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Abstract. We study the origin of navigability in small-world (SW) networks
and propose a general scheme for navigating SW networks. We find that
navigability can naturally emerge from self-organization in the absence of
prior knowledge about the underlying reference frames of networks. Through
a process of information exchange and accumulation on networks, a hidden
metric space for navigation on networks is constructed. Navigation based on
distances between vertices in the hidden metric space can efficiently deliver
messages on SW networks, in which long-range connections play an important
role. Numerical simulations further demonstrate that a high cluster coefficient
and a low diameter are both necessary for navigability. These interesting results
provide profound insights into scalable routing on the Internet due to its
distributed and localized requirements.
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1. Introduction

Small-world (SW) networks are ubiquitous in nature and society. In the late 1960s, Travers
and Milgram [1] discovered the SW phenomenon by studying the delivery of letters among
people. In the experiment, each participant could only deliver letters to a single acquaintance
who was more capable of delivering letters to the target persons in their opinion. Relying on
this greedy routing strategy, or the so-called navigation, at last 29% of the letters reached the
target persons and the average length of acquaintance chains of letters that were successfully
sent was 6. In 2001, Watts et al performed a global and Internet-based social search experiment
involving more than 60 000 individuals aiming at reaching one of 18 targets in 13 countries
by forwarding email messages to acquaintances. It was found that the successful social search
with an average of 4.1 hops was conducted primarily through intermediate to weak strength
ties [2]. Experiments performed by Adamic and Adar in 2004 proved that the SW searching
strategy, by greedy forwarding on the email network of HP Labs based on physical space or the
organizational hierarchy relative to the target, could effectively locate most individuals within
four steps [3]. Moreover, a recent work proposed by Liben-Nowell et al [4] demonstrated that
the greedy routing strategy based on geographic position was efficient in passing messages
together with the median path length 4 on large scale-social networks. These striking results
suggest that people are connected with much shorter chains than we can imagine, and they can
find the short paths based solely on local information, regardless of the network size and the
topological distances between people.

The navigability of SW networks has attracted a great deal of interest among scientists.
A variety of network models have been proposed to explain the underlying mechanisms that
ensure finding the shortest paths based exclusively on local information. In these models,
networks were generated based on the underlying reference frames (e.g. grids, hierarchy and
hyperbolic spaces) that determined how networks were organized and provided the definitions of
distances between vertices. In this regard, adjacent vertices were more likely to be connected by
greedy routing that was efficient in passing messages if vertices were aware of the positions of
their neighbors and targets. For instance, Kleinberg proved that the navigability of lattices could
be improved by adding long-range connections according to distance-dependent probability.
The chain length of greedy routing based on geography was bounded by (ln N )2 if the
probability that two vertices link was inversely proportional to the square of their distance [5].
Watts et al [6] assumed that individuals belonged to groups embedded in a hierarchy that
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defined the ‘social distance’ between individuals, and people tended to connect to those who
are socially close to them in the hierarchy. Boguñá et al have generated Internet-like scale-free
networks with high navigability by embedding vertices into hyperbolic metric space and adding
links between nearby vertices according to probability, which decreased with the growth of the
distance between vertices [7]–[10].

In fact, the aforementioned works suggest that networks act as an overlay on their
underlying reference frames during navigation. Therefore, the navigability of networks is based
on the fact that the underlying reference frames are navigable. In these models, efficient
navigation needs prior knowledge about the organization of networks. However, several real
large-size networks, e.g. email networks and online social service networks, are self-organized,
so that it is hard for individuals to be aware of underlying reference frames and to discover their
exact positions. Moreover, the impact of network structure on navigability was also investigated.
de Moura et al [11] studied the ‘look-up’ time of greedy forwarding in the Watts–Strogatz (WS)
family of networks based on the distance along the ring between two vertices. They found that
the Kleinberg power-law decay of connection distribution was not necessary for fast navigation
with local information. Motter et al [12] proved that a level of correlation between groups
forming a hierarchy of the social structure was important for navigability, leading to a more
searchable network, by using scaling analysis and numerical computation.

Here, we aim to address the navigability of SW networks through a different method:
establishing a general scheme for efficient navigation by embedding existing networks into
hidden metric space, rather than adding links between vertices to build navigable networks.
The embedding approach has been considered for predicting network distance on the Internet.
This is implemented by embedding networks into a Euclidean space and ensuring that
distances between vertices match the shortest path through a proper embedding algorithm,
regardless of underlying reference frames [13]–[15]. Other types of network embedding
algorithms for the reconstruction of underlying reference frames have also been proposed,
e.g. embedding the networks generated by Kleinberg’s model into the Euclidean plane and
reconstructing the dimension of the underlying lattice when the network is generated by long-
range percolation [16, 17].

Inspired by the fact that the information about acquaintances that is used to evaluate the
‘social distances’ is exchanged through communication in social networks, we embed existing
networks into the hidden metric space through self-organization of individuals in networks,
regardless of the underlying reference frames. Therefore, the embedding algorithm, in which
vertices exchange their position information with their immediate neighbors and decide their
positions by themselves, is distributed and localized. The distributed and localized features make
the embedding algorithm quite different from previous ones, which required global information,
central control or prior knowledge of underlying reference frames. It is demonstrated by
numerical simulations that the self-organized algorithm can establish a scheme for efficient
navigation, irrespective of the underlying reference frames of networks, and we find that the
navigability of networks is influenced by SW properties.

2. Algorithm to establish the navigation scheme

The key to addressing navigability lies in the self-organized embedding algorithm in the absence
of prior knowledge about underlying reference frames. In our algorithm, an m-dimension
Euclidean space is chosen as the metric space to define distances between vertices. Then we
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follow the self-organized process of information exchange and accumulation on social networks,
which is described as

xi,t = f (x j,t−1), j ∈ Ni , (1)

pi,t = p j,t−1 + xi,t , (2)

where Ni is the set of immediate neighbors of vertex i. Vectors x and p consist of m elements
corresponding to the m dimensions of metric space. The vector x is coupled through the network
topology and simultaneously updated according to equation (1), while the position vector p is
the cumulative summation of the historical vector x. Since information exchange in equation (1)
is restricted to between vertices and their direct neighbors, the algorithm is distributed and
localized. Meanwhile, distances between vertices will be constant if the vector x can converge
after sufficient evolving steps. Moreover, vertices can be seen as flocking in a metric space, and
the vectors x and p represent velocity and position, like in the Vicseck model [18]. Velocities of
tightly connected vertices synchronize more quickly. Therefore, vertices connected by shorter
paths will gather in the metric space, which ensures that the distances between vertices in the
metric space are associated with path lengths on networks. Messages can be delivered along
short paths by navigation based on distances in the metric space.

Many dynamics can be applied as a realization of equation (1), such as chaotic oscillators
coupled by networks that can synchronize depending on suitable coupling strengths. For the
purpose of simplicity, we choose the updating rule of vector x as follows: at every time step, the
value of xi is the average of its neighbors and the initial pi,0 equals xi,0. Then the algorithm can
be written as

p0 = x0, (3)

xi,t =
1

di

∑
j

x j,t−1, j ∈ Ni , (4)

pi,t = pi,t−1 + xi,t , (5)

where di is the degree of vertex i . Equations (4) and (5) can be rewritten in matrix form as the
combinations of eigenvectors of the normal matrix N of the network,

P0 = X0 = VA, (6)

Xt = NXt−1 = NtX0 = VDtA, (7)

Pt = Pt−1 + Xt = V

(
I +

t∑
i=1

Di

)
A. (8)

Each row of matrices X and P is the vector of velocities and positions of each vertex. Columns of
matrix V are the eigenvectors of N. The matrix A consists of a linear combination of coefficients
when eigenvectors of N are chosen as basis vectors. The matrix D is a diagonal matrix with
eigenvalues of the normal matrix on the main diagonal. Because eigenvalues of N are in the
interval [−1, 1], for long enough evolving time t , we obtain the final position matrix P̃ as

P̃ = VEA. (9)
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The matrix E is a diagonal matrix whose i th diagonal element is 1/(1 − λi), where λi is
the eigenvalue of the normal matrix. It can be seen that eigenvectors corresponding to large
eigenvalues play more important roles in the position matrix as a result of the factor 1/(1 − λi).

Since the positions of vertices in the metric space are linear combinations of eigenvectors
of the normal matrix, this demonstrates that the embedding can represent network topology,
which is reflected by the fact that adjacent vertices in the metric space are connected by shorter
paths on the network. The distance between vertices i and j after sufficient evolving time is

d2
i, j =

m∑
l=1

[
n∑

k=1

ak,l

1 − λk
(vi,k − v j,k)

]2

=

m∑
l=1

n∑
k=1

[
ak,l

1 − λk

]2

(vi,k − v j,k)
2 + 2

m∑
l=1

n∑
p=1

n∑
q=p+1

ap,laq,l

(1 − λp)(1 − λq)

×(vi,p − v j,p)(vi,q − v j,q), (10)

where ai, j and vi, j are the elements of matrices A and V, respectively. If elements of X0 are
uniformly distributed in the interval [−1, 1], the elements of the matrix A have the following
properties: 〈ai, j〉 = 0, 〈ai, jak,l〉 = 0 and 〈a2

i, j〉 = 〈x2
〉. In addition, if m is sufficiently large, the

distance can be expressed by

d2
i, j =

n∑
k=1

m〈x2
〉

(1 − λk)2
(vi,k − v j,k)

2. (11)

Equation (11) shows that the distances between vertices can be seen as those in the situation
where the position values of vertices are elements of weighted eigenvectors of the normal
matrix. Due to the factor (1 − λk)

−2, distances are mostly determined by eigenvectors associated
with large eigenvalues. It has been proved that these eigenvectors are the solutions of the
following constrained optimization problem [19]. Let the energy of the system z(x) be
defined as

z(x) =
1
2x′Lx, (12)

where L is the Laplace matrix of a network and x are position values assigned to the vertices
together with a constraint,

x′Kx = 1, (13)

where the matrix K is a diagonal matrix whose i th main diagonal element is the degree of vertex
i . Let λ1 < λ2 < · · · < λn−1 < λn = 1 be the eigenvalues, and the corresponding eigenvectors
under the constraint of equation (13) are v1, v2, . . . , vn−1 and vn. The minimum nontrivial value
of z is 1 − λn−1, and the relevant position vector x is vn−1. If the energy reaches the minimum
nontrivial value, vertices that are connected by a number of short paths are sufficiently close in
the metric space constructed by eigenvectors, which ensures that distances in the metric space
correspond to path lengths on networks.

Due to the fact that similar vertices are more likely to be connected, it is natural to
evaluate similarities based on the number of paths between vertices and the length of paths
in the absence of prior knowledge of underlying reference frames [20]. Through this evaluation,
vertices connected by more number of and shorter paths, which will be adjacent in the metric
space after self-organized embedding, are deemed to be more similar. Therefore, the results of
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the embedding algorithm are consistent with the basic ideas of underlying reference frames:
similar vertices are adjacent and more likely to be connected.

3. Experimental results

3.1. Experimental results of small-world (SW) networks generated by the
Watts–Strogatz (WS) model

The self-organized embedding algorithm is applied to build a navigation scheme on SW
networks generated by the WS model, in which SW properties result from rewiring the edges
of the original regular network at probability p [21]. The chosen original regular network
has n = 1000 vertices, and each vertex links to k = 10 nearest others. The diameters and
cluster coefficients of networks at different rewiring probabilities are shown in figure 1(a).
Experimental results are averaged over 20 network realizations. As shown in figure 1(a), even
for the small rewiring probability, the diameters of networks decrease sharply, while the cluster
coefficients are nearly the same as those of the original regular network.

At the beginning of the embedding algorithm, every vertex is assigned an initial velocity
xi,0, whose values for each dimension are uniformly distributed within [−0.5, 0.5]. The
dimensions of metric spaces are chosen to be m = 5, 10 and 20 to investigate how the metric
space influences navigation. The embedding algorithm is terminated when the velocities of
vertices reach a certain synchronization level. We defined the synchronization error of xi of
dimension k at evolving time t as

et(k) =
1

n

n∑
i=1

(xi,t(k) − 〈xi,t(k)〉)2. (14)

When the synchronization errors of velocities at each dimension are less than a small value,
which is chosen as 10−4, the embedding algorithm is terminated.

The greedy routing strategy to simulate navigation on networks can be described as follows.
Vertices are aware of positions of their neighbors in the metric space and the positions of targets
are transmitted by messages. Messages are passed through current hop to the neighbor closest
to targets at each step. To avoid loops, messages are prohibited from neighbors that have been
visited. The routing will terminate if the message reaches the target or all the neighbors of the
current hop have been visited. We randomly pick 104 source and target pairs for every network
to be navigated. Note that the navigation is not symmetric, e.g. navigation from vertex i to j is
not equivalent to navigation from vertex j to i because the local environments of vertices i and
j are different. Efficient navigation is defined by the fact that messages are successfully passed
to targets along the shortest paths. Therefore, we examine two metrics to evaluate navigability:
the successfully routed rate (the ratio of the number of successfully routed messages to the total
number of messages) and the stretch (the average of the ratios of the routing path length and the
shortest path length of all messages).

Figures 1(b)–(d) show the successfully routed rates and stretches as a function of rewiring
probability p for the hidden metric space of different dimensions. When rewired connections
start to emerge, successfully routed rates increase quickly, whereas stretches grow much
more slowly until cluster coefficients drop sharply. As a result of different growth rates, both
highly successful routed rates and low stretches, which indicate efficient navigation and strong
navigability, simultaneously occur when the networks show SW properties and are much more
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(a) diameter and cluster coefficient (b) m = 5

(c) m = 10 (d) m = 20

Figure 1. The diameter and cluster coefficient as a function of rewiring
probability p (a); the performance of greedy routing for different dimensions
of metric space: (b) m = 5, (c) m = 10 and (d) m = 20. Networks are generated
by the WS model [21]. Numerical simulations at each p are averaged over 20
realizations of the model. SW networks show strong navigability with high
successfully routed rates and low stretches for all dimensions. In particular,
the SW properties are necessary for navigability, and the large metric space
dimension is useful in improving the navigability.

apparent for the hidden metric space of larger dimensions. In other words, the larger dimension
of hidden metric space is useful in improving the performance of navigation, which is reflected
by higher successfully routed rates and lower stretches at the same rewiring probability.

Long-range connections, or the so-called weak ties in sociology, play an important role in
activities on networks, e.g. information that people receive through weak ties is more useful and
successfully routed messages on email networks are conducted primarily through intermediate
to weak strength ties [2, 22]. Hence, it is worth studying how long-range connections affect
navigation by passing messages to vertices far away from each other on networks. We calculate
the distributions of the shortest path length between all the pairs and successfully routed pairs
at different rewiring probabilities p when the metric space dimension is 20 (see figure 2). When
there are fewer long-range connections, messages passing along a shorter source–target path
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(a) p = 0.0001 (b) p = 0.0002

(c) p = 0.0004 (d) p = 0.0008

Figure 2. Distributions of shortest path length between the source and the
target of all routed messages and successfully routed messages for different
rewiring probabilities p: (a) p = 0.0001, (b) p = 0.0002, (c) p = 0.0004 and
(d) p = 0.0008. As the number of long-range connections increases, messages
can escape from the local area of source vertices and travel a long distance.
The two distributions have agreed well with each other even when the rewiring
probability is still very small. These results reflect the power of weak ties: even
if a few long-range connections exist, messages could be passed to the entire
network.

take a greater percentage of successfully routed messages than in all messages. The reason is
that many messages cannot travel far away from the starting vertices on networks with high
cluster coefficients resulting from quickly arriving at those vertices whose neighbors have all
been visited. As the number of long-range connections increases, messages can escape from the
local area of source vertices and travel a long distance on networks to arrive at targets. Therefore,
targets are successfully reached at the same probability for different path lengths from sources.
Moreover, the two distributions have agreed well with each other when the rewiring probability
is 0.0008, which results in a sufficiently small number of long-range connections compared with
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the total number of connections. The weak ties are extremely useful in the sense that even if a
few long-range connections exist, messages could be passed to the whole network. This fact
also explains why the successfully routed rates immediately increase fast when there are only a
few long-range connections.

The navigability of networks in terms of the self-organized embedding algorithm is based
on the fact that distances in the metric space are associated with the similarities of vertices
extracted from topology. However, we cannot ensure that the distance between every vertex
pair represents its similarity in the absence of central control, e.g. adjacent vertices in the
metric space may not be tightly connected. Actually, greedy routings performed on networks
consist of two parts: the properly directed part has a relevant to navigation, while the remaining
part is more tendency to random walks. For numerical simulations on SW networks, when
cluster coefficients stay at a high value, there are clusters consisting of tightly connected similar
vertices, which satisfies the organizing rules of networks based on underlying reference frames.
In this case, network topology can be mapped into a hidden metric space by the self-organized
embedding algorithm. Meanwhile, messages cannot travel along paths through random walk on
networks with high cluster coefficients because they are easy to reach a vertex, all of whose
neighbors have been visited. Successfully passed messages on highly clustered networks are
mostly routed by navigation, which leads to low stretches. When cluster coefficients drop
quickly, the local clusters vanish by randomly rewired connections and vertices are randomly
placed in the hidden metric space, which differentiates the embedding of networks from the
network topology. In this regard, random walks can travel a long path to reach targets because
vertices have few common neighbors. Therefore, most messages are successfully delivered by
random walks, which leads to large stretches and the successfully routed rates are close to 1.

3.2. Experimental results of SW networks with power-law degree distribution

Many real SW networks have the power-law degree distribution p(k) ∼ k−γ , for example the
Internet and WWW. They are called scale-free networks, in which there are vertices with
much larger degrees than those of randomly connected networks, such as the Erdös–Rényi
(ER) model. The largest degree of a scale-free network is proportional to N 1/(γ−1), where N
is the number of vertices in the network. The Barabási–Albert (BA) model has been proposed
to explain the emergence of power-law degree distributions based on the ideal of preferential
attachment [23]. We also investigate the navigability of scale-free networks generated by the
generalized BA model [24, 25]. In this model, a vertex is added in the network with m
connections at each step. The probability of attaching to an existing vertex of degree k is
proportional to k + k0, where the offset k0 is a constant. Note that k0 being larger than −m is
to ensure positive probabilities. This model yields a power-law degree distribution with the
exponent γ = 3 + k0/m. Negative values of k0 lead to an exponent less than 3, which has been
observed in many real complex networks.

The scale-free networks consist of 103 vertices together with m = 3 and the offset k0 being
turnable to obtain exponent γ from 2 to 4. Results for different γ are averaged over 20 networks.
SW properties of scale-free networks are shown in figure 3(a). Scale-free networks with smaller
exponents exhibit stronger SW property as the cluster coefficients quickly decrease with the
growth of the exponent. We construct a metric space and exactly execute greedy routing similar
to SW models. Figure 3(b)–(d) show the performance of navigation for different exponents γ .
This demonstrates that when networks exhibit SW properties with small γ , strong navigability
emerges. Stretches are also affected by cluster coefficients because the topology of highly
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(a) diameter and cluster coefficient (b) m = 5

(c) m = 10 (d) m = 20

Figure 3. The diameter and cluster coefficient as a function of the exponent γ

(a); the performance of greedy routing for different dimensions of the metric
space: (b) m = 5, (c) m = 10 and (d) m = 20. Networks are generated by the
generalized BA model [24, 25]. Experimental results at each γ are averaged
over 20 realizations of the model. Scale-free networks with a small exponent γ

show strong navigability represented by high successfully routed rates and low
stretches for all dimensions. Like the results of SW models, both a high cluster
coefficient and a low diameter are also necessary for navigability, and the large
metric space dimension is also helpful in improving navigability.

clustered networks can be more properly mapped into a metric space. In addition, it can be
seen that the high degree nodes act as hubs in navigation on scale-free networks [8]. Therefore,
as γ increases, successfully routed rates slightly drop because the highest degrees decrease.
However, when cluster coefficients continuously decrease, successfully routed rates start to
increase because most messages are passed by random walks, which also leads to large stretches.

4. Conclusion

In conclusion, we have substantiated the emergence of navigability on SW networks by
mapping the network topology into Euclidean hidden metric spaces through a simple embedding
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algorithm based on information exchange and accumulation in the absence of prior knowledge
of underlying reference frames of networks. It has been demonstrated that high navigability
emerges only if networks exhibit strong SW properties. Despite the lack of prior knowledge
about underlying reference frames, the self-organized embedding algorithm can establish a
navigable scheme for different kinds of SW networks, which is supported by the results of
SW networks generated by the WS model and the BA model.

The self-organized navigation may be a possible approach available for scalable routing on
the Internet, which has attracted much interest recently. Many algorithms have been proposed
for reducing the storage space of the routing table without a remarkable increase in the routing
path lengths, e.g. the compact routing schemes [26]–[28]. The size of routing table could be
reduced to poly-logarithmic of the network size in compact routing with a stretch smaller
than 3, yet global topology and central control required for building the routing scheme in
these algorithm will demand a large amount of communications on networks. In this work,
since the constructing hidden metric space and greedy routing are distributed and localized in
a self-organized way, communications are restricted between immediately connected vertices.
Meanwhile, the sizes of routing tables are the degrees of vertices, and stretches are quite small
when the networks show SW properties. Compared with previous works on navigation [5]–[10],
this work may provide profound insights into the scalable routing scheme through a self-
organized method in the absence of prior knowledge.
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