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Xiao-Yong Yan1,2, Chen Zhao1, Ying Fan1, Zengru Di1 and Wen-Xu Wang1,3

1School of Systems Science, Beijing Normal University, Beijing 100875, People’s Republic of China
2Department of Transportation Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043,
People’s Republic of China
3School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA

Despite the long history of modelling human mobility, we continue to lack a

highly accurate approach with low data requirements for predicting mobility

patterns in cities. Here, we present a population-weighted opportunities

model without any adjustable parameters to capture the underlying driving

force accounting for human mobility patterns at the city scale. We use various

mobility data collected from a number of cities with different characteristics to

demonstrate the predictive power of our model. We find that insofar as the

spatial distribution of population is available, our model offers universal

prediction of mobility patterns in good agreement with real observations,

including distance distribution, destination travel constraints and flux. By con-

trast, the models that succeed in modelling mobility patterns in countries are

not applicable in cities, which suggests that there is a diversity of human mobi-

lity at different spatial scales. Our model has potential applications in many

fields relevant to mobility behaviour in cities, without relying on previous

mobility measurements.
1. Introduction
Predicting human mobility patterns is not only a fundamental problem in geogra-

phy and spatial economics [1], but it also has many practical applications in urban

planning [2], traffic engineering [3,4], infectious disease epidemiology [5–7], emer-

gency management [8–10] and location-based service [11]. Since the 1940s, many

trip distribution models [12–18] have been presented to address this challenging

problem, among which the gravity model is the prevailing framework [13].

Despite its wide use in predicting mobility patterns at different spatial scales

[19–22], the gravity model relies on specific parameters fitted from systematic col-

lections of traffic data. If previous mobility measurements are lacking, the gravity

model is not applicable. A similar limitation exists in all trip distribution models

that rely on context-specific parameters, such as the intervening opportunity

model [12], the random utility model [14] and others.

Quite recently, the introduction of the radiation model [15] has provided a new

insight into the long history of modelling population movement. The model is

based on a solid theoretical foundation and can precisely reproduce observed mobi-

lity patterns ranging from long-term migrations to intercounty commutes.

Surprisingly, the model needs only the spatial distribution of population as an

input, without any adjustable parameters. Nevertheless, some evidence has

demonstrated that the radiation model may be not applicable to predicting

human mobility at the city scale [23,24]. Understanding mobility patterns in

cities is of paramount importance in the sense that cities are the foci of disease

propagation, traffic congestion and pollution [6,25], partly resulting from human

movement. These problems can be resolved through developing more efficient

transportation systems and optimizing traffic management strategies, all of

which depend on our ability to predict human travel patterns in cities [26]. Despite

the success of the radiation model in countries, we continue to lack an explicit and

comprehensive understanding of the underlying mechanism accounting for the

observed mobility patterns in cities. We argue that this is mainly ascribed to the

relatively high mobility of residents in cities compared with larger scales, such as
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Figure 1. Human mobility range at city scale. (a – c) Spatial distributions of destination selections for travelling from a downtown location (displayed as a diamond-
shaped dot) in Beijing. (d – f ) Spatial distributions of travel from a suburban location. From left to right, the panels correspond to the results generated by the
radiation mode, the observed data and the results generated by the PWO model. The colour bar represents the number of travellers from the origin to a destination.
The inset offers definitions of variables used in the model, in which the purple circle (location i) denotes an origin with population mi, the blue circle (location j )
stands for a destination with population mj and Sji represents the total population in a circular area of radius rji centred at location j (including mi and mj).
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travelling among counties. Inside cities, especially metropolises,

high development of traffic systems allows residents to travel

relatively long distances to locations with more opportunities

and attraction. In this sense, the models that are quite successful

in reproducing mobile patterns at large spatial scales fail at the

city scale. Yet, revealing the underlying driving force and restric-

tions for such mobility to predict mobile patterns in cities

remains an outstanding problem.

In this paper, we develop a population-weighted oppor-

tunities (PWO) model without any adjustable parameters as

an alternative to the radiation model to predict human mobi-

lity patterns in a variety of cities. Insofar as the distribution of

population in different cities are available, our model offers

universal prediction of human mobility patterns in several

cities as quantified by some key measurements, including

distance distribution, destination travel constraints and flux.

By contrast, the models that succeed in predicting mobility

patterns at large spatial scales, such as countries, are inap-

propriate at the city scale because of the underestimation of

human mobility. Our approach suggests the diversity of

human mobility at different spatial scales, deepening our

understanding of human mobility behaviours.
2. Results
2.1. Population-weighted opportunities model
The model is derived from a stochastic decision-making process

of individual’s destination selection. Before an individual selects

a destination, she/he will weigh the benefit of each location’s

opportunities. The more opportunities a location has, the

higher the benefit it offers and the higher the chance of it

being chosen. Although the number of a location’s opportunities

is difficult to measure straightforwardly, it can be reflected by its

population. Insofar as the population distribution is available, it

is reasonable to assume that the number of opportunities at a
location is proportional to its population, analogous to the

assumption of the radiation model [15].

In contrast to the radiation model’s assumption that indi-

viduals tend to select the nearest locations with relatively

larger benefits, we enlarge the possible chosen area of individ-

uals to include the whole city regarding the relatively high

mobility at the city scale. As shown in figure 1, our assumption

leads to much better prediction than that of the radiation model.

Nevertheless, the possibility of travel in the observed data still

decays as the distance between the origin and destination

increases. Such decay, as predicted by different models and

common in real observations, results from the reduction of

attraction associated with a type of cost. For example, the grav-

ity model [13] assumes that the attraction of a destination, i.e. its

opportunities, is reduced according to a function of the distance

from the origin. However, the distance function inevitably

includes at least one parameter. To capture the mobility beha-

viours and avoid adjustable parameters, we simply assume

that the attraction of a destination is inversely proportional to

the population Sji in the circle centred at the destination with

radius rij (the distance between the origin i and destination j,
as illustrated in the inset of figure 1), minus a finite-size correc-

tion 1/M, i.e.

Aj ¼ oj
1

S ji
� 1

M

� �
, (2:1)

where Aj is the relative attraction of destination j to travellers at

origin i, oj is the total opportunities of destination j and M is the

total population in the city. Further, assuming that the prob-

ability of travel from i to j is proportional to the attraction of j
and recalling the assumption that the number of opportunities

oj is proportional to the population mj, we have the travel from i
to j as

Tij ¼ Ti
mj(1=S ji � 1=M)PN

k=i mk(1=Ski � 1=M)
, (2:2)
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Figure 2. Travel distance distributions Pdist(r) produced by the radiation model and the PWO model in comparison with empirical data. Four cities, (a) Beijing,
(b) Shenzhen, (c) Abidjan and (d ) Chicago, are studied. Here, Pdist(r) is defined as the probability of travel between locations at distance r.
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where Ti is the number of trips departing from i and N is the

number of locations in the city.

The presented model reflects the effect of competition for

opportunities among potential destinations: for a traveller at

origin i travelling to a potential destination j, more popu-

lation between i and j will induce stronger competition for

limited opportunities, so that the probability of being offered

opportunities will be lower. In this regard, it is reasonable to

assume that the attraction of a destination for a traveller is the

destination’s opportunities inversely weighted by population

between the destination and the origin. We therefore name

our model the PWO model. We then demonstrate the univer-

sal predictability of mobility patterns in cities via the PWO

model through a variety of real travel data in several cities.
2.2. Predicting mobility patterns
To validate the PWO model by comparison with the perform-

ance of the radiation model (see details in §4.3), we employ

human daily travel data from four cities collected by GPS,

mobile phone and traditional household surveys (see details

in §4.1 and 4.2).

Figure 1 exemplifies travel from a downtown and a sub-

urban location in Beijing predicted in an intuitive manner

by the PWO model and the radiation model in comparison

with real data. It shows that the radiation model underesti-

mates the travel areas in both cases, whereas the travel

patterns resulting from our model are quite consistent with

empirical evidence, demonstrating the relatively higher mobi-

lity in cities than at larger spatial scales where the radiation

model succeeds, such as countries.

We systematically investigate the travel distance distri-

bution obtained by both models based on real data. Travel

distance distribution is an important statistical property to

capture human mobility behaviours [27–29] and reflect a
city’s economic efficiency [1]. We find that, as shown in

figure 2, the distributions of travel distance predicted by the

PWO model are in good agreement with the real distri-

butions. By contrast, the radiation model underestimates

long-distance (longer than approx. 2 km) travel in all cases.

This implies that the assumption of the radiation model is

inappropriate at the city scale by precluding individuals

from choosing relatively long journeys to find better locations

with more opportunities. The success of the PWO model in

predicting real travel distance distributions in cities provides

strong evidence for the validity of its basic assumptions.

We next explore the probability of travel towards a

location with population m, say, Pdest(m), for both observed

data and the predictive models. Pdest(m) is a key quantity

for measuring the accuracy of origin-constrained mobility

models (the radiation model and PWO model used here are

both origin-constrained), because origin-constrained models

cannot ensure the agreement between modelled travel to a

location and real travel to the same location [3]. In figure 3,

we can see that our model equally or better predicts empirical

observations compared with the radiation model.

A more detailed measure of a model’s ability to predict

mobility patterns can be implemented in terms of the travel

fluxes between all pairs of locations produced by a model in com-

parison with real observations, as has been used in [15]. As

shown in figure 4, we find that—except the case of Abidjan—

the average fluxes predicted by the radiation model deviate

from the real fluxes, whereas the results from the PWO model

are in reasonable agreement with real observations.

Note that the boxplot method used here cannot allow an

explicit comparison to distinguish the performance of the

two models. For example, in figure 4e, although the results

deviate from the empirical data significantly, the boxes are

still coloured green, suggesting the need for an alternative

statistical method. Thus, we exploit the Sørensen similarity

http://rsif.royalsocietypublishing.org/


data
radi.
PWO

10–1

10–2

10–3

10–4

1 10 102 103 104 1 10210 103 104 105

10–1

10–2

10–3

10–4

10–1

10–2

10–3

10–4

10–1

10–2

10–3

10–4

10–5

10–6

10 102

population, m population, m
103 104 1 10 102 103

P
de

st
(m

)
P

de
st

(m
)

(b)(a)

(c) (d )

Figure 3. Comparing the destination travel constraints of the radiation and the PWO models with real data. Four cities are explored as representative cases:
(a) Beijing, (b) Shenzhen, (c) Abidjan and (d ) Chicago. Pdest(m) is the probability of travel towards a location with population m.

Beijing Shenzhen Abidjan Chicago

travels (data)

tr
av

el
s 

(m
od

el
)

tr
av

el
s 

(m
od

el
)

radiation

PWO PWO PWO PWO

radiation radiation radiation

travels (data) travels (data) travels (data)
101 102 103 104

104

103

102

10

1

105

104

103

102

10

1

105

104

103

102

10

1

104

103

102

10

1

104

103

102

10

1

103

102

10

1

103

102

10

1

101

1

104

103

102

10

1
101 102 103 101 102 103104101 102 103 104 105

(b)(a) (c)

(g)

(d )

(h)(e) ( f )

Figure 4. Comparing the observed fluxes with the predicted fluxes in four cities. (a – d) Travel fluxes predicted by the PWO model. (e – h) Travel fluxes predicted by
the radiation model. The grey points are scatter plot for each pair of locations. The blue points represent the average number of predicted travels in different bins.
The boxplots, obtained via standard statistical methods [30], represent the distribution of the number of predicted travels in different bins of the number of observed
travels. A box is marked in green if the line y ¼ x lies between 10% and 91% in that bin and in red otherwise.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140834

4

 on September 17, 2014rsif.royalsocietypublishing.orgDownloaded from 
index [31] (see details in §4.4) to quantify the degree of simi-

larity with real observations to offer a better comparison. We

have also applied both models to six European cities and

another four US cities to make a more comprehensive compari-

son (details are available in the electronic supplementary

material, §§S1 and S2). The results are shown in figure 5. For

all studied cases, our model outperforms the radiation model

and exhibits relatively high index values, say, approximately

0.7, indicating that the PWO model captures the underlying

mechanism that drives human movement in cities.
3. Discussion
We developed a PWO model as an alternative to the radiation

model to reproduce and predict mobile behaviours in cities

with different sizes, economic levels and cultural back-

grounds. Our model needs only the spatial distribution of

population as an input, without any adjustable parameters.

The mobility patterns resulting from the model are in good

agreement with real data with respect to travel distance dis-

tribution, destination travel constraints and flux, suggesting

http://rsif.royalsocietypublishing.org/
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that the model captures the fundamental mechanisms

governing human daily travel behaviours at city scale.

The radiation model, despite having the advantage of

being parameter-free and performing well at large spatial

scale, cannot offer satisfactory predictions of mobility patterns

at the city scale. The problem lies in the underestimation of the

relatively high mobility at the city scale. In particular, the radi-

ation model assumes that limited mobility prevents people

from selecting a farther location with more opportunities to

gain more benefits than a nearby location. This assumption is

reasonable at the intercity scale, but inappropriate in cities.

The PWO model can successfully overcome this problem by

assuming the attraction of a potential destination is inversely

proportional to its population, which results from competition

for opportunities in the whole city. Insofar as only population

distribution is available, our model presently offers the best

prediction of mobility patterns at the city scale, significantly

deepening our understanding of human mobility in cities

and demonstrating the universal predictability of mobility

patterns at the city scale.

We have also compared the PWO model with three classical

parametrized models: the gravity model [13], the interven-

ing opportunity model [12] and the rank-based model [17]

(see details in the electronic supplementary material, §S3).

Although in rare cases the parametrized models can yield

better predictive accuracy than the PWO model, their

parameter-dependence nature limits their scope to the cases

with particular previous systematic mobility measurements

and relatively stable mobility patterns. The PWO model, with-

out such limitations, has much more predictive power. By

exploring the relationship between all the previous models

and our PWO model (see details in the electronic supplementary

material, §S4), we find that although these models have different

hypotheses, they share an underlying mechanism: the prob-

ability that an individual selects a location to travel is decreased

along with the increment of some prohibitive factors (distance

or population). The key difference lies in that the gravity

model, the intervening opportunity model and the rank-based

model need adjustable parameters to quantify the decrement,

whereas the decrement is naturally determined by population

distribution in the radiation model and the PWO model.

It is noteworthy that despite the advantages of the PWO

model in predicting mobility patterns at the city scale, the

predictability could be improved further. The travel matrices
established by the model share approximately 70% common

part with the real data (figure 5). Although this accuracy can

suffice for the requirements in many areas of applications, for

example, in urban planning and epidemic modelling [32],

it is still below the average upper limit of the predictability

of human mobility [26]. In principle, the PWO model is

essentially a type of aggregate travel model [3] based on the

collective behaviours of groups of similar travellers, whereas

the diversity of real individuals’ behaviours [33,34] is in con-

trast to the assumptions of aggregate models, accounting for

their inaccuracy in reproducing and predicting movement

patterns. Microscopic mobility models, such as agent-based

models [35–39] may offer better prediction of mobility patterns

as an alternative but suffer from much higher computational

complexity. Therefore, an efficient macroscopic mobility

model taking the diversity of individual behaviours into

account would be worth pursuing in the future to further

deepen our understanding of human mobility.
4. Material and methods
4.1. Datasets
1. Beijing taxi passengers. This dataset is the travel records of taxi

passengers in Beijing in a week [40]. When a passenger gets on

or gets off a taxi, the coordinates and time are recorded automati-

cally by a GPS-based device installed in the taxi. From the dataset,

we extract 1 070 198 taxi passengers travel records. Some evidence

indicates that in Beijing, the average travel distance of taxi passen-

gers is similar to the commuting distance [41], and the spatial

distribution of taxi passengers is similar to that of populations

[42]. Thus, the taxi passengers’ data can capture the travel pattern

of urban residents to some extent, although taxi passengers only

constitute a small subset of the population in a city.

2. Shenzhen taxi passengers. The Shenzhen taxi passenger

tracker data have the same data format as that of Beijing. The

dataset records 2 338 576 trips by taxi passengers in 13 798 taxis

in Shenzhen from 18 April 2011 to 26 April 2011.

3. Abidjan mobile phone users. The dataset contains 607 167

mobile phone users’ movements between 381 cell phone anten-

nas in Abidjan, the biggest city of Ivory Coast, during a two-

week observation period [43]. Each movement record contains

the coordinates (longitude and latitude) of the origin and desti-

nation. The dataset is based on the anonymized call detail

records (CDRs) of phone calls and SMS exchanges between

five million of Orange Company’s customers in Ivory Coast. To

protect customers’ privacy, the customer identifications have

been anonymized by Orange Company.

4. Chicago travel tracker survey. Chicago travel tracker survey

was conducted by the Chicago Metropolitan Agency for Plan-

ning during 2007 and 2008, which provides a detailed travel

inventory for each member of 10 552 households in the greater

Chicago area. The survey data are available online at http://

www.cmap.illinois.gov/travel-tracker-survey. Because some

participants provided 1-day travel records but others provided

2 days, to maintain consistency, we only extracted the first-day

travel records from the dataset. The extracted data include 87 041

trips, each of which includes coordinates of the trip’s origin

and destination.
4.2. Data pre-processing
The raw travel data of four cities contain latitude and longitude

coordinates of each traveller’s origin and destination. The raw

data cannot be immediately used in mobility models. Alternatively,

we used coarse-grained travel data through partitioning a city

http://www.cmap.illinois.gov/travel-tracker-survey
http://www.cmap.illinois.gov/travel-tracker-survey
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into a number of zones, each of which corresponds to a location in

the literature [3]. Because of the absence of natural partitions in

cities (in contrast to states or counties), we simply partition all

cities into equal-area square zones, each of which is of dimension

1 � 1 km. Figure 6 shows the zone partition results and the

number of zones in four cities. We assign an origin (or destination)

zone ID to each trip if its origin (or destination) falls into the range

of that zone. Then, we can accumulate the total number Ti of trips

departed from an arbitrary zone i, and the total number Tij of

trips from zone i to zone j. In general, the number of trips departed

from a zone is proportional to the population of the zone [15]. The

spatial distributions of population density estimated from travel

data in the four cities are shown in figure 6.

4.3. The radiation model
The radiation model [15] is a parameter-free model to predict

travel fluxes among different locations based on population

distribution:

Tij ¼ Ti
mimj

(mi þ sij)(mi þmj þ sij)
, (4:1)

where Tij is the number of trips departing from location i to

location j, Ti is the total number of trips departing from location

i, mi is the population at location i, mj is the population at location

j, sij is the total population in the circle of radius rij centred at

location i (excluding the origin i and destination j ).
4.4. Sørensen similarity index
Sørensen similarity index is a statistic tool for identifying the

similarity between two samples. It has been widely used for

dealing with ecological community data [31]. Lenormand et al.
[18] used a modified version of the index to measure whether

real fluxes are correctly reproduced (on average) by mobility

prediction models, defined as

SSI ;
1

N2

XN

i

XN

j

2 min (T0ij, Tij)

T0ij þ Tij,
(4:2)

where T0ij is the number of trips from location i to j predicted by

models and Tij is the observed number of trips. Obviously, if

each T0ij is equal to Tij, the index is 1; if all T0ijs are far from the

real values, the index is close to 0.

Data accessibility. Data used in this work can be downloaded from
http://sss.bnu.edu.cn/%7Ewenxuw/data%5fset.htm.
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