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We study the collective dynamics of mobile species under cyclic competition by breaking the symmetry in
the initial populations and examining the basins of the two distinct asymptotic states: extinction and coexist-
ence, the latter maintaining biodiversity. We find a rich dependence of dynamical properties on initial condi-
tions. In particular, for high mobility, only extinction basins exist and they are spirally entangled, but a basin
of coexistence emerges when the mobility parameter is decreased through a critical value, whose area increases
monotonically as the parameter is further decreased. The structure of extinction basins for high mobility can be
predicted by a mean-field theory. These results provide a more comprehensive picture for the fundamental issue
of species coexistence than previously achieved.
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Identifying mechanisms that maintain biodiversity is a
fundamental problem in science. There has been a growing
interest in this interdisciplinary topic �1–5�. Numerous mod-
els and experiments have demonstrated that species can co-
exist through nonhierarchical cyclic competitions. Represen-
tative chemical and biological situations where cyclic
competitions have been found include competition among
carcinogenic microbes �1�, mating strategies of side-blotched
lizards in California �6�, and competition between mutant
strains of yeast �7� and coral reef invertebrates �8�. Generic
properties of the competition can be characterized by the
traditional game of “rock-paper-scissor” in combination with
spatial dispersal of static populations. The spatial games can
lead to insights into species coexistence that is fundamental
to biodiversity. For example, the emergence of self-organized
spatial patterns in the coevolution of different species has
been found to be crucial to the liability of biodiversity in
experimental studies, where local restriction of interactions
is more in favor of the formation of coexistence patterns than
global interactions �1�. Quite recently, the role of population
mobility, a basic parameter in the evolution of realistic eco-
systems ranging from bacteria run and tumble to animal mi-
gration, has been investigated �4,9–13�. It has been found
that mobility can support self-forming spatial patterns such
as entangled rotating spiral waves. As an important extension
to Ref. �4�, it has been shown that breaking the conservation
of total population density is key for pattern formation �14�.
There have also been works on extinction induced by asym-
metric interactions among species �15�. In addition, the size
effect of population and the relation between stochastic mod-
els and their deterministic counterparts have been explored
�16�.

In existing works on cyclic dynamics in spatially ex-
tended systems, the issue of species coexistence has been
addressed with respect to a single initial condition, corre-
sponding to identical initial populations of species �4�. While
this choice is convenient for computation and analysis,
physically it is difficult to realize. In order to obtain a “glo-
bal” and more complete understanding of species coexist-
ence, it is necessary to study the system dynamics for all

possible initial conditions. Indeed, in nonlinear dynamics,
basins of attraction and the boundaries among them are a
fundamental issue �17�. The aim of this Rapid Communica-
tion is to address the issue of basins of species coexistence
and extinction in the framework of cyclic dynamics in spa-
tially extended ecological systems.

To be concrete, we shall consider the paradigmatic setting
where three species interact with each other on a square lat-
tice through the “rock-paper-scissor” game �4�. The phase
space of the system can be defined by the three population
densities, nr, np, and ns, the ratios of the populations to the
total number of lattice sites for the species corresponding to
rock, paper, and scissor, respectively. When the initial popu-
lations are not identical, we find that there can be situations
where species with the least initial population density domi-
nates eventually. In a proper representation �to be described
below�, depending on the choice of the mobility parameter
M, the available phase space is divided either into three re-
gions, corresponding to the basins of the sole survival of one
of the three individual species �equivalently, basins of extinc-
tion as in each such basin, two species are ultimately ex-
tinct�, or into four regions, where one additional region, ba-
sin of coexistence, appears. In particular, the former situation
occurs for relatively large values of M, where only one spe-
cies can survive finally, regardless of the choice of initial
conditions �which one sustains depends on the initial condi-
tion�. In this case, the three basins are symmetric and spirally
entangled around the center point in the phase space where
the three population densities are identical. As M is de-
creased through a critical value Mc, a transition occurs that
creates the basin of coexistence around the symmetric point,
any initial condition from which generates a final state in
which all three species survive and coexist. As M is de-
creased further, the size of the coexistence basin increases,
eventually dominating the phase space. The area of the basin
thus provides a quantitative measure of the degree of species
coexistence in the system under the cyclic competition dy-
namics. For high mobility, we are able to obtain analytic
prediction for the structures of the extinction basins, which
are verified numerically.
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We consider the cyclic-competition model with mobile
individuals, as proposed in Ref. �4�. Three species populate a
square lattice of N sites with periodic boundary conditions.
Each site is either occupied or left empty. An individual on a
lattice point interacts with four nearest neighbors according
to the rock-paper-scissor rule, as follows:

RS→
u

R � , SP→
u

S � , PR→
u

P � , �1�

RS→
s

SR, SP→
s

PS, PR→
s

RP , �2�

R � →
s

� R, S � →
s

� S, P � →
s

� P , �3�

R � →
c

RR, S � →
c

SS, P � →
c

PP , �4�

where R, S, and P denote individuals from the three species,
respectively. Relation �1� describes the cyclic selection, i.e.,
prey, which occurs at the rate u. Relations �2� and �3� define
two types of motions of individuals on the lattice at the rate
s, and relation �4� characterizes the reproduction of individu-
als at the rate c. Following Ref. �4�, the rates s, c, and u are
normalized so that the occurrence probabilities of motion,
reproduction, and prey are s / �s+c+u�, c / �s+c+u�, and
u / �s+c+u�, respectively. According to the theory of random
walks �18�, individual mobility M is defined as M =s�2N�−1,
to which the number of sites explored by one mobile indi-
vidual per unit time is proportional. At each time step, a
random individual is picked to interact with one of its four
nearest neighbors, and the algorithm in �19� is used to deter-
mine selection, reproduction, or movement. A generation is
defined when every individual in a species has experienced
interaction once on average, which is regarded as one time
step. Let n0 be the fraction of empty sites. Initially, n0 is
fixed �e.g., 10%�. The three species densities thus satisfy the
constraint nr+np+ns=1−n0, which defines a triangular re-
gion in the plane due to the conditions that the sum of the
densities is fixed initially. The phase space can thus be rep-
resented by a simplex S2 defined by this triangle �20�.

In Ref. �4�, the interplay between mobility and coexist-
ence has been investigated but for the symmetrical case
where the initial populations of the three competing species
are identical. A critical value of mobility Mc= �4.5�0.5�
�10−4 is identified, where for M �Mc, only one species can
survive, which is called a uniform state. Coexistence arises
for M �Mc. In our exploration of the basins of distinct
asymptotic dynamical states, we will then choose to vary the
parameter M from a value above Mc to zero. In addition,
previous works �21,22� established that the mean time T for
extinction scales with the system size N as T�N. In our
simulations, the spatially extended ecosystem is represented
by a 100�100 square lattice, for which an asymptotic state
can be reached in about 104 times steps for almost all initial
conditions. We use 105 time steps in all simulations.

Figures 1�a�–1�f� present basin structures in the phase
space S2 for different values of the mobility parameter M.
The basins reveal the dependence of the final states on the
initial population densities. The sum of three species densi-

ties is fixed to be 0.9 and the density of empty sites is 0.1 so
that the dependence can be represented in S2. For M �Mc,
regardless of the choice of the initial population densities, a
uniform state is reached in which only one species can sur-
vive finally. In this case, the phase space S2 is divided into
three basins, each consisting of initial conditions that lead to
a uniform state of one species. The three basins are sym-
metrical and spirally entangled at the center of S2, as shown
in Fig. 1�a� for M =5�10−3�Mc. Along the boundaries be-
tween the basins, the final uniform state is sensitive to small
variations in the initial population densities. The center point
is actually a Wada point �23� where all three basins meet.
This means that, if the initial populations are identical, an
arbitrarily small perturbation can lead to a completely differ-
ent asymptotic state. Which species can survive finally thus
depends sensitively on small variations in the initial popula-
tion densities. As soon as M is decreased through Mc, a new
state arises where all three species can coexist. The basin of

FIG. 1. �Color online� Basins of final states in the triangular
representation of the phase space �simplex S2� for different values
of the mobility parameter M for u=c=1. The coordinates denote the
initial densities of the three species and the color of each point
represents the final state obtained from stochastic simulations by
using 30 random realizations of the cyclic competition dynamics,
under the same initial condition, on a given 100�100 square lat-
tice. For each realization, the simulation consists of 105 time steps.
�a� For M =5�10−3, the phase space contains three symmetric, ex-
tinction basins. There is no coexistence in this case. �b� Theoreti-
cally predicted basin structure for M =5�10−3 �cf. �a��. The center
point is green �light gray� in �f�. �c� For M =3�10−4, a small co-
existence basin with green �light gray� color appears about the cen-
ter of S2. �d� For M =1�10−4, the coexistence basin enlarges and
the extinction basins shrink. �e� For M =5�10−5, the coexistence
basin becomes even larger. �f� For M =0, the coexistence basin
dominates but the extinction basins are still present around the cor-
ners and the edges of S2.
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this coexistence state emerges from the center of S2, as
shown in Fig. 1�c� for M =3�10−4. As M is decreased fur-
ther, the coexistence basin expands, accompanied by the si-
multaneous shrinking of the three extinction basins, as exem-
plified in Fig. 1�d� for M =10−4. Biodiversity is promoted by
inhibiting population mobility, reflected by the augmentation
of the area of the coexistence basin, as shown in Figs. 1�e�
and 1�f�. For M =0, the area of the coexistence basin reaches
maximum. In this case, for a random choice of the initial
densities in S2, there is a high probability for coexistence.
Even then, three extinction basins still exist but they are
mainly located near the corners and the edges of S2. In gen-
eral, for M �Mc, species coexistence can be achieved by
decreasing the differences among the initial population den-
sities as the center of the coexistence basin coincides with
the center of the phase space. We have also found that the
size of lattice does not affect the structure of basins.

To gain further insights, we focus on some typical one-
dimensional line in S2 to examine which species can outper-
form others based on the survival probability Psurv. Repre-
sentative results are shown in Fig. 2, where we choose some
fixed ns�0� values and adjust the initial densities nr and np.
When ns is large, e.g., ns=0.85 as in Fig. 2�a�, r is the sole
survivor, regardless of the value of np, since the whole line
belongs to the basin of a uniform r state. For ns=0.5, the line
passes through two basins, as shown in Fig. 2�b�. In this
case, r survives for small nr but p survives otherwise. For

ns=0.5 �c�, 0.38 �d�, and 0.25 �e�, the line alternates among
more basins and every species has at least a region with
100% survival probability. For small value of ns, e.g., 0.05
�f�, only two basins remain. The one-dimensional lines in S2
thus indicate rich dynamical behavior of survival. The de-
pendence of Psurv on the network size is also studied, as
shown in Fig. 2�f�. We find that the transition in Psurv of a
species from 1 to 0 is much sharper for larger network size.
We thus expect an abrupt transition in Psurv when N tends to
infinity. We also note that the transition point changes when
N increases. However, when N is relatively large, e.g., N
=2500, the transition point changes a little for larger N, e.g.,
N=104, and we find the transition point tends to be the value
by theoretical prediction �described later� which is based on
the large limit approximation. Hereafter, we investigate the
basin structure for different densities n0 of empty sites, as
shown in Fig. 2. We find that n0 does not change the struc-
tures of extinction basins but simply shrinks the area of the
simplex S2.

The degree �or “strength”� of species coexistence can be
characterized by the size of its basin. Figure 3 shows the area
Sb of the coexistence basin �filled squares� as a function of
the mobility parameter M. It can be seen that, when M is
decreased through Mc, Sb starts to increase from zero mono-
tonically. The size of any one of the extinction basins exhib-
its the opposite trend. In particular, the area of any extinction
basin is small for M �0 but it approaches the asymptotic
value 1/3 for M �Mc. In addition, we note that in a recent
paper �24�, a deterministic rock-paper-scissors game in well-
mixed population is studied by relaxing the zero-sum as-
sumption. It is found that in positive-sum game, fixation does
not occur in a large central area of the phase space. However,
in negative-sum game, fixation is deterministic everywhere
with nontrivial dependence on initial conditions. Although
the fixation differs much from the concept of species extinc-
tion, the role of negative-sum in fixation shows some simi-

FIG. 2. �Color online� Dependencies of the survival probabili-
ties of s �red square�, r �blue circle�, and p �orange triangle� on the
initial density nr for different initial values of ns: �a� 0.85, �b� 0.5,
�c� 0.38, �d� 0.25, �e� 0.2, and �f� 0.05, which correspond to the
lines in the phase space S2 from left to right. Along each line, the
value of ns is fixed. In �f�, results are shown for two small lattice
sizes N=400 and N=2500. Data points are averages from 5000
random samples. The biggest phase space is obtained by setting the
initial density of empty site n0=0.1. The two smaller phase spaces
are for n0=0.6 and n0=0.3, respectively. Other parameters are the
same as Fig. 1.

FIG. 3. �Color online� Areas of the coexistence basin and an
extinction basin as a function M. The inset shows log-log plot for
the area of coexistence basin as a function of M. In the range of
small M, the area decreases exponentially as M increases. In the
vicinity of Mc �M �10−4�, the area decreases more slowly than
exponential law and can be approximated by algebraic law toward
extinction. The slope by the algebraic fitting is about −6.8. Mc is
marked by a dashed line. Other parameters are the same as in Fig. 1.
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larity to the role of high mobility in extinction. This implies
that there may be some underlying relationship between re-
laxation of zero sum and mobility.

For M �Mc, the structure of the extinction basins can be
predicted analytically. If M is sufficiently high, cyclic dy-
namics can be described in the mean-field framework
�25,26�:

� nr˙ = �nr�1 − nr − np − ns� − �nrnp

nṗ = �np�1 − nr − np − ns� − �npns

ns˙ = �ns�1 − nr − np − ns� − �nsnr,
� �5�

where �=c / �s+u+c� and �=u / �s+u+c�. The equilibrium
points can be obtained by setting nr˙ =nṗ=ns˙ =0. Five equilib-
rium points �nr ,np ,ns ,n0� are �i� �1, 0, 0, 0�, �ii� �0, 1, 0, 0�,
�iii� �0, 0, 1, 0�, �iv� �� ,� ,� ,�� / �3�+��, and �v� �0, 0, 0, 0�.
Note that Eq. �5� cannot yield an absolute, mathematical ex-
tinction due to the existence of heteroclinic orbits that ap-
proach the corners of the phase space but never reach them
�24�. However, the ordinary differential equation �ODE�
model can still characterize the basin structures by taking
into account the physical meaning of survival that the num-
ber of survival species cannot be less than unity due to the
discrete nature of individuals. The state of extinction can
then be unambiguously determined when the density of any
species is less than 1 /N. The species next to the extinction
species in the cyclic competition loop is the sole survivor,
i.e., the species on which the extinct species prey should be
the final survivor. Solutions to Eq. �5� for all possible initial
conditions are shown in Fig. 1�b�, which agree very well
with the results from direct simulation for high mobility �Fig.
1�a��. We have also examined the influence of our chosen

extinction threshold 1 /N on the basin structure by solving
Eq. �5� for different values of N. We find that this choice
does not affect the basin structures obtained from theory. It is
noteworthy the coordinates of points in the simplex S2 rep-
resent initial configurations. The center point has the Wada
property and the three corners are singular points with dif-
ferent final states from the respective basins around them.
This means the final state around the corner points are ex-
tremely sensitive to perturbations.

In summary, we have addressed the emergence of species
coexistence that favors biodiversity in the framework of cy-
clic competition dynamics. Our approach is to examine all
possible initial states to map out the basins for distinct final
states of the system as the mobility parameter is changed.
This is more systematic than previous approaches that focus
on the evolution from a particular initial state, usually the
one corresponding to uniform species populations. We have
identified two types of basins: one corresponding to coexist-
ence of all three species and another to extinction of two
species. For high population mobility, the phase space con-
tains three spirally entangled extinction basins. The basin of
coexistence emerges from the center of the phase space when
the mobility parameter is decreased through a critical point.
The strength of coexistence can be characterized by the area
of its basin. Our exploration of the basin structure thus pro-
vides a more comprehensive and complete picture concern-
ing the rising and persistence of biodiversity than previously
achieved.
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