Lempel-
Ziv complexity and approximate entropy, for the three types
of flow patterns and observed that flows with more hetero-
geneous motif distributions tend to have higher complexity
measures. These results suggest the power of network motifs
to characterize and distinguish complex flow patterns.

The last decade has witnessed a tremendous growth in the
study of complex networks, and network-based theories and

PHYSICAL REVIEW E 82, 016210 (2010)

methodologies have been increasingly applied to addressing
fundamental problems in many disciplines. Understanding of
inclined oil-water two-phase flows as a class of complex
nonlinear dynamical systems has remained to be poor. By
introducing the complex-network idea and proposing the
method of network motif distribution, we have obtained
other insights into the dynamics of two-phase flows, particu-
larly in terms of the transition from one pattern to another.
Network motifs have been a powerful tool in analyzing net-
work dynamics in other disciplines such as systems biology
[32], and we hope that the approach can also be useful for
other complex systems in science and engineering.
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