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Abstract – We uncover a class of universal dynamics on weighted complex networks. In
particular, we find that by incorporating a universal weighting scheme into real-world networks,
the topological details of various real-world networks, whether biological, physical, technological,
or social, have little influence on typical dynamical processes such as synchronization, epidemic
spreading, and percolation. This striking finding is demonstrated using a large number of real-
world networks and substantiated by analytic considerations. These findings make possible generic
and robust control strategies for a variety of dynamical processes on complex networks.
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Universality is one of the most fundamental issues
in physics. Critical phenomena and universal scaling
laws associated with phase transitions in a large variety
of non-equilibrial physical and chemical systems [1,2]
and universal routes to chaos in nonlinear dynamical
systems [3] are classical examples. Searching for universal-
ity is thus one of the most pursued endeavors, particularly
in statistical and nonlinear physics. In the past decade
there has been a tremendous amount of interest in
complex networks, as stimulated by the discoveries of the
small-world [4] and the scale-free topologies [5]. Various
dynamical processes on complex networks such as synchro-
nization [6], propagation [7], and transportation [8], have
also been investigated. A question is then whether
there exist universal dynamics on complex networks.
In particular, given networks from different contexts, is
there a universal class of dynamics that absolutely has
no dependence on structural details of the network? Here
we provide a surprising but an affirmative answer to
the above question. In particular, we find the existence
of weighting schemes for which the details of various
real-world networks, whether biological, technological, or
social, have little influence on typical dynamical processes
such as synchronization, epidemic spreading, and perco-
lation. Here, in our computation, we use the topologies of
a number of real-world networks from different disciplines
and impose a controllable weighting schemes to model
the coupling configuration of the network. In other words,
by incorporating our proposed weighting scheme into
any complex networks, the networks exhibit universal

dynamics, regardless of their difference in topology. This
striking universality in network dynamics is demonstrated
by using a large number of real-world networks and
substantiated by analytic considerations. The universality
makes possible generic and robust control strategies for a
variety of dynamical processes on networks arising from
different contexts.
The key to our success in searching for universal network

dynamics lies in considering weights on networks. Indeed,
in real-world networks, interactions among nodes are not
uniform but typically are heterogeneous, or weighted.
To be general, we shall examine both symmetric and
asymmetric weighting schemes. To be able to carry out
concrete and quantitative analysis to cover as many types
of network dynamics as possible, we choose to examine
the behavior of the largest eigenvalue of the weighted
adjacency matrix, denoted by λN . The role of λN in
different types of dynamics can be appreciated through
the following examples: in a heterogeneous dynamical
network, λN determines the emergence of coherence [9];
in epidemic spreading, λN sets the infection threshold
for outbreak of virus and shapes the onset of percolation
transition [7,10]; in general, λN governs the linear stability
of system of coupled dynamical elements [11,12]. Our
approach is to explore the dependence of λN on some
parameters, say α, that characterizes the weighting scheme
for real-world networks. We shall present results with
twelve different realistic networks ranging from the neural
network of C. Elegans in biology to the Internet at the
level of autonomous systems and to social networks such
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Fig. 1: (Colour on-line) Weight of edge ij is determined by the
degrees of nodes i and j: Wij = k

α
i k
β
j . For α= β, the weighting

scheme is symmetric, which has been observed for realistic
networks [13]. For α �= β, the interactions are asymmetric and
directed: Wij �=Wji for ki �= kj .

as the American football games. See fig. 2 for details.
For any two different types of networks, we expect the
λN -α curves to be distinct and generically to intersect
at some value, say αc. The striking finding is that all
the λN -α curves from the twelve completely different
networks intersect exactly at the same αc! The critical
values of αc and λN at the intersection point depend only
on the weighting scheme and they do not depend on the
topological details of the network. This means that, at
the intersection point, the specific structural details of
different networks disappear and the network dynamics
become universal. To place our finding on a firm ground,
we develop an analytic theory for determining the critical
values, with predictions agreed well by results from real-
world examples. To provide direct evidence for universal
dynamics with respect to actual dynamical processes, we
present results from transition to synchronization in the
Kuramoto type of phase coupled dynamics on weighted
scale-free networks.
We use a generic weighting schemes to search for univer-

sal dynamics. As illustrated in fig. 1, the weight between
nodes j and i is Wij =Aijk

α
i k
β
j , where ki and kj are the

degrees of i and j, respectively, α and β are control para-
meters, and A is the unweighted adjacency matrix of the
network defined by Aij = 1 if nodes i and j are connected
and Aij = 0 otherwise. The coupling strength can be
both symmetric and asymmetric. The asymmetric scheme
takes into account the fact that influences from a node
to its neighbors are usually the same, but influences from
different nodes can be different. In realistic situations, W
characterizes, for example, couplings among oscillators,
infection probabilities and edge removal probabilities, etc.
We first present evidence of universal dynamics for

a large number of real-world networks in terms of the
dependence of λN on the weighting parameters α and β, as
shown in fig. 2 for the symmetric weighting scheme α= β.
The topology is taken from the real-world networks, but
the weights of links are modelled by our weighting scheme.
We observe that the relations between λN and α (= β)
share the same intersecting point: αc =−0.5 for which

Fig. 2: (Colour on-line) For the symmetric weighting scheme,
the largest eigenvalue λN of the weighted adjacency matrix as a
function of the weighting parameter α for twelve different real-
world networks. They are: 1) the neural network of C. Elegans
(denoted by C. E) [4], 2) the transcriptional regulation network
of E. coli (E. C) [14], 3) the protein-protein interaction network
of yeast (PPI) [15], 4) the electronic circuit network (EC) [16],
5) the Internet at the level of autonomous systems (IAS) [17],
6) the Western States Power Grid of the United States (PG) [4],
7) the dolphin social network (DS) [18], 8) the network of
American football games among colleges (AFC) [19], 9) the
social network of friendships of a karate club (FKC) [20],
10) the network of political book purchases (PBP) [21], 11) the
high-energy theory collaboration network (HTC) [22], and
12) the collaboration network of scientists working on network
theory and experiment (NSC) [23]. Examples 1)–3) belong
to biological networks, 4)–6) are physical and technological
networks, and 7)–12) are social networks. Dashed lines indicate
the place where universal critical dynamics arise: αc =−0.5 and
λN (αc) = 1.

λN (αc) = 1. Note that, these networks differ significantly
from each other in terms of structural properties such as
degree distribution, clustering coefficient, average network
distance, degree-degree correlation, and network size etc.
However, for α= β = αc, typical dynamical processes as
determined by λN are universal, regardless of any network
details. That is, distinct real-world networks will support
identical dynamics such as synchronization and epidemic
spreading. For an asymmetric weighting scheme β = 0,
a similar phenomenon has been observed, except that
the critical point is now at αc =−1, as shown in fig. 3,
demonstrating that universal dynamics can also occur in
networks with directed interactions.
We now provide an analytic theory to explain

the occurrence of the universal dynamics. Elements of
the weighted adjacency matrixW areWij =Aijk

α
i k
β
j . The

largest eigenvalue λN can be written as λN = e
T
NWeN ,

where eN is the eigenvector associated with λN . If |λN |
is significantly larger than |λN−1|, we have eN,i = csi,
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Fig. 3: (Colour on-line) For the asymmetric weighting scheme,
λN as a function of α for the same twelve real-world networks
in fig. 2. The occurrence of a universal cross point persists,
except that it occurs now at αc =−1.

where c is a constant and si is the summation over row
i, i.e., si =

∑N
j=1Wij . We have λN = c

2
∑
i

∑
jWijsisj =

c2
∑
i

∑
j Aijk

α
i k
β
j sisj . For a given node i, we have si =∑N

l=1Ailk
α
i k
β
l = k

α+1
i

∑kmax
k′=kmin

P (k′|ki)k
′β , where P (k′|ki)

is the conditional probability that a node of degree ki
has a neighbor of degree k′. Neglecting the degree-degree
correlation among nodes yields P (k′|ki) = k

′P (k′)/〈k〉,
where P (k′) is the degree distribution of the network and
〈k〉 is the average node degree. We thus obtain

si = k
α+1
i

kmax∑

k′=kmin

k′β+1P (k′)

〈k〉
=
kα+1i 〈kβ+1〉

〈k〉
, (1)

where the identity
∑kmax
k′=kmin

k′β+1P (k′) = 〈kβ+1〉 has been
used. We can then write

λN =
c2〈kβ+1〉2

〈k〉2

∑

i

k2α+1i

∑

j

Aijk
α+β+1
j

=
c2N〈kβ+1〉2〈kα+β+2〉〈k2α+2〉

〈k〉3
. (2)

The coefficient c is given by 1 =
∑
e2N,i = c

2
∑N
i=1 s

2
i ,

where si is given by eq. (1). This yields

c2 =
〈k〉2

N〈kβ+1〉2〈k2α+2〉
. (3)

Inserting this into λN , we obtain

λN =
〈kα+β+2〉

〈k〉
. (4)

We see that, for the critical symmetric [αc(= βc) =−0.5]
and asymmetric (αc =−1 for β = 0) weighting schemes,

Fig. 4: (Colour on-line) Numerical verification of the analytical
predictions λN for (a) symmetric (α= β) and (b) asymmetric
(β = 0) weighting schemes vs. the respective rescaled quantity
by eq. (4) for all twelve real-world networks. The solid lines
have the unit slope.

λN no longer depends on the network details: λN = 1,
signifying universal critical dynamics.
The above analytical estimations require only the

local topological information of nodes and the weighting
schemes. Numerical results explicitly verifying eq. (4)
are shown in figs. 4(a) and (b), respectively. There is
an excellent agreement between the predictions and
numerical results with real-world networks. In particular,
on the plot of λN vs. some rescaled quantity (〈k

2α+2〉/〈k〉
for the symmetric-coupling case and 〈kα+2〉/〈k〉 for the
asymmetric case), results from real networks that we
have examined collapse onto a straight line of slope one.
We note that, for α= β = 0, λN reduces to 〈k

2〉/〈k〉,
which is the inverse of the threshold for epidemic
outbreak and the critical transition point to coherence
in coupled nonidentical oscillators under the mean-field
approximation in unweighted networks [7,9]. For the
percolation dynamics, the transition point occurs at the
inverse of 1+ 〈k2〉/〈k〉 [24]. The reduction of our result
to established results for the unweighted cases further
demonstrates the validity of our theory.
Equation (4) yields a class of weighted networks with

universal dynamics that occur for

α+β =−1. (5)

Although eq. (5) is derived from general formulas for
λN (α), the existence of the universal class of weighted
networks can be predicted without referring to any
network details. The weighted adjacency matrix can
be denoted as W =KαAKβ , where Kij = δijki and

δij = 1 if i= j and 0 otherwise. Let V = ck̃
−β , where c

is a normalization constant and (k̃−β)i = k
−β
i . We have

W ·V =KαAKβck̃−β =KαAc1 = ck̃1+α = ck̃−β = 1 ·V ,
where 1= [1, 1, . . . , 1]T and the relation (5) is used.
Since W is connected and all elements of W and V
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are positive, V can be proved to be the eigenvector
associated with the largest eigenvalue [25], and the
largest eigenvalue is thus exactly 1. We can argue
that all the eigenvalues of the weighted adjacency
matrix W are real, regardless of the values of α and
β. In particular, performing a similarity transforma-
tion on W , we obtain W ′ =K(β−α)/2WK(α−β)/2 =
K(β−α)/2KαAKβK(α−β)/2 =K(α+β)/2WK(α+β)/2. Since
W ′ is a symmetric matrix, all its eigenvalues are real.
Further, since W ′ is a similarity matrix to W , all the
eigenvalues of W are the same as W ′ and are real as well.
Our analysis so far is based on the largest eigenvalue

of the weighted network, which gives indirect indication
for the existence of universal network dynamics. We have
also obtained direct evidence for the universal dynamics
with respect to specific types of dynamics. Here we
present one example: transition to synchronization in
phase-coupled oscillators on weighted networks modeled
by (the Kuramoto paradigm [26]):

θ̇i = ωi+ ε

N∑

j=1

Wji sin(θj − θi), (6)

where θi and ωi are the phase and the natural frequency
of oscillator i, N ≫ 1 is the total number of oscillators,
ε is a global coupling parameter that is identical to
all oscillators. A key quantity of interest is the critical
coupling εc for the onset of synchronization. To be able
to obtain analytic insights, we have chosen model scale-
free networks differing in their average degrees, under
symmetric or asymmetric weighting schemes. Using a
standard mean-field treatment, we have obtained explicit
formulas relating εc to the weighting parameters α and β.
Figure 5 shows a typical example for α= β, where the solid
curves are the predicted εc ∼ α relations for networks with
different average degrees, and the data points are from
numerical simulations. We observe again the universal
point αc = βc =−0.5, but here the quantity examined
is the actual synchronization threshold. In addition, the
dependence of εc on 〈k〉 shows opposite trend for the
α<αc and α>αc regime. For α<αc, networks with
smaller values of 〈k〉 exhibit smaller value of εc and thus
are more synchronizable. This is quite counterintuitive, as
the results suggest that networks with more links are less
synchronizable (abnormal synchronization regime). For
α>αc, the values of εc required for synchronization are
smaller for larger values of 〈k〉, indicating that networks
with more links are more synchronizable. This is then a
normal synchronization regime.
From the perspective of controlling network dynam-

ics, our results suggest the existence of some universal
strategy that is applicable to networks differing in struc-
tural details. For example, we can multiply the weighted
matrix W (with λN as the largest eigenvalues) by a
control parameter η. The link weights are then Wij =

ηAijk
α
i k
β
j . The largest eigenvalue of the modified weight-

ing schemes becomes λ̄N = ηλN . At the universal point

Fig. 5: (Colour on-line) For Kuramoto dynamics on symmetric
coupled, weighted scale-free networks, critical global coupling
strength εc as a function of the weighting parameter α for
different values of the average degree. The network size is N =
2000. The occurrence of universal synchronization dynamics
for αc =−0.5 can be seen.

we have λ̄N (αc, βc) = η. This means that, for α and β
satisfying eq. (5), tuning η can provide a general way
to control diverse dynamical processes, regardless of the
detailed network structures. For instance, decreasing η can
inhibit the outbreak of epidemic spreading, as the thresh-
old of the process is inversely proportional to λN . This
is particularly important for scale-free networks due to
the influences of hubs on propagations [7]. Reducing η
can also favor synchronization stability of coupled linear
systems [11], as well as the interconnection robustness of
networks in percolation [27]. However, to enhance synchro-
nization of nonidentical coupled oscillators, η should be
increased. Imposing proper weighting schemes can then
facilitate control of various network dynamics. The exis-
tence of universal critical dynamics makes generic control
strategies possible that are effective for networks in differ-
ent contexts.
It is noteworthy that there are dynamical processes

whose main traits are not determined by the largest eigen-
value of the weighted adjacency matrix. A known example
is complete synchronization of coupled identical oscilla-
tors. The stability of such a state of synchronization is
measured by both the largest and the seconded smallest
eigenvalues of the Laplacian matrix [28]. In fact, univer-
sality of synchronization in weighted networks has been
reported, where the eigenratio can be estimated by the
ratio of the largest and the smallest node intensities for a
variety of weighted random networks [29].
In summary, we have discovered and established the

existence of universal dynamics in weighted complex
networks. For a given class of weighting scheme, there
exists a group of critical points, near which the structural
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details of networks have little influence on various
dynamical processes. The universal behavior in the collec-
tive network dynamics has important implications in
significant areas of network research such as the security
of complex networks. Say we wish to design a class
of networks that are robust to external perturbations.
Weighted networks with the weighting scheme provides
a solution, as the associated network dynamics are
invariant with respect to any structural changes that may
be caused by attacks or random failures. Our finding
can also be useful for addressing the issue of network
scalability, where design principles for networks of signif-
icantly different sizes but with identical dynamics are
sought.
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