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Abstract – Complex dynamical networks consisting of a large number of interacting units are
ubiquitous in nature and society. There are situations where the interactions in a network of
interest are unknown and one wishes to reconstruct the full topology of the network through
measured time series. We present a general method based on compressive sensing. In particular, by
using power series expansions to arbitrary order, we demonstrate that the network-reconstruction
problem can be casted into the form X=G ·a, where the vector X and matrix G are determined
by the time series and a is a sparse vector to be estimated that contains all nonzero power series
coefficients in the mathematical functions of all existing couplings among the nodes. Since a is
sparse, it can be solved by the standard L1-norm technique in compressive sensing. The main
advantages of our approach include sparse data requirement and broad applicability to a variety
of complex networked dynamical systems, and these are illustrated by concrete examples of model
and real-world complex networks.

Copyright c© EPLA, 2011

In network science, previous efforts have been mostly
on network structures and their effects on various dynam-
ical processes taking place on or supported by the network.
The types of processes that have been under intense inves-
tigations include synchronization, virus spreading, traf-
fic flow, and cascading failures [1]. A typical approach in
the field is to implement a particular dynamical process
of interest on networks whose connecting topologies are
completely specified. While this line of research is neces-
sary for discovering and understanding various funda-
mental phenomena in complex networks, the importance
of devising a general solution to the inverse problem of
network prediction has been increasingly recognized [2–5].
For example, in biological sciences, a significant task is
to reconstruct a variety of networks from experimental
data such as inferring gene regulation networks from gene
expression data [6–9]. Another example is the application
of spike classification methods [10–12] to detecting interac-
tions among neurons. Quite recently, it was demonstrated

(a)E-mail: wenxuw@gmail.com

that the hierarchical property in many complex networks
can be used to predict missing links [13]. Despite the
success of the various existing approaches in decoding the
network topology, the issue remains of whether quantita-
tive information about node-to-node coupling, namely, the
detailed dynamical coupling terms among various nodes in
the network, can be inferred purely from measured time
series.
In this paper, we articulate a framework that enables a

full reconstruction of coupled oscillator networks whose
vector fields consist of a limited number of terms in
some suitable base of expansion. Our basic idea is that
the mathematical functions determining the dynamical
couplings in a physical network can be expressed by
power series expansions. The task is then to estimate all
the nonzero coefficients. Since the underlying coupling
functions are unknown, the power series can contain high-
order terms. The number of coefficients to be estimated
can therefore be quite large. According to conventional
wisdom this would be a difficult problem as a large
amount of data is required and the computations involved
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can be extremely demanding. However, the number of
nonzero coefficients may be only a few so that the
vector of coefficients is effectively sparse. As such, the
recently developed idea of compressive sensing provides
a viable solution to the problem, whose key feature is
to reconstruct a sparse signal from a limited number
of observations [14–17]. Since the requirements for the
observations can be considerably relaxed as compared with
those associated with conventional signal reconstruction
schemes, compressive sensing has received much recent
attention and it is becoming a powerful technique to
obtain high-fidelity signal for applications where sufficient
observations are not available. We shall articulate a
general methodology to cast the problem of network
reconstruction into the framework of compressive sensing,
show that the power series coefficients associated with the
interactions among nodes can be accurately estimated,
and demonstrate the power of our method by using a
variety of model and real-world networks.
Generally, the problem of compressive sensing can be

described as to reconstruct a sparse vector a∈RN from
linear measurements X about a in the form: X=G ·a,
where X∈RM and G is an M ×N matrix. By definition,
the number of measurements is much less than the number
of components of the unknown signal, i.e., M ≪N .
Accurate reconstruction can be achieved by solving the
following convex optimization problem [18]:

min ‖a‖1 subject to G ·a=X, (1)

where ‖a‖1 =
∑N

i=1 |ai| is the L1 norm of vector a. Solu-
tions of the convex optimization problem (1) have been
worked out recently [18,19].
We first show that the inverse problems of predicting

network topology can be cast in the form (1). A complex
networked system can be viewed as a large dynami-
cal system that generates oscillatory time series at vari-
ous nodes. In general, the dynamics at a node can be
written as

ẋi =Fi(xi)+
N
∑

j=1,j �=i

Cij(xj −xi) (i= 1, . . . , N), (2)

where xi ∈R
m represents the set of externally accessible

dynamical variables of node i, N is the number of
accessible nodes, and Cij is the coupling matrix between
the dynamical variables at nodes i and j denoted by

Cij =

⎛

⎜

⎜

⎜

⎝

c1,1ij c1,2ij · · · c
1,m
ij

c2,1ij c2,2ij · · · c
2,m
ij

· · · · · · · · · · · ·

cm,1ij cm,2ij · · · cm,mij

⎞

⎟

⎟

⎟

⎠

. (3)

In Cij , the superscripts kl (k, l= 1, 2, . . . ,m) stand for
the coupling from the k-th component of the dynamical
variable at node i to the l-th component of the dynamical
variable at node j. For any two nodes, the number of

possible coupling terms is m2. If there is at least one
nonzero element in the matrix Cij , nodes i and j are
coupled and, as a result, there is a link (or an edge)
between them in the network. Generally, more than one
element inCij can be nonzero. Likewise, if all the elements
of Cij are zero, there is no coupling between nodes i and
j. The connecting topology and the interaction strengths
among various nodes of the network can be predicted if
we can estimate the coupling matrix Cij from time series
measurements.
Generally, our method consists of the following two

steps. First we rewrite eq. (2) as

ẋi =

⎡

⎣Fi(xi)−

N
∑

j=1,j �=i

Cijxi

⎤

⎦+

N
∑

j=1,j �=i

Cijxj , (4)

where the first term on the right-hand side is exclusively
a function of xi, while the second term is a function of
variables of other nodes (couplings). We define the first
term to be Γi(xi), which is unknown. In general, the k-th
component of Γi(xi) can be represented by a power series
of order up to n:

[Γi(xi)]k ≡

⎡

⎣Fi(xi)−

N
∑

j=1,j �=i

Cijxi

⎤

⎦

k

=

n
∑

l1=0

n
∑

l2=0

· · ·

n
∑

lm=0

[(αi)k]l1,...,lm

[(xi)1]
l1 [(xi)2]

l2 · · · [(xi)m]
lm , (5)

where (xi)k (k= 1, . . . ,m) is the k-th component of
the dynamical variable at node i, the total number
of products is (1+n)m, and [(αi)k]l1,...,lm ∈R

m is the
coefficient scalar of each product term, which is to be
determined from measurements as well. Note that terms
in eq. (5) are all possible products of different components
with different power of exponents. As an example, for
m= 2 (the components are x and y) and n= 2, the
power series expansion is α0,0+α1,0x+α0,1y+α2,0x

2+
α0,2y

2+α1,1xy+α2,1x
2y+α1,2xy

2+α2,2x
2y2.

Second, we rewrite eq. (4) as

ẋi =Γi(xi)+Ci1x1+Ci2x2+ · · ·+CiNxN . (6)

Our goal is to estimate the various coupling matrices
Cij(j = 1, . . . , i− 1, i+1, . . . , N) and the coefficients of
Γi(xi) from sparse time series measurements. According
to the compressive-sensing theory, to reconstruct the coef-
ficients of eq. (6) from a small number of measurements,
most coefficients should be zero, i.e., the sparse signal
requirement. To include as many coupling forms as possi-
ble, we expand each term Cijxj in eq. (6) as a power series
in the same form of Γi(xi) but with different coefficients:

ẋi =Γ1(x1)+Γ2(x2)+ · · ·+ΓN (xN ). (7)
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This setting not only includes many possible coupling
forms but also ensures that the sparsity condition is satis-
fied so that the prediction problem can be formulated in
the compressive-sensing framework. For an arbitrary node
i, information about node-to-node coupling, or about the
network connectivity, is contained completely in Γj(j �= i).
For example, if in the equation of i, a term in Γj(j �= i)
is not zero, there then exists coupling between i and j
with the strength given by the coefficient of the term.
Subtracting the coupling terms −

∑N

j=1,j �=iCijxi from Γi
in eq. (5), which is the sum of coupling coefficients of
all Γj(j �= i), the node dynamics Fi(xi) can be obtained.
Therefore, once the coefficients of eq. (7) have been deter-
mined, the node dynamics and couplings among nodes are
all known.
To explain our method in a more detailed and concrete

manner, we focus on one component of the dynamical
variable at all nodes in the network, say component
1. (Procedures for other components are similar.) For
each node, we first expand the corresponding component
of the vector field into a power series up to power n.
For a given node, due to the interaction between this
component and other (m− 1) components of the vector
field, there are (n+1)m terms in the power series. The
number of coefficients to be determined for each individual
node dynamics is thus (n+1)m. Now consider a specific
node, say node i. For every other node in the network,
possible couplings from node i indicates the need to
estimate another set of (n+1)m power series coefficients
in the functions of Γj(xj). There are in total N(n+1)

m

coefficients that need to be determined. The vector a to be
determined in the compressive-sensing framework contains
then N(n+1)m components. For example, to construct
the measurement vector X and the matrix G for the case
of m= 3 (dynamical variables x, y, and z) and n= 3, we
have the following explicit dynamical equation for the first
component of the dynamical variable of node i:

Γi(xi) = (ai)000 ·x
0
i y
0
i z
0
i + · · ·+(ai)003 ·x

0
i y
0
i z
3
i

+(ai)010 ·x
0
i y
1
i z
0
i + · · ·+(ai)100 ·x

1
i y
0
i z
0
i

+ · · ·+(ai)333 ·x
3
i y
3
i z
3
i . (8)

We can denote the coefficients of Γi(xi) by ai =
[(ai)000, (ai)001, . . . , (ai)333]

T . Assuming that measure-
ments xi(t) (i= 1, . . . , N) at a set of time t1, t2, . . . , tM
are available, we denote

gi(t) =
[

xi(t)
0yi(t)

0zi(t)
0, xi(t)

0yi(t)
0zi(t)

1, . . . ,

xi(t)
3yi(t)

3zi(t)
3
]

, (9)

such that Γi[xi(t)] = gi(t) ·ai. According to eq. (8),
the measurement vector can be chosen as X=
[ẋi(t1), ẋi(t2), . . . , ẋi(tM )]

T
, which can be calculated

from time series. Finally, we obtain the following equation

in the form X=G ·a:

⎛

⎜

⎜

⎜

⎝

ẋi(t1)
ẋi(t2)
...

ẋi(tM )

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

g1(t1) g2(t1) · · · gN (t1)

g1(t2) g2(t2) · · · gN (t2)
...

...
...

...
g1(tM ) g2(tM ) · · · gN (tM )

⎞

⎟

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎝

a1
a2
...
aN

⎞

⎟

⎟

⎟

⎠

, (10)

where, to ensure the restricted isometry property [18], we
normalize it by dividing elements in each column by the L2
norms of that column: (G)ij = (G)ij/L2(j) with L2(j) =
√

∑M

i=1[(G)ij ]
2. After a is determined via some standard

compressive-sensing algorithm, the coefficients are given
by a/L2. To determine the set of power series coefficients
corresponding to a different component of the dynamical
variable, say component 2, we simply replace the measure-
ment vector by X= [ẏi(t1), ẏi(t2), . . . , ẏi(tM )]

T
and use

the same matrix G. This way all coefficients can be esti-
mated. After the equations of all components of i are
determined, we can repeat this process for all other nodes.
Finally, the system can be reconstructed.
To illustrate our method, we consider networks of

coupled chaotic Lorenz and Rössler oscillators. The clas-
sical Lorenz and Rössler systems are given by [ẋ, ẏ, ż] =
10(y−x), x(28− z)− y, xy− (8/3)z] and [ẋ, ẏ, ż] =−y−
z, x+0.2y, 0.2+ z(x− 5.7)], respectively. Since m= 3, we
choose the power series of x, y and z such that l1+ l2+ l3 �
3. The total number of the coefficients to be estimated
is then N

∑3
i=1(i+1)(i+2)/2+1= 19N +1, where i=

l1+ l2+ l3 ranges from 1 to 3, N denotes the total number
of nodes and 1 is due to the constant term. To demon-
strate the applicability of our method to complex networks
of different topology, we consider random and scale-free
networks. In particular, the Lorenz oscillator network is
chosen to be a Erdős-Rényi type of homogeneous random
network [20], generated by assuming a small probability
of link for any pair of nodes. The coupling between node
dynamics is assumed to occur between the y and the z
variables in the Lorenz equations, leading to the following
coupling matrix: c3,2ij = 1 if nodes i and j are connected

and c3,2ij = 0, otherwise. The Rössler oscillator network
is assumed to be a Barabási-Albert type of scale-free
network [21] with a heterogeneous degree distribution. The
coupling scheme is c1,3ij = 1 for link between i and j. Both
types of network structures are illustrated schematically
in fig. 1. To generate time series, we integrate the whole
networked system by using time step h= 10−4 for 6× 106

steps. However, the number of “measured” data points
required for our method to be successful can be orders
of magnitude less than 6× 106, a fundamental advantage
of compressive-sensing method. Specifically, we randomly
collect measurements from the integrated time series and
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Fig. 1: (Colour on-line) (a) Predicted coupling terms in the z variable for node #2 in the random network (b) of 10 coupled
chaotic Lorenz oscillators. (c) Predicted terms in the dynamics of node #2 and couplings between node #2 and other nodes.
(d) Predicted coupling terms in the x-variable for node #48 in the scale-free network (e) of 50 coupled chaotic Rössler oscillators.
(f) Predicted terms in the dynamics of node #48 and couplings between node #48 and other nodes. In (c) and (f), top to bottom
panels: predicted terms with coefficients in the x, y and z variables, where the corresponding true values of the existent terms
are marked. In (a) and (d), the node numbers corresponding to the existing terms are marked and the coupling forms are c3,2

and c1,3, respectively. Here, the term index refers to the order of to be predicted coefficients appearing in eq. (7) and in the
vector a of eq. (10). The average degrees 〈k〉 for the random and scale-free networks are 6 and 10, respectively. The number of
data points used for prediction is 140 and the time interval for data collection is Δt= 1.

the number of elements in each row of the matrix G is
given by N(n+1)m.
Figure 1 shows some representative results. For the

random Lorenz network, we show the inferred coefficients
of node #2 associated with both the couplings with
other nodes (fig. 1(a)) and those with its own dynamics
(fig. 1(a)). The term index is arranged from low to high
values, corresponding to the order from low to high node
number. The predicted coupling strengths between node
#2 and others are shown in fig. 1(a), where each term
according to its index corresponds to a specific node.
Nonzero terms belonging to nodes other than node #2
indicate inter-node couplings. The predicted interactions
with nonzero coefficients (the value is essentially unity) are
in agreement with the neighbors of node #2 in the sample
random network in fig. 1(b). The term 32 related to −6y is
the coupling strength from node #2, which equals the sum
of the coupling strengths from the other connected nodes.
Figure 1(c) displays the inferred coefficients for both node
dynamics and coupling terms in the three components
x, y and z. All predicted terms with nonzero coefficients
are in agreement with those in the equations of the dy-
namics of node #2, together with the inter-node coupling
terms c3,2.
Figure 1(d) shows the predicted links between node

#48 and others in a Rössler oscillator network with a
scale-free structure. All existing couplings have been accu-
rately inferred, as compared to the structure presented
in fig. 1(e), even though the interaction patterns among

nodes are heterogeneous. Both the detected local dynam-
ical and coupling terms associated with node #48 are
indicated in fig. 1(f), where in the x-component, the term
−8z is the combination of the local-dynamical term −z
and the coupling of node #48 with 7 neighboring nodes.
Since all the couplings have been successfully detected,
the local-dynamical term −z in the x-component can be
separated from the combination, so that all terms of node
#48 are predicted. We have also examined all nodes in the
two network systems and find that the method is effective
for all oscillators, enabling a complete and accurate recon-
struction of the underlying complex networked system.
To quantify the performance of our method with

respect to the amount of required data as well as different
network properties, we investigate the prediction errors
which are defined separately for nonzero (existing) and
zero terms in the dynamical equations. The relative error
of a nonzero term is defined as the ratio to the true value
of the absolute difference between the predicted and the
true value. The average over the errors of all terms in a
component is the prediction error Enz of nonzero terms
for the component. In contrast, a relative error for a zero
(nonexistent) term cannot be defined, so it is necessary
to use the absolute error. Figure 2(a) shows the errors
Enz and Ez as functions of the number of data points
collected with fixed sampling frequency for the random
network of Lorenz oscillators and the scale-free network
of Rössler oscillators. We see that if the number of data
points in the time series used for prediction is not large

48006-p4
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Fig. 2: (Colour on-line) Prediction errors Enz and Ez as functions of (a) the number of data points and (b) length t of time
series for the random network of Lorenz oscillators and the scale-free network of Rössler oscillators. In (a) the time interval for
collecting a data point in the time series is Δt= 1. In (b), the number of data points used is fixed to be 140 for different t.
All results are obtained by the average over 10 independent realizations and the error bars represent standard deviations.

enough, Enz and Ez can be quite large. However, when
the number of data points exceeds some critical value,
e.g., 140 for the Lorenz network and 100 for the Rössler
network, the prediction errors become practically zero.
In all cases, the number of required data points is much
smaller than the number of terms in the power series
function, a main advantage of the compressive-sensing
technique. Insofar as the number of data points exceeds
a critical value, the prediction errors are effectively
zero, indicating the robustness of the reconstructions.
Figure 2(b) shows the errors with respect to different
length t of the time series for a fixed number of collected
data, where the sampling frequency is inversely propor-
tional to t. We see that when t is relatively large, e.g.,
t > 20 for the Lorenz network and t > 30 for the Rössler
network, Enz and Ez are small and the reconstructions
are accurate. Note that, if the sampling frequency is
high, the number of data points is not able to cover the
dynamics in the whole phase space. In order to obtain
a faithful prediction of the whole system, the sampling
frequency must be sufficiently low.
Another important question is how the structural prop-

erties of the network affect the prediction precision. To
address this question, we calculate the dependence of
the prediction error on the average degree 〈k〉 and the
network size N . We find that, regardless of the network
size, insofar as the network connections are sparse, the
prediction errors remain to be quite small, providing
further support for the robustness of our compressive-
sensing–based method.
Our computations have demonstrated that, despite the

small prediction errors, all existing links in the original
network can be predicted extremely reliably. To further
quantify the performance of our method for predicting
network structures, we compute the success rates for
existing links (SREL) and nonexisting links (SRNL),
defined to be the ratio between the number of successfully
predicted links and total number of links and the ratio of
the number of correctly predicted nonexisting links to the

Fig. 3: (Colour on-line) Success rates of existing links SREL
and nonexisting links SRNL as functions of the number of
data points and length t of time series for random Lorenz and
Rössler networks. The inset in the upper-right panel shows the
distribution of coupling strength in the Rössler network for
different numbers of data points.

total number of nonexisting links, respectively. Figure 3
shows the success rates as functions of the number of data
points and t for both random Lorenz and Rössler oscillator
networks. We observe that, when the number of data
points and t are sufficiently large, both SREL and SRNL
reach 100%. The inset in the upper-right panel shows the
distribution of coupling strengths in the Rössler network.
For all tested numbers of data points (> 54), there exist
two sharp peaks centered at c= 0 and c= 1, corresponding
to the absence of coupling and the existing coupling of
strength 1.0, respectively. The narrowness of the two peaks
in the distribution makes it feasible to distinguish existing
links (with nonzero coupling strength) from nonexistent
links (effectively with zero coupling). This provides an
explanation for the 100% success rates shown in fig. 3.
Finally, we test our method on a number of real-world

networks, ranging from social to biological and technologi-
cal networks. Again we assume the node dynamics to be of
the Lorenz and Rössler types. For five real-world networks,
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Table 1: Prediction errors Enz and Ez for five real-world
networks: (1) dolphin social network [22], (2) friendship
network of karate club [23], (3) network of political book
purchases [24], (4) electric circuit networks [25], and (5) the
neural network of C. Elegans [26].

Lorenz Rössler
Enz Ez Enz Ez

1 3.6× 10−3 7.4× 10−6 2.8× 10−3 2.2× 10−7

2 3.3× 10−3 3.6× 10−6 1.9× 10−3 2.7× 10−7

3 3.8× 10−3 8.3× 10−5 2.8× 10−3 2.1× 10−7

4 4.4× 10−3 5.8× 10−6 2.9× 10−3 2.7× 10−7

5 1.1× 10−3 1.9× 10−5 2.8× 10−3 2.2× 10−7

the prediction errors are shown in table 1. We observe that
all errors are small, indicating the potential applicability
of our method to real-world networks.
Some remarks concerning the general applicability of

our method and computational requirement are in order.
1) While we have used linear coupling schemes in our
numerical test, the compressive-sensing–based prediction
method is expected to be applicable even for nonlinear
coupling, as any such coupling function can be approxi-
mated by a power series expansion. We have also examined
networks of nonidentical oscillators, for example networks
whose nodes are a mixture of Lorenz and Rössler oscilla-
tors, and found that the networked system can be accu-
rately reconstructed. 2) In general, the number of required
data for successful reconstruction depends on the spar-
sity of the coefficient vector a. If a is sparser, less data
is needed. 3) Based on our experience, if the prediction
base is sufficiently wide to include all terms in the system
equation as a small subset, high-accuracy prediction can
be guaranteed, regardless of the mathematical forms of the
terms in the equations. 4) Our method is robust for weak
noise due to the optimization nature of the compressive-
sensing paradigm. However, for larger noise, because of the
need to estimate various derivatives to some reasonable
precision, the method may fail. This is not a deficiency of
the compressive-sensing paradigm. Insofar as derivatives
can be estimated reliably, the compressive-sensing–based
method can always yield optimal and accurate solutions.
In summary, we have articulated a method based on

compressive sensing for predicting and reconstructing
complex dynamical networks from measured time series.
Extensive computations have revealed that both nonlin-
ear node dynamics and node-to-node interactions can be
accurately predicted, leading to reliable and robust recon-
struction of the underlying networked system, as char-
acterized by near-zero prediction errors regardless of the
nature of the node dynamics and the network structure.
Although all the examples of node dynamics used in the
paper are polynomial vector fields, we have examined
other expansion bases such as trigonometric functions. If
the prediction base is sufficiently wide to include all terms
in the system equations as a small subset, high-accuracy

prediction can be guaranteed, regardless of the mathemat-
ical forms of the terms in the equations. These features
make our method appealing to predicting general complex
networked systems with extremely low data requirement.

∗ ∗ ∗

We thank Dr Q.-F. Chen for discussions. This work was
supported by AFOSR under Grants No. FA9550-10-1-0083
and No. FA9550-09-1-0260, and by NSF under Grants
No. CDI-1026710 and No. BECS-1023101.

REFERENCES

[1] Newman M. E. J., SIAM Rev., 45 (2003) 167.
[2] Timme M., Phys. Rev. Lett., 98 (2007) 224101.
[3] Napoletani D. and Sauer T. D., Phys. Rev. E, 77
(2008) 026103.

[4] Wang W.-X., Chen Q., Huang L., Lai Y.-C. and
Harrison M. A. F., Phys. Rev. E, 80 (2009) 016116.

[5] Ren J., Wang W.-X., Li B. and Lai Y.-C., Phys. Rev.
Lett., 104 (2010) 058701.

[6] Gardner T. S., di Bernardo D., Lorenz D. and
Collins J. J., Science, 301 (2003) 102.

[7] Bansal M., Belcastro V., Ambesi-Impiombato A.
and di Bernardo D., Mol. Syst. Biol., 3 (2007) 78.

[8] Geier F., Timmer J. and Fleck C., BMC Syst. Biol.,
1 (2007) 11.

[9] Hecker M., Lambeck S., Toepferb S., van Someren
E. and Guthke R., BioSystems, 96 (2009) 86.

[10] Grün S., Diesmann M. and Aertsen A., Neural
Comput., 14 (2002) 43.

[11] Gütig R., Aertsen A. and Rotter S., Neural Comput.,
14 (2002) 121.

[12] Pipa G. and Grün S., Neurocomputing, 52 (2003) 31.
[13] Clauset A., Moore C. and Newman M. E. J., Nature,

453 (2008) 98.
[14] Candès E., Proceedings of the International Congress of

Mathematicians (Madrid, Spain) 2006.
[15] Baraniuk R., IEEE Signal Process. Mag., 24 (2007) 118.
[16] Candès E. and Wakin M., IEEE Signal Process. Mag.,

25 (2008) 21.
[17] Romberg J., IEEE Signal Process. Mag., 25 (2008) 14.
[18] Candès E., Romberg J. and Tao T., IEEE Trans. Inf.

Theory, 52 (2006) 489; Commun. Pure Appl. Math., 59
(2006) 1207.

[19] Candès E. and Romberg J., http://www.acm.caltech.
edu/l1magic.
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