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Abstract – This paper models the effects of bandwidth on the traffic capacity of scale-free
networks. We investigate the decrease of the system traffic capacity and the variation of the
optimal local routing coefficient αc, induced by the restriction of bandwidth. For low bandwidth,
the same optimal value of αc emerges for two different cases of node capacity, namely C = constant
and Ci = ki, where ki denotes the degree of the i-th node. By investigating the number of packets
at each node in the free-flow state, we provide analytical explanations for the optimal value of αc.
Average packet travelling time, distribution of packet travelling time, and average visits per node
divided by the node connectivity are also studied.

Copyright c© EPLA, 2007

Introduction. – Complex networks theory has
attracted growing interest among the physics community
since the pioneering discovery of the small-world phenom-
enon [1] and scale-free property [2]. Complex networks
can be used to model many natural, social and technical
systems in which a lot of entities or people are connected
by physical links or abstract relations [3–8]. Due to the
importance of large communication networks such as the
Internet, WWW, power grid and transportation systems
with scale-free properties in modern society, the traffic of
information flows has attracted more and more attention.
Ensuring free traffic flows on these networks is of great
significance and research interest [9–32].
Various models have been proposed recently to mimic

the traffic on complex networks by introducing the
concepts of packets generating rate and the routing of
packets [10–23]. This kind of models defines the capacity
of networks by the critical generating rate at which a
phase transition from free-flow state to congested state
occurs. The free-flow state corresponds to the state in
which the numbers of created and delivered packets are
balanced, while the jammed state corresponds to the state
in which packets accumulate on the network. To control
the congestion and improve the efficiency of transporta-
tion, many studies have focused on two aspects: modifying
underlying network structures or developing better route
searching strategies in large networks [33]. Due to the

high cost of changing the infrastructure, the latter is
comparatively preferable. In this light, various models
have been proposed to forward packets using the shortest
path [24], the efficient path [25], the nearest-neighbor and
next-nearest-neighbor searching strategy [28–30], the local
static information [28], or the integration of static and
dynamic information [26,27,29]. In view of the difficulty
of knowing the topology of an entire network for many
large and rapidly growing communication systems, the
local routing strategy attracts more attention because the
local static topology information can be easily acquired
and stored in each router.
However, previous studies usually neglect the band-

width of the links, i.e., the maximum capacity of each
link for delivering packets. Obviously, in real systems, the
capability of each link is limited and changes from link to
link and in most cases, these restrictions contributes to the
triggering of congestion. As the effects of the bandwidth of
links have not yet been analyzed, in this paper, we study
the traffic dynamics in which the bandwidth is taken into
account based on the local routing strategy.

The traffic model. – To generate the underlying
traffic network, our simulation starts with the most general
Barabási-Albert scale-free network model which is in
good accordance with real observations of communication
networks [3]. Driven by the “growth” and “preferential
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attachment” mechanisms, it can generate a power law
degree distribution P (k)∼ k−γ with γ ∼ 3. In this model,
starting from m0 fully connected nodes, a new node with
m links is added to the existing graph at each time step
according to the preferential attachment. The probability
Πi for the new node being connected to the existing node
i is proportional to the degree ki of the node, Πi =

ki
Σjkj
,

where the sum runs over all existing nodes.
For simplicity, we treat all nodes as both hosts and

routers for generating and delivering packets and assume
that each node can deliver at most C packets per step
towards their destinations. The capacity of each link is
restricted by bandwidth (B), i.e., each link can handle at
most B packets from each end per time step. Motivated
by the previous local routing models [28,29], the system
evolves in parallel according to the following rules:
1) Packets adding rule: Packets are added with a

given rate R (number of packets per time step) at
randomly selected nodes and each packet is given a
random destination.
2) Packets delivering rule: Each node performs a local

search among its neighbors. If a packet’s destination is
found in its nearest neighborhood, it will be delivered
directly to its target and then removed from the system.
Otherwise, it will be delivered to a neighboring node n

with preferential probability: Pn =
kαn
Σik

α
i

, where the sum

runs over the neighboring nodes, and α is a tunable
parameter. The FIFO (first-in-first-out) queuing discipline
is applied at each node.
To characterize the system’s overall capacity, we inves-

tigate the order parameter: η(R) = limt→∞
〈∆Np〉
R∆t

, where
Np(t) is the number of packets on the network at time
t, ∆Np =Np(t+∆t)−Np(t), 〈...〉 denotes taking average
over the time window of width ∆t. Obviously, η(R) = 0
corresponds to the free-flow state where the balance
between added and removed packets can be achieved. As
R increases to a critical value Rc, η suddenly increases
from zero, which indicates the occurrence of phase transi-
tion from free flow to congestion in which packets begin to
accumulate on the network. Hence, the system’s capacity
can be measured by the value of Rc.

Simulation results and discussions. – In the special
case of C = 10 and B � 10, the maximum network capacity
is Rc ≈ 40, which is achieved at the optimal value αc =
−1.0 [28]. This can be explained as follows: the average
number of packets on nodes does not depend on the degree
k at αc =−1.0, hence no congestion occurs earlier on some
nodes than on other nodes with different degrees.
Then we study the effect of bandwidth on the network

capacity in the case of fixed node capacity C = 10. In the
study, we use constant bandwidth B = 5, 3 or 1 for all
the links in the network or variable integer bandwidth B
randomly selected from integers in the range from 1 to
5 for each of the links. The constant B case corresponds
to a uniform bandwidth system, and the random B case
corresponds to a system with different bandwidth for each

Fig. 1: (Color online). The network capacity Rc against α
with network parameter N = 1000, m0 =m= 3, constant node
delivering ability C = 10, and different bandwidth B cases. The
data are obtained by averaging Rc over 10 network realizations.

of the links. Figure 1 compares the network capacity Rc
for five different cases. It is noted that at a given fixed α
value, the network capacity decreases as B decreases. This
is because the reducing of bandwidth retards the free flow
of packets from one node to the other and thus the network
capacity decreases.
Furthermore, the optimal value of αc corresponding to

the maximum capacity increases from −1.0 to −0.95 for
B = 5, −0.8 for B = 3, and −0.5 for both B = 1 and 1�
B � 5. This can be explained as follows. Let ni(t) denote
the number of packets at node i at time t. In the case of
homogeneously generated sources and destinations for the
packets, the numbers of packets generated and removed at
the node i are balanced. Considering the contribution of
received and delivered packets of node i to the change of
ni(t), the evolution of ni(t) in the free-flow state can be
written as

dni(t)

dt
=−nout+nin, (1)

where nout denotes the number of packets delivered from
node i to its neighboring nodes, and nin denotes the
number of received packets. From eq. (1), in the case of
B �C, Wang et al. show that n(k)∼ k1+α [28]. Therefore,
when α=−1.0, the average number of packets on each
node is independent of the degree k and thus there will
not be some nodes that are more easy to jam, so that
the maximum network capacity is achieved. However,
α>−1.0 means that there are more packets on the hub
nodes (with greater degree k). Considering the restriction
of B <C, since the hub nodes have more links and thus
have more total bandwidth, α>−1.0 is better in order to
fully use the bandwidth of the hub nodes and thus enhance
the system’s capacity.
To better understand why α>−1.0 is the optimal

choice, we investigate the number of received packets of
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Fig. 2: (Color online). The distribution of packets traveling
time with C = 10. The data are averaged over a period of 5000
time step.

node i:

nin(i) =

N∑

j=1

AijnjPi =

N∑

j=1

Aijnj
kαi∑N

l=1Ajlk
α
l

, (2)

where the sums run over all the nodes of the network and
Aij is the element of the adjacency matrix. Considering
that the assortative mixing of BA network is zero, i.e.,
the average neighbors’ degree of each node is the same,
we can get

∑N
l=1Ajlk

α
l =
∑N
l=1AjlW = kjW , where W

is a constant. From eq. (1), one can easily conclude that
nout � nin should be satisfied in order to maintain the
free-flow state. For high-degree nodes, nout is mainly
constrained by two limits: nout ≈Bki and nout ≈C.
Considering nout ≈Bki, we can get

Bki �

N∑

j=1

Aijnj
kαi
kjW

. (3)

Since C is a constant, higher-degree nodes are more
easily congested than low-degree nodes. We consider the
case that i is a high-degree node, for BA scale-free
networks, most of the neighbors of i are low-degree nodes.
For small B, nout of low-degree nodes are mostly restricted
by the bandwidth. Hence, we assume a linear relationship
for low-degree nodes: nj =Bkj . Substituting it into eq. (3),
we get

α�
logW

log ki
. (4)

In the limit of very large network, N →∞, ki→∞ and
thus the right-hand side of eq. (4) approaches zero, so that
the optimal α should be smaller than zero.
Considering nout ≈C, we can get

C �

N∑

j=1

Aijnj
kαi
kjW

. (5)

Fig. 3: (Color online). The variation of packets average trav-
eling time 〈T 〉 vs. R with different α value. Other network
parameters are N = 1000, m0 =m= 3, C = 10 and B = 1.

Substituting nj =Bkj to eq. (5), we obtain

α�
log CW

B

log ki
− 1. (6)

For low-degree nodes, nout is mainly constrained byBki,
i.e., nout ≈Bki. And for BA scale-free networks, most of
the neighbors of low-degree nodes are high-degree nodes,
for which we can take nj ≈C. Thus we can get

Bki �

N∑

j=1

AijC
kαi
kjW

. (7)

So we obtain

α�
log BW

W ′C

log ki
, (8)

where the constantW ′ =
∑N
j=1Aij

1

kj
. To continue, we use

eq. (6), which is the minimum of eq. (4), eq. (6) and
eq. (8). One can see from eq. (6) that the optimal α
is achieved when the left side is equal to the right side,
and thus αc is between −1.0 and 0.0. When B decreases
from infinity to 1, αc will be more close to zero. For our
simulation parameters, we getW ≈ 0.4 when α=−0.5 and
kmax ≈ 100, and thus αc �−0.7 for the case of B = 1. It
is quite close to our simulation result.
Then we simulate the packets’ traveling time which is

also important for measuring the system’s efficiency. In
fig. 2, we show the distribution of packet traveling time.
One can see that when R is small, the distribution has
a tail quite close to a power law distribution. But with
the increase in R, the distribution deviates away from
power law, and more packets spend more time in the
system, which implies that the system changes from free-
flow to jam. Figure 3 shows the average traveling time 〈T 〉
against R for different α. One can see for −1.0� α� 0.0,
〈T 〉 remains at a relatively small value when R�Rc(α).
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Fig. 4: (Color online). Average visits per node divided by the
node connectivity. The two panels show the variation with
constant B = 5, R= 10 (left), and with constant α=−1.0,
R= 10 (right).

When R increases to a value beyond Rc, 〈T 〉 will increase
very rapidly, implying that the system is jammed. When
α=−0.5, the optimal average traveling time is obtained.
Finally, we investigate the average visits per node

divided by the node connectivity (denoted as ω) which can
be useful in order to analyze the traffic burden distribution
among the nodes. Figure 4 shows ω vs. k for different α
(left panel) and B (right panel). When α= 0, ω remains at
the same value for different k values. This can be explained
as follows. In the case of α= 0.0, packets perform random-
like walks on the network. A well-known result in the
random walk process valid for this case is that the time
the packet spends at a given node is proportional to the
degree of such node in the limit of long times [8]. One
can easily conclude that, in the traffic system with many
packets, the visits per node averaged over a period of time
is proportional to the degree of that node. Thus we can
get that ω remains constant for different k values. When
α< 0, ω self-organizes to a power law, which implies that
the traffic burden of high-degree nodes are alleviated. And
this tendency remains the same for different B values.
When α> 0, ω is an increasing function with respect to k,
which may lead to the collapsion of hub-nodes.

The C ∼ k case. – In the second part, we investigate
the effect of bandwidth on the network capacity in the case
that C is not a constant but proportional to the degree of
each node C = k. This may be used to describe the fact
that if a router is very important and bears heavy traffic,
its delivering ability may be enhanced to avoid congestion.
In the special case of B � kmax corresponding to the

maximum degree of the nodes in the network, the main
difference from the case of B �C = 10 is that the optimal
value of local routing parameter αc changes to 0.0 while
the maximum network capacity remains at Rc ≈ 40 [28].

Fig. 5: (Color online). The network capacity Rc against α in
the case of C = k with different bandwidth B. The network
parameter is N = 1000, m0 =m= 3.

This is consistent with the previous analysis about the
random walk on the scale-free network. One can conclude
that in random walk processes, the average number of
packets on a given node is proportional to its degree, i.e.,
ni ∼ ki. At the same time, the node delivering ability C
is proportional to its degree, i.e., Ci ∼ ki, so that the load
and delivering ability of each node are balanced, which
leads to a fact that no congestion occurs earlier on some
nodes than on others with different degrees. Considering
that in the traffic model an occurrence of congestion at
any node will diffuse to the entire network, a network
with no easily congested nodes has the maximum network
capacity, so that routing packets with α= 0.0 can induce
the maximum capacity of the system.
Figure 5 depicts the network capacity Rc against α for

different values of B in the case of C = k. One can see
that the network capacity decreases as B decreases, and
the optimal value of αc also decreases from αc = 0.0 for
B = 5 to αc =−0.1 for B = 3, αc =−0.3 for 1�B � 5, and
αc =−0.5 for B = 1. The reason of the capacity drop
is the same as in the case of C = 10, i.e., the reducing
of bandwidth of the link retards the packet delivery
process and thus affects the network’s overall capacity.
The decrease of αc is different from the case of C = 10
and can be explained as follows. As mentioned before,
αc = 0.0 corresponds to ni(k)∼ ki and αc < 0.0 means
redistributing traffic load in hub nodes to other non-
central nodes. Considering the free flow condition of nout �
nin with the limitation of nout ≈C = k, following a similar
analysis, one can get

α�
log W

B

log ki
. (9)

Or if considering nout ≈Bki, one can get

α�
logW

log ki
. (10)

14003-p4



The effect of bandwidth in scale-free network traffic

Fig. 6: (Color online). The distribution of packets traveling
time with C = k.

In both cases, one can conclude that the optimal α
should be close to zero. But when α= 0.0, ni ∼ ki and the
nodes perform random selection among all its links to send
packets. In the long run of t→∞, one can find that the
number of packets forwarding towards each link in each
time step should follow a Poisson distribution with mean
value λ= 1. Thus the hub nodes are more easily jammed
when α= 0.0. Though the ideal condition is sending one
packet per link in each time step, the bandwidth of the link
should be more than 1 to maintain free flow, i.e.,B = 1+ δ,
where δ represents spanning of the Poisson distribution.
Therefore, when B is smaller than 1+ δ, the optimal αc
should be smaller than zero to redistribute traffic load to
other non-central nodes in order to avoid congestion in hub
nodes. In fig. 5, one can see that when B = 5, αc remains
at zero, whereas when B decreases to less than 5, αc will
decrease from zero.
This is in agreement with Yan et al. [25] and Wang

et al. [29] that redistributing traffic load to the non-central
nodes can enhance the system’s overall capacity. For αc
smaller than zero, the large degree nodes are fully used,
and packets can bypass these nodes when they afford
heavy traffic burden. Another interesting phenomenon is
that the same αc =−0.5 and Rc ≈ 8 are obtained for both
C = 10 and C = k in the case of B = 1 . This simply shows
that the system’s capacity is mainly controlled by the
bandwidth of the links when the bandwidth B is very
low. Thus we cannot improve traffic capacity merely by
enhancing routers’ ability, because the congestion would
be triggered mainly by links.
In fig. 6, we show the distribution of packet travelling

time for different α values. One can see that with the
increase in R, more packets spend more time in the system.
Figure 7 shows the average travel time 〈T 〉 against R for
different α when Ci = ki. The results are also in agreement
with the above analysis that αc =−0.5 can lead to better
efficiency of the network.

Fig. 7: (Color online). The variation of packets average travel-
ing time 〈T 〉 vs. R with different value of α fixed. Other network
parameters are N = 1000, m0 =m= 3, Ci = ki and B = 1.

Fig. 8: (Color online). Average visits per node divided by
the node connectivity with C = k. The left panel shows the
quantity with varying α and constant B = 5, R= 10. The
right panel shows the quantity with varying B and constant
α=−1.0, R= 10.

Figure 8 shows the variation of average visits per node
divided by the degree of the node (ω vs. k) for different
α (left) and B (right). The results are similar to those for
the case of C = 10.

Summary and discussion. – In conclusion, we inves-
tigate the effects of the bandwidth of links on the traffic
capability in scale-free network base on the local rout-
ing strategy. The simulation yields some results different
from previous studies. In general, the capacity decreases
when the bandwidth of links is considered, whether the
node capacity is set as a constant or proportional to the
degree of the nodes. Moreover, the optimal value of local
routing parameter αc also depends on the bandwidth of
the links, and we found that the node capacity cannot
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enhance the system efficiency when B is very low. We give
analytical explanations for the above phenomena which is
in agreement with the simulation results. The distribution
of packet traveling time, the average packet traveling time,
and the distribution of traffic load among nodes are also
investigated.
Our study shows that when considering the effect of

bandwidth, the traffic dynamics on scale-free network
has many new characteristics. It is also different from
traffic on well-organized lattice, on regular or random
networks [14,15].

∗ ∗ ∗

This work is funded by the National Basic Research
Program of China (No. 2006CB705500), the NNSFC
under Key Project No. 10532060, Project Nos. 70601026,
10672160, 10404025, the CAS President Foundation,
and by the China Postdoctoral Science Foundation (No.
20060390179). Y.-H. Wu acknowledges the support of the
Australian Research Council through a Discovery Project
Grant.

REFERENCES

[1] Watts D. J. and Strogatz S. H., Nature (London), 393
(1998) 440.

[2] Barabási A.-L. and Albert R., Science, 286 (1999)
509.

[3] Albert R., Jeong H. and Barabási A.-L., Nature
(London), 401 (1999) 130.

[4] Albert R. and Barabási A.-L., Rev. Mod. Phys., 74
(2002) 47.

[5] Newman M. E. J., Phys. Rev. E, 64 (2001) 016132.
[6] Boccaletti S., Latora V., Moreno Y. et al., Phys.
Rep., 424 (2006) 175.

[7] Wu J. J., Gao Z. Y., Sun H. J. et al., Europhys. Lett.,
74 (2006) 560.

[8] Bollobás B. (Editor), Modern Graph Theory (Springer-
Verlag, New York) 1998.

[9] Moreno Y., Pastor-Satorras R., Vazquez A. et al.,
Europhys. Lett., 62 (2003) 292.

[10] Sole R. V. and Valverde S., Physica A, 289 (2001)
595.

[11] Arenas A., Dı́az-Guilera A. and Guimerá R., Phys.
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