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We study how the clustering coefficient influences the evolution of cooperation in scale-free public goods
games. In games played by groups of individuals, triangle loops provide stronger support for mutual coopera-
tion to resist invasion of selfish behavior than that in the absence of such loops, so that diffusion of cooperative
behavior is relatively promoted. The feedback reciprocity mechanism of triangle plays a key role in facilitating
cooperation in high clustered networks.
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Evolutionary game theory provides a theoretical frame-
work to understand the evolution and maintenance of ubiq-
uitous cooperation in biological, economic and social sys-
tems �1�. In order to depict interactions among selfish
individuals, some meaningful game models are proposed,
where the public goods game �PGG� as the multiperson pris-
oner’s dilemma game is a common paradigm to characterize
group interactions �2�. In a typical PGG, all individuals can
choose to cooperate or defect. Cooperators contribute an
amount c to the public goods game, while defectors invest
nothing. The total contribution is multiplied by a factor r,
and redistributed uniformly among all players. It has been
known that for r�N, defectors will dominate the whole
population which results in the tragedy of the commons and
the free rider problem.

To escape the dilemma, a variety of mechanisms favoring
cooperation have been proposed, such as reward and punish-
ment �3�, voluntary participation �4,5�, etc. Since the pio-
neering work of Nowak and May �6�, the network reciprocity
as one of the significant cooperation mechanisms has been
extensively investigated �7�. Szabó and Hauert have studied
the voluntary participation in PGG on a square lattice and
found that the presence of loners leads to a cyclic dominance
of the strategies and promotes substantial levels of coopera-
tion �5�. According to the teaching activity model proposed
in Ref. �8�, Guan et al. have found that the inhomogeneous
activity in PGG can remarkably promote cooperation �9�.
Szonoki et al. investigated the impact of noise for the spatial
public goods games on several regular lattices �10�. Recently,
Santos et al. have explored social diversity by means of het-
erogeneous scale-free networks and showed that cooperation
is promoted by the diversity associated with the number and
size of the PGG groups �11�. Wang et al. have found the
cascade of elimination and emergence of pure cooperation in
the PGG �12�. Besides, the collective influence �13�, the
diversity-optimized behaviors �14�, the degree correlation
�15�, the degree-based and reputation-based partner selec-
tions �16� in the PGG are studied on scale-free networks.

The past ten years have witnessed the rapid development
of complex networks theory, spurred by the observations of
several features shared in real-world networks �17�. High
clustering structure is one of the most important properties,
reflected by dense triangles in networks. This common prop-
erty implies that it is quite possible to find two neighboring
individuals sharing the common neighbor �18�. Previous in-
vestigations have showed that the clustering property plays a
nontrivial roles in the prisoner’s dilemma game on regular
lattices �19�, random graphs �20�, small-world networks �21�
and scale-free networks �22,23�. More relevant to the subject
of this Brief Report, Assenza et al. found that the cooperators
are flourishing in highly clustered scale-free networks when
the temptation to defect is below a threshold value, after
which the cooperative behavior is easy to disappear �23�.
However, the prisoner’s dilemma game is different from the
public good games in the sense that the former describes
pairwise interactions but the latter are played by groups of
individuals. In this Brief Report, we will study the effects of
clustering coefficient on cooperation in scale-free public
goods games and disclose the feedback reciprocity mecha-
nism of triangle in games played by groups of people.

We adopt the algorithm proposed by Holme and Kim
�HK� �24� to obtain the scale-free networks with tunable
clustering coefficient �CC�, which is the extended Barabási-
Albert �BA� model �25�. From the inset of Fig. 1 it is ob-
served that as the increase of a parameter p to tune the prob-

*rongzhh@gmail.com
†hxyang@mail.ustc.edu.cn
‡wenxuw@gmail.com

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

k

P
(k

)

0 0.5 1
−0.5

0

0.5

p

r k

0 0.5 1
0

0.2

0.4

0.6

0.8

p

C
C

p=0.0
p=0.3
p=0.6
p=0.8
p=1.0

FIG. 1. �Color online� The degree distribution of the HK scale-
free networks with different p. The right top inset shows the clus-
tering coefficient CC and the left bottom inset is the degree corre-
lation coefficient rk versus p on the HK scale-free network with
5000 vertices and averagely six neighbors per vertex. Each data is
obtained by averaging over 100 realizations.
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ability of forming triangle, both the degree distribution and
the degree correlation coefficient �26� keep fixed while the
clustering coefficient CC will ascend from 0.0 to 0.6 in the
HK scale-free network. Therefore, through the HK model we
can study the effect of clustering property on the PGG game
with excluding the influences of degree heterogeneity �11�
and degree correlation �15�.

In the spatial PGG game, each individual i occupies one
site on the network, and it participates in ki+1 games cen-
tered on i and its ki neighbors. According to Ref. �11� that
considered the limited resources of individuals and proposed
the fixed cost per individual approach, each cooperator �C�
with degree k contributes a fixed cost c=1 for its neighbor-
hood, which is equally shared among all k+1 PGGs. Then,
the contribution of a cooperator in one PGG is multiplied by
a factor r and divided equally among all participators.
Whereas, the defector �D� invests nothing for its neighbor-
hood. Therefore, the payoff of an individual i who partici-
pates in the PGG centered on the individual j with degree kj

is: Pi
j = r

kj+1�x��j

c
kx+1sx− c

ki+1si, where � j means the vertex set
of the group containing kj +1 individuals. We set si=1 if
individual i is cooperator, otherwise si=0. The total benefit
Pi is the accumulated payoffs of PGGs in which i engages.
After each generation, all the players update synchronously
their strategies by the following rule �27�. Each individual i
chooses at random a neighbor j, and in the next generation it
will adopt j’s current strategy with probability

Wij = 1
1+exp��Pi−Pj�/�� , �1�

where � characterizes the level of rationality of individuals
and the cooperative behavior is easy to disappear for larger
value of �. Here, we set �=0.1 following the previous inves-
tigations �13,14,28�. The larger the payoff difference be-
tween j and i, the more probability i tends to learn j’s strat-
egy. Note that although the noise is fixed for all vertices, it
has different influences for vertices with different degrees.
This can be understood in the sense that higher degree ver-
tices due to their more interactions can usually gain higher
payoffs P and the noise � in the denominator of Eq. �1�
becomes relevant smaller for higher P. The fixed noise in the
Fermi-function thus brings additional diversity effects into
the strategy updating. As a result, the strategy of higher de-
gree vertices is more favored by the noise. In one PGG the
payoff of cooperators is less than that of the defectors, there-
fore, the greedy individuals are willing to become defector
and the cooperation is very unstable if there are no effective
mechanisms to support cooperation. Then we will study the
cooperation evolution on the clustered scale-free networks
and uncover the reciprocity mechanism of clustering prop-
erty for the game dynamics.

In this paper, we set initially the individuals select the
strategies of cooperation and defection with equal probability
1/2. The frequency of cooperators, fC, which is a key quan-
tity to characterize the cooperative behavior of system, is
defined as the equilibrium frequency of cooperators during
the steady state and is obtained by averaging over 10 000
generations after a transient time with 20 000 generations.
Each data is the average over 100 realizations, i.e., 10 runs

for each of 10 different networks with 5000 vertices and
average degree �k�=6. Figure 2 shows fC as a function of the
multiplication factor r for the scale-free networks with dif-
ferent clustering coefficients. It is observed that fC is an in-
creasing function of r that means the cooperators are easy to
survive for large r. More important, it is showed from Fig. 2
that the cooperation can maintain for small r on the scale-
free network with high clustering. Below we will explain the
mechanism that why the cooperative behavior can boom on
the highly clustered scale-free networks.

Previous investigations have successfully disclosed the
degree heterogeneity of scale-free network through the two-
star subgraph �7,11�, and Vukov et al. have studied the role
of clustering property in the prisoner’s dilemma game
through two kinds of regular random graph with or without
triangles �20�. In this paper, we use two typical starlike sub-
graph as showed in Fig. 3 to represent the scale-free network
without �with� clustering property, where ki denotes the de-
gree of vertices at the ith layer �denoted as Li, i=0,1 ,2 , . . .�.
In the Fig. 3�b� �denoted as starlike-II�, the hub at L0 and two
vertices at L1 compose a triangle. To characterize the degree
heterogeneity of the scale-free network, we assume k0�k1.
For simplicity, we set the other vertices have the same degree
k1. Figure 3�a� �denoted as starlike-I� can be obtained by
reshuffling an edge linking vertices at L1 and an edge ran-
domly chosen at faraway layer in starlike-II according to the
Mslov-Sneppen algorithm �29�. Since the vertices excluding
the hub have the same degree, the reshuffling operation will
not change the degree heterogeneity and degree correlation
of the original subgraph. And for a large network the ran-
domly selected edge is far from the hub, therefore, we can
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FIG. 2. �Color online� The frequency of cooperators, fC, as a
function of the multiplication factor r when the probability to form
triangle, p, increases from 0.0 to 1.0.

FIG. 3. �Color online� Two typical subgraphs: �a� the starlike-I
subgraph without the triangle around hub and �b� the starlike-II
subgraph with the triangle around hub. The green �light gray� ball
and the red �dark gray� box denote the cooperator and the defector
respectively.
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obtain a starlike-I subgraph as showed in Fig. 3�a�. We focus
on the influence of triangle structure to the evolution of co-
operation of PGG. Initially we set only the central hub at L0
and its nC neighbors at L1 are cooperators and others are
defectors. Then we will investigate the condition of the co-
operation diffusion in the two subgraphs through considering
the payoff difference between cooperators and defectors. It is
noteworthy that although the schematic networks are simple
and regular which differ from large scale-free networks, they
are helpful to explain the effect of triangular structure on
cooperation to some extent by taking into account the pres-
ence a hub at the center and a treelike architecture which by
excluding loops is available for calculations. As will be dem-
onstrated later, the simple networks can yield insight into
understanding the role of clustering structure in scale-free
networks, especially for triangles around hubs.

It is showed from Eq. �1� that the value of payoff differ-
ence between one vertex j and its neighbor i characterizes
the probability that the behavior of the former replaces the
latter. Therefore, through investigating the payoff difference
between the cooperator and its defective neighbor, we can
study how the cooperative behavior diffuses on the network.
We first study the payoff difference between cooperator and
defector in the starlike-I subgraph showed in Fig. 3�a�. Con-
sider the C-hub at L0 will invest 1 / �k0+1� for each PGG
centered on itself and its L1 neighbors, and the nC coopera-
tive neighbors at L1 will contribute 1 / �k1+1� for each PGG
focal on themselves and C-hub, therefore, the payoff PL0

C of
the C-hub is

PL0

C = rc
k0+1� 1

k0+1 +
nC

k1+1� + rc
k1+1� k0

k0+1 +
nC

k1+1� − c . �2�

Since the defector at L1 can obtain benefit from C-hub
through the two PGGs centered on itself and C-hub, respec-
tively, we can obtain the payoff difference between the
C-hub and its defective neighbor at L1 as

PL0

C − PL1

D = rc
k1+1

k0−1

k0+1 + rc
k1+1

nC

k1+1 − c = �1c , �3�

where rc
�k1+1��k0+1� and rc

�k1+1�2 correspond to the contributions
of the C-hub and L1-cooperators for the PGGs centered on
individuals at L1. Similarly, compared with the defector at
L2, the cooperator at L1 can obtain additional benefits from
the PGGs centered on the C-hub and k1−2 defective neigh-
bors at L2. Therefore, the payoff difference between the co-
operator at L1 and its defective neighbor at L2 is

PL1

C − PL2

D = rc
k0+1� 1

k0+1 +
nC

k1+1� + rc
k2+1

k1−2

k1+1 − c = �2c . �4�

Then we turn to investigate the payoff difference between
cooperators and its defective neighbors in the starlike-II sub-
graph showed in Fig. 3�b�. Since the existence of triangle,
the C-hub can obtain the contribution of a cooperative
L1-neighbor i not only from the PGG centered on i, but also
from the common neighbor with i. Therefore, the payoff of
the C-hub in the starlike-II subgraph is: PL0

C = rc
k0+1 � 1

k0+1

+
nC

k1+1 �+ rc
k1+1 �

k0

k0+1 +
2nC

k1+1 �−c. It should be noted that compared
with the Eq. �2�, the C-hub in the starlike-II subgraphs can
obtain additional

rcnC

�k1+1�2 payoff since the L1-cooperators can

feed back their investment to C-hub through the triangle.
Furthermore, we consider the worst case that the C-hub and
its defective L1-neighbor j share one cooperator i. The de-
fector j can get benefits from the three PGGs centered on the
C-hub, i and j, respectively, and thus the payoff difference
between the C-hub and the defector j is

PL0

C − PL1

D = rc
k1+1

k0−2

k0+1 + rc
k1+1

2�nC−1�
k1+1 − c = �1c , �5�

Furthermore, we can obtain the payoff difference between
the cooperator i and its defective neighbor at L2 as

PL1

C − PL2

D = rc
k0+1� 1

k0+1 +
nC

k1+1� + rc
k1+1� 1

k0+1 + 1
k1+1� + rc

k2+1

k1−3

k1+1 − c

= �2c , �6�

where the first, second and third term of Eq. �6� corresponds
to the gains of i obtaining from the PGGs centered on the
C-hub, the L1- and L2-neighbors with defective strategy, re-
spectively.

In order to understand the distinction between two sub-
graphs in the aspect of the ability of cooperation diffusion
from L0 to L1, we compare Eq. �5� with Eq. �3� and can find
that: �1−�1= r

k1+1 �
nC−2
k1+1 − 1

k0+1 �, which implies that if nC�2
and k0�k1, the reciprocity between the C-hub and its
L1-cooperators can be enhanced through the feedback loops
of triangle, therefore, �1��1 and the invasion from C-hub to
the L1-defectors is easier to occur in the starlike-II subgraph
than that in the starlike-I subgraph. This forms a positive
feedback that if there are more cooperators around the
C-hub, it can obtain more payoff and the cooperative behav-
ior is easier to diffuse from L0 to L1. Furthermore, comparing
Eq. �6� with Eq. �4� and considering k1=k2, we can obtain
the ability distinction of cooperation diffusion from L1 to L2

as �2−�2= r
�k0+1��k1+1� . It is observed that since the C-hub can

feed back the investment to its cooperative neighbor through
the triangle, �2��2 and the L1-cooperators is easier to dif-
fuse their behaviors to L2-neighbors on the starlike-II sub-
graph than that on the starlike-I subgraph. This also leads to
the increase of C-hub’s payoff and speeds up the diffusion of
cooperation on the network. Therefore, the triangle cluster-
ing in the scale-free network can form a kind of feedback
reciprocity that promotes the diffusion of cooperation. Al-
though all the analysis is carried out from C-hub initially, the
scenario of starting from a D-hub can be interpreted by the
current analysis as well. It has been known that the D-hub
will trigger a negative feedback due to the diffuse of its
defection strategy to leaves. The D-hub will be quite likely to
turn to C if it connects to some C-hubs �11�. After the strat-
egy switch of the D-hub, the following evolution can be cast
into our analysis with a preliminary C-hub.

Finally, we would like to check the feedback reciprocity
mechanism on the clustered scale-free networks. We set ini-
tially the highest-degree vertex and some low-degree neigh-
bors to cooperators and others to defectors on the scale-free
network. Then we study time series of the frequency of co-
operators and investigate how cooperation diffuses on the
scale-free networks with different clustering coefficients.
This method is also used in Ref. �30� to study the spatial
invasion of cooperators who play the prisoner’s dilemma and
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snowdrift games on the square lattice. We observe from Fig.
4�a� that the higher clustering property the network has, the
easier the cooperation diffuses and the earlier the frequency
of cooperators reaches to the equilibrium state. Furthermore,
it is showed from Fig. 4�b� that there are more cooperators at
the low-degree vertices in the higher clustered scale-free net-
work than that in the lower case for both the final state and
the transient states with the similar fC, which implies the
cooperation is easier to diffuse from hub to low-degree ver-
tices in the higher case. Therefore, it needs longer transient
time in the lower case until sufficient high-degree vertices
become cooperators. These results are consistent with our
previous analysis of the feedback reciprocity mechanism of
triangle in the subgraphs.

In conclusion, we have studied the influence of clustering
coefficient on the evolution of cooperation in the scale-free
public goods games. Through comparing the payoff differ-
ence between cooperators and defectors in two types of star-
like subgraphs, we discover the feedback reciprocity mecha-
nism of clustering property. Since in the spatial PGG the
payoff of an individual is not only related with its immediate

neighbors, but also depends on its neighbors’ neighbors, the
triangle loop makes the cooperator obtain the additional in-
vestment of another cooperator from their common neighbor,
which is different from pairwise interactions in the spatial
PDG where an individual only gains payoffs from its imme-
diate neighbors. Relying on the feedback reciprocity of tri-
angle in PGG, the cooperative behavior becomes easier to
diffuse on the highly clustered scale-free networks. Our in-
vestigation yields some insight into understanding the
mechanism of cooperation emergence and designing the
proper network topology to boom cooperation.
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FIG. 4. �Color online� �a� The frequency of cooperators fC versus the generation t for scale-free networks with different clustering
coefficients. Each network contains 5000 vertices and averagely each vertex has 6 neighbors. Initially there are only ten cooperators �the
highest-degree vertex and its nine low-degree neighbors� and others are defectors. �b� is the fraction of cooperators per degree, PC�k�, for
different instants of the time evolution. The data are obtained by averaging over ten different networks with 50 runs for each network. The
multiplication factor r=1.8.
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