
Physics Letters A 364 (2007) 189–193

www.elsevier.com/locate/pla

Epidemic spreading on heterogeneous networks with identical infectivity
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Abstract

In this Letter, we propose a modified susceptible-infected-recovered (SIR) model, in which each node is assigned with an identical capability of
active contacts, A, at each time step. In contrast to the previous studies, we find that on scale-free networks, the density of the recovered individuals
in the present model shows a threshold behavior. We obtain the analytical results using the mean-field theory and find that the threshold value
equals 1/A, indicating that the threshold value is independent of the topology of the underlying network. The simulations agree well with the
analytic results. Furthermore, we study the time behavior of the epidemic propagation and find a hierarchical dynamics with three plateaus. Once
the highly connected hubs are reached, the infection pervades almost the whole network in a progressive cascade across smaller degree classes.
Then, after the previously infected hubs are recovered, the disease can only propagate to the class of smallest degree till the infected individuals
are all recovered. The present results could be of practical importance in the setup of dynamic control strategies.
© 2006 Elsevier B.V. All rights reserved.

PACS: 89.75.Hc; 87.23.Ge; 87.19.Xx; 05.45.Xt
1. Introduction

Many real-world systems can be described by complex net-
works, ranging from nature to society. Recently, power-law de-
gree distributions have been observed in various networks [1,
2]. One of the original, and still primary reasons for study-
ing networks is to understand the mechanisms by which dis-
eases and other things, such as information and rumors spread
over [3,4]. For instance, the study of networks of sexual con-
tact [5–7] is helpful for us to understand and perhaps control
the spread of sexually transmitted diseases. The susceptible-
infected-susceptible (SIS) [8,9], susceptible-infected-recovered
(SIR) [10,11], and susceptible-infected (SI) [12–14] models
on complex networks have been extensively studied recently.
In this Letter, we mainly concentrate on the behaviors of SIR
model.

The standard SIR style contains some unexpected assump-
tions while being introduced to the scale-free (SF) networks
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directly, that is, each node’s potential infection-activity (infec-
tivity), measured by its possibly maximal contribution to the
propagation process within one time step, is strictly equal to its
degree. As a result, in the SF network the nodes with large de-
gree, called hubs, will take the greater possession of the infec-
tivity. This assumption cannot represent all the cases in the real
world, owing to that the hub nodes may be only able to contact
limited population at one period of time despite their wide ac-
quaintance. The first striking example is that, in many existing
peer-to-peer distributed systems, although their long-term com-
municating connectivity shows the scale-free characteristic, all
peers have identical capabilities and responsibilities to commu-
nication at a short term, such as the Gnutella networks [15,
16]. Second, in the epidemic contact networks, the hub node
has many acquaintances; however, he/she could not contact all
his/her acquaintances within one time step [17]. Third, in some
email service systems, such as the Gmail system schemed out
by Google, their clients are assigned by limited capability to in-
vite others to become Gmail-users [18]. The last, in network
marketing processes, the referral of a product to potential con-
sumers costs money and time (e.g. a salesman has to make
phone calls to persuade his social surrounding to buy the prod-
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uct). Therefore, generally speaking, the salesman will not make
referrals to all his acquaintances [19]. Similar phenomena are
common in our daily lives. Consequently, different styles of the
practical lives are thirst for research on it and that may delight
us something interesting which could offer the direction in the
real lives.

2. The model

First of all, we briefly review the standard SIR model. At
each time step, each node adopts one of three possible states
and during one time step, the susceptible (S) node which is con-
nected to the infected (I) one will be infected with a rate β .
Meanwhile, the infected nodes will be recovered (R) with a rate
γ , defining the effective spreading rate λ = β/γ . Without los-
ing generality, we can set γ = 1 [20]. Accordingly, one can
easily obtain the probability that a susceptible individual x will
be infected at time step t to be

(1)λx(t) = 1 − (1 − λ)θ(x,t−1),

where θ(x, t − 1) denotes the number of contacts between x

and its infected neighbors at time t − 1. For small λ, one has

(2)λx(t) ≈ λθ(x, t − 1).

In the standard SIR network model, each individual will con-
tact all its neighbors once at each time step, and therefore the
infectivity of each node is equal to its degree. Since only the
contacts between susceptible and infected individuals are effec-
tive for the epidemic spreading, θ(x, t) is equal to the number of
x’s infected neighbors at time t . However, in the present model,
we assume every individual has the same infectivity A. That
is to say, at each time step, each infected individual will gen-
erate A contacts where A is a constant. Multiple contacts to
one neighbor are allowed, and contacts not between susceptible
and infected ones, although without any effect on the epidemic
dynamics, are also counted just like the standard SIR model.
The dynamical process starts with randomly selecting one in-
fected node. During the first stage of the evolution, the number
of infected nodes increases. Since this also implies a growth of
the recovered population, the ineffective contacts become more
frequent. After a while, in consequence, the infected popula-
tion begins to decline. Eventually, it vanishes and the evolution
stops. Without special statement, all the following simulation
results are obtained by averaging over 100 independent runs
for each of 300 different realizations, based on the Barabási–
Albert (BA) [1] network model. The BA model suggests that
two main ingredients of self-organization of a network in a
scale-free structure are growth and preferential attachment, that
is, at each time step, one node is added in the networks with a
few edges attached to the previously existing nodes with prob-
ability proportional to their degrees.

3. Simulation and results

Toward the standard SIR model, Moreno et al. obtained the
analytical value of threshold 〈k〉/〈k2〉 [11]. Similarly, we con-
sider the time evolution of Ik(t), Sk(t) and Rk(t), which are the
densities of infected, susceptible, and recovered nodes of de-
gree k at time t , respectively. Clearly, these variables obey the
normalization condition:

(3)Ik(t) + Sk(t) + Rk(t) = 1.

Global quantities such as the epidemic prevalence are therefore
expressed by the average over the various connectivity classes;
i.e., R(t) = ∑

k P (k)Rk(t). Using the mean-field approxima-
tion and treating the time t as a continuous variable, the rate
equations for the partial densities in a network characterized by
the degree distribution P(k) can be written as:

(4)
dIk(t)

dt
= −Ik(t) + λkSk(t)

∑
k′

P(k′|k)Ik′(t)A

k′ ,

(5)
dSk(t)

dt
= −λkSk(t)

∑
k′

P(k′|k)Ik′(t)A

k′ ,

(6)
dRk(t)

dt
= Ik(t),

where the conditional probability P(k′|k) denotes the degree
correlations that a vertex of degree k is connected to a vertex
of degree k′. Considering the uncorrelated network, P(k′|k) =
k′P(k′)/〈k〉, thus Eq. (4) takes the form:

(7)
dIk(t)

dt
= −Ik(t) + λk

〈k〉Sk(t)
∑

k

AP (k)Ik(t).

Eqs. (4)–(6), combined with the initial conditions Rk(t) = 0,
Ik(0) = I 0

k , and Sk(0) = 1 − I 0
k , completely define the SIR

model on any uncorrelated and unlocalized network with degree
distribution P(k). We will consider in particular the case of a
homogeneous initial distribution of infected nodes, I 0

k = I 0. In
this case, in the limit I 0 → 0, we can substitute Ik(0) � 0 and
Sk(0) = 1. Under this approximation and by taking the similar
converting like from Eq. (4) to Eq. (7), Eq. (5) can be directly
integrated, yielding

(8)Sk(t) = e−λkφ(t),

where the auxiliary function φ(t) is defined as:

(9)φ(t) =
t∫

0

∑
k AP (k)Ik(t)

〈k〉 =
∑

k AP (k)Rk(t)

〈k〉 .

Focusing on the time evolution φ(t), one has

dφ(t)

dt
=

∑
k AP (k)Ik(t)

〈k〉
=

∑
k AP (k)(1 − Rk(t) − Sk(t))

〈k〉
= A

〈k〉 − φ(t) −
∑

k AP (k)Sk(t)

〈k〉
(10)= A

〈k〉 − φ(t) −
∑

k AP (k)e−λkφ(t)

〈k〉 .

Since Ik(∞) = 0 and consequently limt→∞ dφ(t)/dt = 0, we
obtain from Eq. (10) the following self-consistent equation for
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Fig. 1. (Color online.) R(∞) as a function of the effective spreading rate λ on
BA networks with 〈k〉 = 12, N = 2000. The black line represents the case of
standard SIR model, and the blue, green and red curves represent the present
model with A = 4, 5 and 6, respectively. The arrows point at the critical points
obtained from simulations. One can see clear from the inset that the analytic
results agree well with the simulations.

φ∞ as

(11)φ∞ = A

〈k〉
(

1 −
∑

k

P (k)e−λkφ∞
)

.

The value φ∞ = 0 is always a solution. In order to have a non-
zero solution, the condition

(12)
A

〈k〉
d(1 − ∑

k P (k)e−λkφ∞)

dφ∞

∣∣∣∣
φ∞=0

> 1

must be fulfilled, which leads to

(13)
Aλ

〈k〉
∑

k

kP (k) = λA > 1.

This inequality defines the epidemic threshold

(14)λc = 1

A
,

below which the epidemic prevalence is null, and above which
it attains a finite value. Correspondingly, the previous works
about epidemic spreading in SF networks present us with com-
pletely new epidemic propagation scenarios that a highly het-
erogeneous structure will lead to the absence of any epidemic
threshold. While, now, it is 1/A instead (see the simulation and
analytic results in Fig. 1). Furthermore, we can also find that the
larger of identical infectivity A, the higher of density of R(∞)

for the same λ from Fig. 1.
From the analytical result, λc = 1/A, one can see that the

threshold value is independent of the topology if the underlying
network is valid for the mean-field approximation.1 To further
demonstrate this proposition, we next compare the simulation
results on different networks. From Fig. 2, one can find that the
threshold values of random networks, BA networks with differ-
ent average degrees, and BA networks with different sizes are

1 Note that, if the connections of the underlying networks are localized (e.g.
lattices), then the mean-field approximation is incorrect and the threshold value
is not equal to 1/A.
Fig. 2. (Color online.) R(∞) as a function of the effective spreading rate λ on
BA and random networks with 〈k〉 = 6 (a), BA networks for different attach-
ment number m (m = 〈k〉/2) (b), and BA networks with different size N (c).
In figure (a) and (b), the network size is N = 2000, and in all the above three
plots, the infectivity is A = 2.

the same, which strongly support the above analysis. Note that,
in the standard SIR model, there exists obviously finite-size ef-
fect [10,21], while in the present model, there is no observed
finite-size effect (see Fig. 3(c)).

4. Velocity and hierarchical spread

For further understanding the spreading dynamics of the
present model, we study the time behavior of the epidemic
propagation. Originated from the Eq. (8), Sk(t) = e−λkφ(t),
which result is valid for any value of the degree of k and the
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Fig. 3. (Color online.) Time behavior of the average degree of the newly re-
covered nodes (a) and inverse participation ratio Y2 (b) in BA networks of size
N = 5000.

function φ(t) is positive and monotonically increasing. This
last fact implies that Sk is decreasing monotonically towards
zero as time goes on. For any two values k > k′, and what-
ever the initial conditions S0

k and S0
k′ are, there exists a time

t ′ after which Sk(t) < Sk′(t). A more precise characterization
of the epidemic diffusion through the network can be achieved
by studying some convenient quantities in numerical spreading
experiments in BA networks. First, we measure the average de-
gree of newly recovered nodes at time t , which is equal to the
average degree of newly infected nodes at time t − 1,

〈
kR(t)

〉 =
∑

k k[Rk(t) − Rk(t − 1)]
R(t) − R(t − 1)

(15)=
∑

kkIk(t − 1)

I (t − 1)
= 〈

kinf(t − 1)
〉
.

In Fig. 3(a), we plot this quantity for BA networks as a func-
tion of the time t for different values of A and find a hierarchical
dynamics with three plateaus. We can find that all of the curves
show an initial plateau (see also a few previous works on hierar-
chical dynamics of the epidemic spreading [12,22,23]), which
denotes that the infection takes control of the large degree ver-
tices firstly. Once the highly connected hubs are reached, the
infection pervades almost the whole network via a hierarchical
cascade across smaller degree classes. Thus, 〈kR(t)〉 decreases
to a temporary plateau, which approximates 〈k〉 = 2m. At last,
since the previously infected nodes recovered, all of which can
be regarded as the barriers of spreading, the infection can only
propagate to the smallest degree class. Then, the spreading
process stops fleetly once the infected nodes are all recovered,
as illustrated that 〈kR(t)〉 decreases to zero rapidly.

Furthermore, we present the inverse participation ratio Y2(t)

[24] to indicate the detailed information on the infection propa-
gation. First we define the weight of recovered individuals with
degree k by wk(t) = Rk(t)/R(t). The quantity Y2(t) is then de-
fined as:

(16)Y2(t) =
∑

k

w2
k(t).

Clearly, if Y2 is small, the infected individuals are homoge-
neously distributed among all degree classes; on the contrary,
if Y2 is relatively larger, then the infection is localized on some
specific degree classes. As shown in Fig. 3(b), the function
Y2(t) has a maximum at the early time stage, which implies that
the infection is localized on the large degree k classes, as can
also inferred from Fig. 3(a). Afterwards Y2(t) decreases, with
the infection progressively invading the lower degree classes,
and providing a more homogeneous diffusion of infected ver-
tices in the various degree classes. And then, Y2(t) increases
gradually, which denotes the capillary invasion of the lowest
degree classes. Finally, when Y2(t) slowly comes to the steady
stage, the whole process ends.

5. Conclusion

In this Letter, we investigated the behaviors of SIR epi-
demics with an identical infectivity A. In the standard SIR
model, the capability of the infection totally relies on the node’s
degree, and therefore it leaves some practical spreading behav-
iors alone, such as in the pear-to-pear, sexual contact, Gmail
server system, and marketing networks. Accordingly, this work
is of not only theoretic interesting, but also practical value. We
obtained the analytical result of the threshold value λc = 1/A,
which agree well with the numerical simulation. In addition,
even though the activity of hub nodes are depressed in the
present model, the hierarchical behavior of epidemic spreading
is clearly observed, which is in accordance with some real situ-
ations. For example, in the spreading of HIV in Africa [25], the
high-risk population, such as druggers and homosexual men,
are always firstly infected. And then, this disease diffuses to the
general population.

Finally, two questions relative to the practical applications
are raised. First, how about the immunization effect [26] on the
present model on scale-free networks, is it as efficient as that
on the standard SIR model? Second, opposite to the immuniza-
tion strategy, a fast spreading strategy may be very useful for
enhancing the efficiency of network broadcasting or for mak-
ing profits from network marketing. Since the infectivity in the
present model is a constant, it is natural to ask if the individuals’
contacts are biased, they may prefer to contact to large-degree
nodes or contrary, what will happen and which strategy will
lead to the fastest spreading?
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