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We propose a coevolutionary game to study cooperative behavior in the presence of catastrophic phenom-
enon. We incorporate tolerance to elimination of individuals in network games where individuals update their
strategies synchronously, and there are no birth of individuals and stochastic effects. We find that an avalanch-
elike death process can arise when defection strategies exist and individuals are vulnerable to deficiency of
profits. Strikingly, we observe that, after such a cascading process terminates, cooperators are the sole survivors
regardless of the game types and of the connection patterns among individuals as determined by the network
topology. Cooperation thus becomes the optimal strategy and absolutely outperforms defection. Our results can
yield insights into evolution of cooperation in the presence of catastrophic events in social and natural systems.
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Evolutionary games have been a powerful tool to study a
variety of self-organized behaviors in natural, social, and
economical systems �1–4�. For example, understanding how
cooperation emerges among selfish individuals has been a
challenging problem because of the social dilemma that dis-
favors cooperation �5–8�. Games such as the prisoner’s di-
lemma games �PDGs� �9�, the snowdrift games �SGs� �10�,
and the public goods games �PGGs� �11� have been used to
model interactions among selfish individuals and how the
social dilemma can be resolved through self-organization. A
number of mechanisms have been discovered that facilitate
cooperation, which include reputation and punishment
�12–17�, network reciprocity �18–22�, success-driven migra-
tion �23�, etc.

So far, tolerance of individuals to elimination or death in
the paradigm of games has received relatively little attention.
A representative example relevant to the tolerance is the
bankruptcy of agents in economical system. For any profit-
able agent, a lowest amount of profit should be maintained,
which comes from the interactions with other agents in a
certain time period for continuous investment into the future.
In ecosystems, individuals compete and cooperate for essen-
tial life-sustaining resources to be alive. If the lowest require-
ment of resources cannot be gained, individuals will die. In
this regard, we incorporate an elimination mechanism into
the gaming rules to better mimicking evolution of coopera-
tive behavior in real systems. In particular, we assign a tol-
erance parameter to every individual in the network, which is
the lowest payoff needed for an indiviudal to survive. Con-
sidering diversity in social and biological systems, individu-
als may have their own tolerance, determined by their own
features. The number of interactions of an individual is a
prominent feature to distinguish it from others so that can be
appropriately used to define the tolerance. In the game on
networks, the death of an individual leads to the remove of
its nodes together with the loss of all its connections with
others. As a result, the games and network coevolve induced
by elimination with respect to survival tolerance. Not that
our model is different from existent coevolutionary games in
which players can adaptively choose their counterparts to
maximize their benefits �24–26�. While our coevolutionary
game considers the low-benefit-induced death and changes in

interacting networks, where the death of agents is much
faster than the generation of new ones in a certain time pe-
riod so that the birth process can be neglected.

Our main finding is that in the presence of defectors, a
cascading process of death of individuals can occur in rela-
tively short time, which can even spread to the whole net-
work, leading to complete extinction. Strikingly, we find that
a complete cooperation state emerges after a cascade termi-
nates and the exclusive survivors are cooperators, which
holds regardless of the type of games and network topology.
This finding strongly suggests that defectors, despite their
temporary advantages, are extremely vulnerable to the occur-
rence of catastrophic behavior. Cooperation becomes the op-
timal strategy to maximize benefit and avoid death for an
individual, naturally resolving the social dilemma of profit
versus cooperation. Our results can yield insight into the
catastrophic events in economical and ecosystems. For ex-
ample, during the recent economic recession, the ceaseless
bankruptcy of profit organizations and institutes is a typical
cascading process where high-risk investments as defection
behavior decrease the capacity of agents to resist deficiency
and trigger the outbreak of bankruptcy cascades. Our model
may also related with species extinctions in a relatively short
period.

We consider three typical games: PDG, SG, and PGG.
The main ingredients of these games are as follows. �i� In a
PDG, both players are offered a reward R for mutual coop-
eration and a punishment P for mutual defection. If one co-
operates but the other defects, the defector �D� gets the high-
est payoff T, while the cooperator �C� gets the lowest payoff
S. The payoff rank for PDG is thus T�R� P�S. �ii� In a
SG, the payoff rank is T�R�S� P. �iii� PGG is played by
a group of players. The total reward by the sole contribution
of C’s is enhanced by a factor � and equally distributed in
the group.

At each time step, the actual payoff gained by any indi-
vidual is the summation of payoffs from all interactions. At
each iteration, there are three processes.

�i� Game playing and payoffs. For PDG, we follow
previous studies and use the rescaled parameters R=1,
T=b�b�1�, and S= P=0 �18,27�. For SG, we set R=1,
T=1+r, S=1−r, and P=0, with 0�r�1 �20�. For PGG, in
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an arbitrary group formed by node x and its neighbors, the
payoffs of a D and a C are P�D�=c�n�C� / �kx+1� and
P�C�= P�D�−c, respectively, where � is the enhancement
parameter, n�C� is the number of C’s in the group and kx is
the number of neighbors of node x. c is set to be unity �22�.

�ii� Failure and individual removal. At each iteration, the
node that hosts individual i and all its links will be removed
if Pi�Ti, where Ti is the tolerance to death, defined as

Ti = ��Pi
N = �ki, for PDG and SG

�Pi
N = ��� − 1��ki + 1� , for PGG,

� �1�

where Pi
N is the normal payoff when the system is in a

healthy state in which all individuals are C’s, 0���1 is a
tolerance parameter, and ki is the number of neighbors of i.
For �=1 and �=0, individuals have zero tolerance and com-
plete tolerance to breakdown, respectively.

�iii� Strategy updating. At each time step, i randomly
chooses a survived neighbor j and imitates js strategy with
the probability �28� Wi→j =1 / �1+exp�−�Pj − Pi� /K��, where
K=0.1 represents the uncertainties in assessing the payoffs.

In addition, all strategies are synchronously updated and
external noise is absent. Since the failure and strategy updat-
ing processes occurs in parallel, the ratio of their occurrence
rates is fixed, as in Ref. �29�.

We first examine the evolution of spatial patterns, as
shown in Figs. 1�a�–1�d�. The general observation is that,
when defecting strategies are practiced, the occurrence of
large-scale cascading processes is common and, in order to
survive, an individual needs to cooperate persistently. The
size sd of dead individuals, defined as the number of re-
moved nodes normalized by the network size, depends on
the tolerance parameter �, the temptation to defect �b or r�,
and the enhancement factor �.

In general, the spreading of defection strategy and the loss
of interactions induce the cascade of death. The higher pay-
off of D’s can induce the imitation of neighboring C’s or the

death of neighboring C’s due to insufficient cooperation,
which establishes a negative feedback mechanism, leading to
the reduction in D’s payoffs and their eventually death. Once
C’s turn to be D’s, the defection strategy spreads and further
death can follow until the emergence of C clusters, at the
boundary of which, C’s receive sufficient mutual cooperation
to resist both invasion of D’s and insufficient payoffs to
death.

To obtain a quantitative understanding of the cascading
dynamics, we investigate the dependence of sd on the toler-
ance parameter � for three games on four types of lattices.
As shown in Fig. 2, for PDG, we observe step structures for
all lattices but different numbers of steps for different lat-
tices. A striking phenomenon is that the transition from a
survival state to an extinction state occurs at the critical
value �c=0.5, regardless of the lattice type, temptation to
defection and the initial fraction of D’s. Similar results have
been obtained for SG with the same value of �c. For PGG,
because of the intrinsic group interactions, the behavior of sd
versus � is somewhat different from those with PDG and
SG. However, the phenomenon of transition to extinction
persists, as shown in Fig. 3. We observe that, for PGG, ex-
cept for the 1D2n lattice, there are no clear step structures
and the transition points differ for different lattices.

The structures of the “minimal” surviving clusters can be
used to explain the transition to extinction, as shown sche-
matically in Fig. 3. Their stabilities can be assessed by cal-
culating the payoffs of individuals in the respective clusters.
For example, for the 1D2n lattice, the two C’s payoff is
Pi=1 and their tolerance is Ti=�ki=2�. For ��0.5, we

FIG. 1. �Color online� For PDG on a two-dimension lattice with
four neighbors �2D4n�, evolution of spatial patterns for b=1.1 at �a�
t=0, some D’s are randomly placed in the ocean of C’s; �b� t=5,
there is an increase in the number of D’s and both C’s and D’s begin
to die; �c� t=9, large numbers of D’s die and clusters of C’s begin
to form; �d� t=27, D’s become extinct and the lattice is shared by C
clusters and empty sites. After the extinction of D’s, the patterns
become time invariant. Similar results have been obtained for SG
and PGG. The lattice size is 50�50 and all sites are occupied
initially. The color coding is red �light gray� for D’s, blue �dark
gray� for cooperators, and white for empty sites. At t=0, 10% of the
occupants are D’s �randomly distributed�. For t�27, the spatial
pattern is invariant.

FIG. 2. �Color online� For PDG on four types of regular net-
works �1D2n, 2D4n, 2D6n, and 2D8n�, the fraction of failed �dead�
individuals sd as a function of the tolerance parameter �. The
dashed vertical lines are theoretical predictions for various transi-
tions between distinct states, including the extinction transition. The
network size is 100�100 and all data points are obtained after sd

becomes a constant. For the 1D2n lattice, �c=1 /2, which separates
two steps in sd. For the 2D4n lattice, �c=1 /4,1 /2, corresponding
to three steps. Similarly, for the 2D6n lattice, we have
�c=1 /6,1 /3,1 /2, which separate four steps. For the 2D8n lattice,
we have �c=1 /8,1 /4,3 /8,1 /2, so there are five steps. Since all
survivors are C’s, their number Nc as a function of � displays step
structures as well because of the relation Nc=N�1−sd�.
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have Pi�Ti so that both C’s will survive and the cluster is
stable. Similarly, all clusters in Fig. 3 are stable for ��0.5.
For ��0.5, there are no longer survivable structures.

The transition associated with PGG can be understood
similarly. For an arbitrary surviving node i, its payoff satis-
fies Pi�Ti. Combining the condition Pi�Ti and Eq. �1�, we
have Pi= ��−1��ki�+1�����−1��ki+1�=Ti, where ki is the
original degree of i and ki� is the remaining degree in the
aftermath of the cascading event. The transition point is then
given by �c= �ki�+1� / �ki+1�, which is independent of �.
Since for PGG, the smallest stable cluster has the same struc-
ture as that for PDG, �c is also determined by the cluster
structure in Fig. 3. A common property among these minimal
cluster structures is that ki� for any node is larger than or
equal to kL /2, where kL is the node degree of the original
lattice. Since nodes with more remaining connections are
more stable for identical original degrees, the extinction-
transition point �c is determined by the nodes at the bound-
ary. We then have �c= �kL+2� / �2�kL+1��. These predictions
are verified in Fig. 3.

We can consequently explain the presence of step
structures in Fig. 2 by examining the condition for survival:
Pi=ki���ki=Ti, or �c=ki� /ki. Because the remaining degree
ki� satisfies ki��ki, its possible values are 1 ,2 , . . . ,ki.
However, since no stable cluster exists for ��0.5, there is
an additional constraint for ki�: ki��ki /2. All possible values
of ki� determine the numbers of steps in Fig. 2. These predic-
tions agree with simulation results, as shown in Fig. 2.

We next study the dependence of sd and surviving strate-
gies on two key game parameters, � and b�r� or � for scale-
free networks �30�. Figures 4�a�–4�c� show the contour plots
of sd in the two-dimensional parameter plane for PDG, SG,
and PGG, respectively. Analogous to the observation on
regular lattices, there exist two exclusive asymptotic phases:
extinction for large values of � and b �r, small values of ��
and a survival phase in which only C’s can survive. C’s and
D’s cannot coexist for any parameter combinations. Different
from regular networks, for complex networks, sd is more
sensitive to the variation in � and the sd versus � curve tends
to be continuous. This is due to the fact that complex topol-

ogy provides a richer spectrum of individual tolerances due
to the diversity of node degrees. The boundary between ex-
tinction and survival depends on parameters. However, when
cooperation is facilitated by small values of b and r and large
values of �, the boundary is solely determined by the net-
work structure, which can then be treated by a stability
analysis. For example, the death of a vast majority of nodes
with smallest degree can trigger extinction. Their stability in
PGG can be written as �c= �kmin� +1� / �kmin+1�, where kmin� is
the remaining degree. For large �, if � is reduced such that
the single interaction cannot provide enough payoff for the
individual to sustain, extinction will arise. Thus, kmin� =1 and
�c=2 / �kmin+1�=4 / �2+ �k��, where the average degree
�k�=2kmin for a standard scale-free network �30�. Similarly,
for PDG and SG, we have �c=2 / �k�, which is valid in the
regime of small temptation to defection and large initial frac-
tion of D’s. The analysis is well supported by numerical
results, as shown in Fig. 4�d�. The stable cluster possesses a
star-like structure, as indicated in Fig. 4�d�. We also investi-
gate the effect of noise K and the initial density of defector
�D�0� on the fraction of failed individuals sd. Their effects
are exemplified by considering PGG, as shown in Fig. 5. We
see that larger �D�0� leads to higher values of sd, but the
critical value �c at which transition to extinction occurs is
regardless of �D�0� �Fig. 5�a��. While the noise K shows
little influence to sd, as shown in Fig. 5�b�.

FIG. 3. �Color online� For PGG, dependence of sd on tolerance
parameter � for the four types of networks as in Fig. 2. The dashed
vertical lines are theoretical predictions for the extinction-transition
points: �c

1D2n=2 /3, �c
2D4n=3 /5, �c

2D6n=4 /7, and �c
2D8n=5 /9. In the

right panel, four smallest surviving clusters in four types of lattices
for � slightly below the critical value �c are shown for all three
games. These clusters determine the transition point to extinction.
The nodes inside the cluster are more stable than those at bound-
aries. For ���c, nodes at boundaries die out and the clusters
disappear.

FIG. 4. �Color online� For �a� PDG, �b� SG, and �c� PGG on
scale-free networks, dependence of death size sd on tolerance pa-
rameter � and game parameters b, r, and �, respectively. The initial
fraction of D’s is 0.1 for PDG and SG, and 0.5 for PGG. There are
two distinct asymptotic phases: extinction and survival of C’s. The
boundaries between the two phases are marked by the white curves.
In the whole parameter space, D’s cannot survive. �d� The depen-
dence of extinction boundary �c on the average degree �k� for the
three games, where the initial fraction of D’s is 0.85, b=1.01, and
r=1.01 �for PDG and SG, respectively� or �=10 �for PGG�. The
star graph is a typical survivable C cluster when � is close to the
boundary �c. The network size is 1000. Ensemble average is based
on ten network realizations and ten independent gaming processes
for each network realization.
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In summary, we have proposed a coevolutionary game to
investigate catastrophic behavior and evolution of coopera-
tion, and have found two generic phenomena that do not
depend on details such as the network topology and

game types: �1� defection strategies for temporal high payoff
can result in large-scale failures or even the collapse of the
entire system and �2� the optimal strategy for surviving cata-
strophic failures is cooperation, which are valid for a low
noise level in the imitation. Defection strategies can trigger a
negative feedback mechanism that weakens the viability of
defectors and leads to their death ultimately. In contrast,
cooperation can survive eventually in the form of clusters
that resist deficit as well as the invasion of defectors.
These results suggest that in order to sustain the normal
functioning of the system and to maximize individual
individuals’ gain, cooperation is the optimal strategy. These
provide insights into, for example, the phenomenon of
large-scale bankruptcy witnessed during the recent global
economical recession.
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