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We study evolutionary prisoner’s dilemma game by considering adaptive strategy-selection time scale
among individuals according to a “win-slower, lose-faster” rule: if an individual successfully resists the inva-
sion of an opponent, she is prone to hold her strategy for longer time through decreasing her strategy-selection
time scale; otherwise, she increases the time scale because of losing. We find that the greater the losers increase
their strategy-selection time scales, the better for cooperation. Interestingly, optimal cooperation can be in-
duced by proper adaptive rate in the strategy-selection time scale. Our results may have potential implications
in the design of consensus protocol in multiagent systems.
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I. INTRODUCTION

Evolutionary game theory provides a powerful framework
for understanding ubiquitous cooperative behaviors existing
in biological, social, and economical systems �1–4�. The
prisoner’s dilemma �PD� game is one of the most famous
paradigms to depict the conflict between two selfish indi-
viduals �5�: mutual cooperation can provide a positive in-
come for both players, while a greedy individual is prone to
defect to gain higher payoff regardless of the punishment to
her cooperative opponent. This egoistic behavior leads to a
tragedy that the individuals are trapped in the scenario of
mutual defection where who first switch to cooperation strat-
egy will be punished.

One of the promising mechanisms to escape the dilemma
is the combination of interaction structure, or spatial �or net-
worked� reciprocity �6–9� with evolutionary games. The in-
teraction structure of the individuals can be represented by a
network, which describes who plays games with whom, and
who learns from whom as well. Quite recently, a number of
investigations have been carried out to uncover nontrivial
effects of topological properties on the maintenance of coop-
eration �10–20�. In the general framework of spatial �net-
work� games, players compete with each other according to
“Darwinian selection” rule, i.e., the strategies leading to
higher fitness are usually imitated, where the fitness is sim-
ply determined by relevant payoffs. So far, in this frame-
work, many factors that play important roles in the game
dynamics have been discovered, such as noise �20�, similar-
ity �21�, preferential selection �22�, memory effect �23�, pay-
off aspiration �24�, imperfect imitation �25�, asymmetric cost
�26� and so on. Some interesting dynamical phenomena have
been observed, such as directed percolation �10�, resonance-
like behaviors �27,28�, hysteresis loops �29�, etc. Recently,
Szolnoki et al. systematically studied the teaching ability that
depict the heterogeneous influence of strategy transfer capa-

bility of individuals, and found the heterogeneity of teaching
activity can support cooperation �30–34�. The presence of
diversity of social status �35� and rationality �36� is also
found to facilitate cooperation. Furthermore, the permission
of players to adaptively select interaction neighbors �37–42�
or migrate �43–45� can suppress the spreading of defection
and thus favor cooperation �seeing �46� for a survey�.

In general, there are two time scales in the game dynam-
ics, one is interaction time scale—which characterizes how
frequently the individuals interact with each other, and the
other is strategy-selection time scale—which depicts how
frequently they modifies their strategies. Most previous re-
searches assume the two time scales are identical, i.e., the
individuals immediately update their strategies after one
round of game. However, Roca et al. found that if the two
time scales are nonidentical, the final evolutionary results
can change dramatically compared to identical cases �47�. In
a recent work, Wu et al. studied the diversity of reproductive
time scale on the evolution of cooperation, and found that a
proper relationship between the two time scales can best sup-
port cooperation �48�. In the present work, we extend the
work in �47,48� by considering adaptive strategy-selection
time scale for the individuals. Individuals can tune their
strategy-selection time scale according to the “win-slower,
lose-faster” rule: if an individual defeats her opponent with a
different strategy, she is willing to extend the lifetime of
current strategy by decreasing her strategy-selection time
scale. Otherwise, she will increase her time scale to seek
better strategy. Our investigation shows that tuning time
scale with proper adaptive rate will promote the long-term
cooperative clusters and boost the maintenance of coopera-
tion. Since adaptivity is a generic property of complex adap-
tive systems, we believe such consideration would gain more
instructive insights in understanding the evolution of coop-
eration in real world.

In the following section, we define our evolutionary PD
model. In Sec. III, we present our numerical results and
analysis. Finally, in Sec. IV we draw our conclusion and
make some discussions.
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II. MODEL

Each individual i locates on one site of a regular 100
�100 square lattice with periodic boundary conditions, and
can be either unconditional cooperator �C� or defector �D�.
The PD games are played among connected neighbors. If
two individuals cooperate with each other, both of them re-
ceive the reward R=1, while the punishment for both defec-
tors is P=0. When a C meets a D, the former obtains the
sucker’s payoff S=0, and the latter gets the temptation to
defect T=b� �1,2� �9�.

We consider explicit interaction and strategy-selection
time scales for the individuals, and assume the latter is
slower than the former. �That is to say, each individual may
have played several rounds of game before update her strat-
egy.� This is realized by implementing probabilistic strategy-
updating for the individuals: each focal individual i updates
her strategy with probability pi, whose magnitude therefore
characterizes her strategy-selection time scale. More specifi-
cally, if i does not update her strategy in the present round, in
the next round her age will increase by 1; otherwise, i will
begin a new lifetime of its strategy and t will restart from 0.
In order to evaluate the performance of a strategy during its
lifetime, we define a weighted score at time t�1 according
to the payoffs during the lifetime,

Gi�t� = �1 − a�Gi�t − 1� + agi�t� , �1�

where Gi�t� is contributed by two parts: one is her current
payoff gi�t� weighted by parameter a and the other is her
previous gain Gi�t−1� weighted by 1−a. This definition is
inspired by maternal effect �49�. The magnitude of a charac-
terizes the weight of current payoff at t in assessing the score
of a strategy. If a=1, the strategy is evaluated absolutely by
the latest gain while decreasing a enhances the weight of
earlier payoffs. The weighting scheme takes into account
both the memory effect and the inclination of individuals in
weighing their current and past benefits to provide a reason-
able evaluation for a strategy instead of according to the
oversimple average payoff over the lifetime of a strategy.
Based on the weighted score, individuals update their strate-
gies by comparing their scores with randomly selected
neighbors. In particular, an arbitrary individual i updates its
strategy by following a randomly select neighbor j with
probability:

Wj→i =
1

1 + exp��Gi − Gj�/��
, �2�

where � characterizes the noise, and for simplicity it is set to
0.01 �50�. Otherwise, with probability �1−Wj→i� the focal
individual i preserves her own strategy. No matter whose
strategy is succeed to impose on i, we reset the age of the
new strategy to zero, and the relevant initial score to Gi�0�
=0.

An arbitrary individual i is allowed to adjust adaptively
her time scale pi when she competes with an opponent hold-
ing different strategy after the strategy updating process: if i
wins the competition with j �with probability 1−Wj→i�, her
strategy-selection time scale will decrease to pi= pi−�;
whereas if i accepts j’s strategy, she will increase her time

scale to pi= pi+�. This evolutionary rule for strategy-
selection time scale can be termed as “win-slower, lose-
faster,” and the pair of �� ,�� characterizes the speed that
individuals alter their time scales. The larger the value ����
is, the faster the losers �winners� decrease �increase� the life-
time of their current strategies so that the average lifetime of
the individuals is inversely correlated with their strategy-
selection time scale. The physical content of our model can
be understood in the social perspective. If an individual is
satisfied with the profits gained by the current strategy, she
will naturally tend to hold the strategy for relatively longer
time before the next evaluation; otherwise, if the current
strategy cannot bring sufficient payoff, an individual will be
prone to learn from others and change the current strategy
fast. This adaptive scenario is naturally captured by the
strategy-selection time scale in our model in which the de-
gree of satisfaction for a strategy is characterized by its
weighted score Eq. �1� graded during its lifetime. As a re-
mark, since the performance of a strategy can be only re-
flected by the payoffs during its lifetime, once a new strategy
is employed, its initial score G�0� is set to zero and the
benefit obtained by former strategies is not inherited.

The effect of parameter a on the game dynamics has been
addressed in �48�. In our present study, we simply set it as
0.1 and focus our attention on the effect of adaptive strategy-
selection time scale on the evolution of cooperation. By
simulation, each individual selects C or D with equal prob-
ability and has the same time scale pi=1.0 in the initial time.
Since too low selection time scale will frozen individuals’
evolution, we restrict the lower bound of pi to pmin=0.1, and
the upper bound to pmax=1.0. Herein, the loser �winner� in-
creases �decreases� her time scale by pi=min�pi
+� , pmax��pi=max�pi−� , pmin��, and the parameters � and �
are constrained to the region �0.0, 0.9�. One Monte Carlo
step is counted when all individuals have been considered on
average once for possible reproduction. The frequency of
cooperators fC are obtained within 104 steps after a transient
time of 4�104 steps, and the data presented below are ob-
tained by averaging over 20 independent trials.

III. RESULTS AND ANALYSIS

It has been reported that increasing b can result in the
extinction of cooperators �10,15,20,33,51�. In light of this
point, we first study the extinction threshold of C, or the
emergence of all D, bD by tuning � and � in the region �0.0,
0.9�. Figure 1 shows that bD increases monotonously with
the increase of �, indicating that the rapid addition of loser’s
strategy-selection time scale can favor cooperation. We also
note that the best situation for cooperation occurs at the re-
gion where ��0.1 and ��0.9 �where bD can go up to 1.40�,
and too large or too small � does not benefit cooperative
behavior �52�. Below we analyze the effects of � and � on
the evolution of fC, respectively.

Let us first consider the situation that the individuals can
only decrease their p. This is done by setting �=0.0 and
studying fC as a function of b for several values of �. The
simulation results are presented in Fig. 2�a�. For �� ,��
= �0.0,0.0�, which means that each individual updates strat-

RONG, WU, AND WANG PHYSICAL REVIEW E 82, 026101 �2010�

026101-2



egy immediately after one round of game, the cooperative
behavior disappears at b�1.02. With the increase of �, we
observe fC is remarkably increased, and bD goes up to 1.09
for large �. In the inset of Fig. 2�a� we plot the average
strategy-selection time scale of the individuals at the steady
state, �p�, as a function of b. For �=0 and ��0, the indi-
viduals will decrease their time scales until the lowest bound,
pmin=0.1. Therefore, fC for the case of �=0.1 is coincided
with the case where all individuals have p=0.1. However, we
note that if � is sufficiently small, e.g., �=0.01, the long trip
of �p� to pmin is hindered by high temptation to defect.

To get a visualized view, we plot the time series of fC, and
the average strategy-selection time scale difference between
C and D, �pC�− �pD�, in Fig. 2�b� for b=1.03. In Figs. 2�c�
and 2�d� we also show, respectively, the typical snapshots of
individuals with different strategy-selection time scales at the
transient and steady states. Here the color coding is as fol-
lows: yellow/light gray �blue/black� represents C �D� whose
strategy-selection time scale is less than 0.5, and green/gray
�red/dark gray� denotes C �D� larger than 0.5, respectively.
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FIG. 1. �Color online� The extinction threshold of cooperators,
or the emergence of all defectors, bD in dependence on the param-
eters � and � varying from 0.0 to 0.9.
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FIG. 2. �Color online� �a� The average frequency fC of cooperation as a function of the temptation to defect b for �=0.0 and �=0.0, 0.01,
0.1 �from the bottom to the top, respectively�. The cross represents the case that all individuals have the same fixed strategy-selection time
scale 0.1. The inset: the average time scale �p� of the individuals versus b for �=0.01, 0.1. �b�Time series of fC and the strategy-selection
time scale difference between C and D, �pC�− �pD� �inset� for �=0.01, 0.1, and b=1.03. �c� and �d� illustrate the distribution of the
individuals with different time scales at the transient state�1000th MC step� and the steady state �50 000th MC step� for the case of
�� ,��= �0.0,0.01� and b=1.03. In �c� the percent of C with low �high� time scales is 4.2% �9.0%�, which is represented by yellow/light gray
�green/gray� color. There are 7.2% �79.6%� of D with low �high� time scales who are denoted by blue/black �red/dark gray� color. In �d� there
are 69.7% of cooperators �yellow/light gray� and others are defectors �blue/black� who have the same time scale with 0.1.
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We observe from Fig. 2�b� that with time goes on, �pC�
− �pD� first reduces to negative value, and then ascends to
zero in the steady state. The reason is that at the beginning D
can obtain temporary high payoff and attract more followers.
As a result, the D-cluster will grow rapidly, and most defec-
tors would own high selection-strategy time scales �Fig.
2�c��. On the other hand, the cooperators form compact clus-
ters to defend the invasion of defection �14�. Occasionally,
some successful cooperators would possess low �p�, which
would reciprocate them further. This leads to the increase of
fC after some transient time �Fig. 2�b��. We note that smaller
value of �, say 0.01 will give rise to longer time for fC to
touch the “bottom.” This is reasonable, since sufficiently
small � does harm to the long time reciprocity between co-
operators, and hence favors the diffusion of defection �Fig.
2�a��. Consequently, the cooperation is easy to disappear in
the case of sufficiently small �. This is also the reason that
bD for �=0.01 is smaller than that for �=0.1 in Fig. 2�a�.

Furthermore, we like to compare the effect of the decrease
of individuals’ strategy-selection time scale with the increase
of the teaching ability studied in �32,34�. It is noteworthy
that the individual with high teaching ability �or called
leader� can effectively make its neighbors following its strat-
egy. This leads to the higher leaders’ influences that further-
more prevent the change of its neighbors’ teaching ability.
Therefore, at the steady state the influence distribution is

heterogeneous, i.e., there are only a few leaders who are
surrounded by lots of individuals with lower influence �34�.
In contrast, in the present study the individuals with lower
time scales can only hold on their current strategies for
longer time but this behavior cannot actively change their
neighbors’ behaviors. Therefore, individuals can freely de-
crease their time scales to resist the invasion of neighbors,
which allows defectors or cooperators with low time scales
gathering together and leads to the uniform time scale under
the case of �=0 �Fig. 2�d��.

We now fix �=0.1 and tune � to study how � influences
the evolution of cooperative behavior. The simulation results
are summarized in Fig. 3. For �� ,��= �0.0,0.1�, the coopera-
tors disappear at bD�1.09. For ��0, we notice that the
average time scale �p� raises and the cooperation is en-
hanced, which is reflected not only by large fC for the same
value of b, but also by the increase of bD which can even
reach 1.40. As before, in Fig. 3�b� we plot the time series of
fC and �pC�− �pD� �inset� for a typical value of b=1.05. For
�� ,��= �0.0,0.1� the individuals can only decrease their
strategy-selection time scale, �pC�− �pD� vanishes at the
steady state. For the cases of ��0, the value of �pC�− �pD�
can maintain negative at the steady state, which indicates
that the cooperators are on average more successful than de-
fectors �since the strategy-selection time scale of losers will
be raised�.
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FIG. 3. �Color online� fC and �p� �inset� versus b for �=0.1, and � varying from 0.0 to 0.9. �b� The time series of fC and �pC�− �pD�
�inset� are plotted when the individuals face the same temptation b=1.05 for different values of �. �c� The time scale distribution of the
individuals at the steady state where appropriate b=1.04, 1.06, 1.06 are selected so that there are similar cooperation levels �fC

=0.718,0.703,0.694� for �=0.2, 0.3, 0.9, respectively. �d� and �e� are snapshots at the 50 000th MC step for b=1.04 and �� ,��
= �0.2,0.1�, and b=1.06 and �� ,��= �0.9,0.1�. In the former �latter� case the percents of cooperators with low and high time scales and the
defectors with low and high time scales are 40.2% �47.4%�, 30.1% �22.3%�, 13.6% �10.6%�, and 16.1% �19.7%�, which are denoted by
yellow/light gray, green/gray, blue/black and red/dark gray colors, respectively.
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We further investigate the strategy-selection time scale
distribution of the individuals at the steady state, P�p�, for
different values of �. To do so, we select appropriately the
value of b to obtain similar fC�0.7 in the final state. The
results are shown in Fig. 3�c� where we observe similar U
shape distribution of P�p� for different �. This indicates that
the strategy-selection time scale of the individuals tend to
reach the two boundary value pmin=0.1 and pmax=1.0.
Though this result is somewhat expected, it is interesting to
point out the similarity of this observation with that in the
evolutionary minority game: the individuals can self-
segregate into two extreme behaviors to obtain optimal ben-
efit, leading to U shape distribution as well �53�. We expect
that the U shape distribution of individuals’ strategies might
be an instructive index in finding optimal solution for multi-
agent collective behavior.

Figures 3�d� and 3�e� show the typical snapshots of the
strategy-selection time scales of the individuals for �=0.2
and 0.9, respectively. Comparing the two snapshots with
similar cooperation level, we notice that as � increases, C
with low time scales tend to compose large compact clusters,
and D with low time scales is decreased. This observation
can be understood as follows. Successful individuals �high
score� will attract their neighbors to imitate their behavior.
The imitation will however produce totally different feed-
back to C and D. Successful C will have more cooperative
neighbors that enhance their payoffs reciprocally. But for D,

the imitation of neighbors results in a negative feedback that
weakens the focal D’s payoff. Since successful C can form
stable cluster �due to the long-term reciprocity�, for larger �,
their losing D neighbors �if any� could learn their behavior
more frequently and have greater chance to becoming C,
hence cooperation is promoted.

We now turn to investigate the impact of � on the evolu-
tion of cooperation. We first study fC as a function of b for
several values of � by fixing �=0.9. We present our simula-
tion results in Fig. 4�a�, where for too small �=0.05 or too
large �=0.9, the cooperative behavior is hard to persist in the
system. It is interesting that the highest level of cooperation
emerges at ��0.1, where the cooperators can persist in the
system even b is greater than 1.40. The nonmonotonic be-
havior of fC with � can be understood as follows. In the case
of �→0, the winners reduce their time scale slowly and the
cooperators have negligible chance to form long term recip-
rocal clusters. Therefore, there are long relaxation time as
well as low cooperation level at the transient state �Fig.
4�b��, and high �p� at the steady state �inset of Fig. 4�a��.
While for too large �, the defectors can reduce their time
scale severely and they can exploit their C neighbors to get
considerably high payoff. Therefore, there are small time
scale difference between C and D �inset of Fig. 4�b�� which
would benefit the diffusion of defection. Combining the ef-
fects of the two factors, it can be expected that there exists an
appropriate � for the population to achieve highest level of
cooperation.
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FIG. 4. �Color online� �a� fC and �p��inset� as the function of b for �=0.9 and � varying from 0.05 to 0.9. �b� The time series of fC and
�pC�− �pD� �inset� for b=1.05 and different values of �. �c� The time scale distribution of the individuals at the steady state are plotted for
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The distribution of the strategy-selection time scales of
the individuals in the steady state are shown in Figs.
4�c�–4�e�, where we select proper b to achieve similar final
cooperation levels. From Fig. 4�c� we can find that as �
increases, there are more individuals locating at p=0.1 and
less at p=1.0. Comparing Figs. 4�d� and 4�e�, we notice
clearly that for small �=0.05, the individuals tend to hold
large values of p and the cooperators fail to compose long-
term reciprocal clusters. For the large value of �=0.9, there
are more defectors with low time scale that enhances the
persistence of defection. These results corroborate our previ-
ous analysis.

IV. CONCLUSION AND DISCUSSIONS

In this paper we have studied the coevolution of individu-
als’ strategy-selection time scale and their strategies in the
context of evolutionary spatial prisoner’s dilemma game. In-
dividuals can adaptively adjust their strategy-updating fre-
quency in term of the win-slower, lose-faster rule. The ad-
justing speed of strategy-selection time scale is controlled by
two parameters, � and �. By studying the average frequency
of cooperation, the strategy-selection time scale distribution,
and the pattern formation of individuals in the steady state,
we have found that the faster the losers increase their strat-
egy updating frequency, the easier the cooperators can form
long-term clusters which sustain cooperation. On the other
hand, decreasing strategy-selection time scale extremely
slowly or fast will hinder the emergence of cooperation. This
is because in the former case the time for the cooperators is
not sufficient to establish long-term reciprocity, while in the
latter case the defectors can efficiently exploit cooperators
due to their long lifetime. Consequently, proper value of �
benefits the formation of long-term cooperative clusters and
inhibit defection. The cooperation is thus facilitated by the
rule win-slower, lose-faster.

We have also examined our conclusion by implementing
the alternative multiplicative strategy-selection time scale for
the selection time scale, i.e., the individual i will decrease
her time scale by pi= pi /� if she resists the invasion of an
opponent, otherwise increases by pi= pi�. The alternative
evolving rule of strategy-selection time scale yields qualita-
tively similar results.

Finally, we would like to discuss the relation between our
work and that of Ref. �47�. Roca et al. investigated a well-
mixed population where the individuals hold fixed time
scales for both selection and interaction. It has been found
that if the time scale of selection is slower than that of inter-
action, the cooperators have adequate chance to interact with
other cooperators, such that they can gain �on average�
higher payoffs than defectors, hence cooperation is facili-
tated. In our model, the spatial population is considered and
some clusters of individuals holding the same strategy might
emerge. As has been known, cooperators can survive by
forming compact clusters. Along the boundary of cooperator
cluster, the average payoff of cooperators are on average
greater than those of the defectors �54�. When these coopera-
tors compete with their defective neighbors, they can highly
probability win. As a result, the strategy-selection time scale
of these cooperators will decrease, which in turn reinforce
further the stability of the cooperator-cluster. In addition, the
boundary defectors lose with greater probability when com-
peting with their cooperative neighbors. Consequently, their
strategy-selection time scale will increase and they will learn
frequently from their neighbors, which would benefit the
growth of cooperator-cluster. Moreover, the win-slower,
lose-faster rule also stably increases the payoffs of coopera-
tors. In this regard, our model is essentially consistent with
the work of Ref. �47�. We believe that our work can yield
some insight into the design of consensus protocol in multi-
agent systems �55�, i.e., through selecting proper rules to turn
the lifetime of selfish individuals’ strategies, the expectant
collective behaviors could emerge and the social optimum
might obtain.
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