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Abstract. We investigate the accumulated wealth distribution by adopting evolutionary games taking
place on scale-free networks. The system self-organizes to a critical Pareto distribution (1897) of wealth
P (m) ∼ m−(v+1) with 1.6 < v < 2.0 (which is in agreement with that of U.S. or Japan). Particularly,
the agent’s personal wealth is proportional to its number of contacts (connectivity), and this leads to the
phenomenon that the rich gets richer and the poor gets relatively poorer, which is consistent with the
Matthew Effect present in society, economy, science and so on. Though our model is simple, it provides
a good representation of cooperation and profit accumulation behavior in economy, and it combines the
network theory with econophysics.

PACS. 87.23.Ge Dynamics of social systems – 89.75.Hc Networks and genealogical trees – 05.10.-a Com-
putational methods in statistical physics and nonlinear dynamics – 89.75.-k Complex systems

1 Introduction

The interaction of many cooperatively interacting agents
in economy has many features in common with the statis-
tical physics of interacting systems. A century ago, Pareto
(1897) showed that the probability distribution P (W ) for
income or wealth of an individual in the market decreased
with the wealth W according to a power law [1]:

P (W ) ∝ W−(1+v) (1)

where the value of v was found to lie between 1 and 2 [2–5].
Studies on real data show that the high-income group in-
deed follows the Pareto law, with v varying from 1.6 for
USA [2] to 1.8–2.2 in Japan [3].

The previous studies of wealth distribution often adopt
an ideal-gas model in which each agent is represented by
a gas molecule and each trading is a money-conserving
collision [6–12]. One can refer to [6] for a detailed account
of historical data, empirical analyses and models of wealth
distributions. The model considers a closed economic sys-
tem where the total money is conserved and the number
of economic agents is fixed. Money and average money
per agent are equivalent to the energy and temperature
in an equilibrium system. Basically, this ideal-gas model
can only reproduce the Gibb distribution or Gaussian-like
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stationary distribution of money [7]. However, Chatterjee
et al. introduce the quenched saving propensity of the
agents, and the system self-organizes to the Pareto
distribution of money with v ∼ 1 [11]. We also note that
the model is not suitable for studying the material wealth
distribution because, in general, the total material wealth
of the system will increase with time [8,11]. However,
these conserved wealth models well approximate a steady
economy: the rate at which the total wealth grows is much
slower than the frequency of trading/exchange activity,
and hence the conserved wealth models are very good
approximations at short time scales. Nevertheless, it is im-
portant to study wealth distribution through generalized
models which incorporate variation in total wealth [13,14].

The unique feature of our work is that we adopt the
scale-free network to represent the cooperative structure
in population and study the wealth increment by using
evolutionary games as a paradigm for economic activities.

A wide range of systems in nature and society can
be described as complex networks. Since the discovery of
small-world phenomena by Watts and Strogatz [15] and
Scale-free phenomena by Barabási and Albert [16],inves-
tigation of complex networks has attracted continuous at-
tention from the physics community [17].

Network theory provides a natural framework to de-
scribe the population structure by representing the agents
of a given population with the network vertices, and the
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contacts between those agents with edges [18]. One can
easily conclude that well-mixed populations can be rep-
resented by complete (fully-connected, regular) networks.
Spatially-structured populations are associated with reg-
ular networks, exhibiting a degree distribution d(k) which
is sharply peaked at a single value of the connectivity k,
since all agents generally have the same averaged connec-
tivity. Recently, much empirical evidence of real-world so-
cial networks has revealed that they are associated with
a scale-free, power-law degree distribution, d(k) ∼ k−γ

with γactor = 2.3 ± 0.1 for movie actor collaboration net-
work [19], γscience = 2.1 and 2.5 for science collaboration
graph [20], γf = 3.5 ± 0.2 and γm = 3.3 ± 0.2 for females
and males in human sexual contacts [21], etc.

That is, interactions in real-world networks are hetero-
geneous that different individuals have different numbers
of average neighbors whom they interact with. Thus, the
classic regular or random networks are not good represen-
tations of many real social networks which likely possess
the self-organized mechanism. Hence, in this paper, we
adopt the scale-free network model to construct the coop-
eration structure in population.

The evolutionary game theory has been considered
to be an important approach for characterizing and un-
derstanding the cooperative behavior in systems consist-
ing of selfish individuals [22,23]. Since their introduction,
the Prisoner’s Dilemma (PD) and the Snowdrift Game
(SG) have drawn much attention from scientific commu-
nities [24–28]. In both games, two players simultaneously
decide whether to cooperate (C) or defect (D). Each player
will get a payoff based on his and his opponent’s strategy
in each step and then the players will choose to change
their strategy or to keep their strategy unchanged based
on some take-over strategies. One can see that both games’
dynamics are very similar to the cooperation and payoff
activities between agents in economy and so they are in-
trinsically suitable for characterizing the payoff and wealth
accumulating behavior in populations.

In this paper, we investigate the wealth accumulation
of agents playing evolutionary games on the scale-free net-
work. Though the PD is usually thought to be more rele-
vant to economy and the SG is more relevant to biological
processes, the simulation results show the Pareto wealth
distributions along with some remarkable phenomena in-
cluding the total wealth variation with game parameters,
and the Matthew Effect in economy, science, fame, and so
on [29–32].

2 Model

In this paper, the simulation starts from establishing the
underlying cooperation network structure according to
the most general Barabási-Albert (BA) scale-free network
model [16]. In this model, starting from m0 fully connected
vertices, one vertex with m ≤ m0 edges is attached at each
time step in such a way that the probability Πi of being
connected to the existing vertex i is proportional to the
degree ki of the vertex, i.e. Πi = ki

Σjkj
, where j runs over

all existing vertices. In our simulation, we set m0 = m = 2.
Initially, an equal percentage of cooperators or defectors
was randomly distributed among the agents (vertices) of
the population. At each time step, the agents play the PD
or SG with their neighbours and get payoff according to
the games’ payoff matrix.

In the Prisoner’s Dilemma, each player can either ‘co-
operate’ (invest in a common good) or ‘defect’ (exploit the
others investment). Two players both receive R upon mu-
tual cooperation and P upon mutual defection. A defector
exploiting a cooperator gets an amount T and the ex-
ploited cooperator receives S, such that T > R > P > S.
So, ‘defect’ is the best response to any action by the op-
ponent [28]. Thus in a single play of the game, each player
should defect. In the Snowdrift Game (SG), the order of P
and S is exchanged, such that T > R > S > P . Compar-
ing with PD, SG is more in favor of cooperation. Following
common practice [24,27], we firstly rescale the games such
that each depends on a single parameter. For the PD, we
choose the payoffs to have the values T = b > 1, R = 1,
and P = S = 0, where 1 < b ≤ 2 represents the advantage
of defectors over cooperators. That is, mutual cooperators
each gets 1, mutual defectors 0, and D gets b against C.
The parameter b is the only parameter. For the SG, we
make T = 1 + β, R = 1, S = 1 − β, and P = 0 with
0 < β < 1 as the only parameter. For each value of b or β
in this paper, we carry out ten times of iterative simula-
tions and the averaged results are presented.

Evolution is carried out by implementing the finite
population analogue of replicator dynamics [22,27]. In
each step, all pairs of directly connected individual x and
y engage in a single round of a given game. The total
payoff of agent i for the step is stored as Pi. And the ac-
cumulative payoff (Wealth) of agent i since the beginning
of simulation is stored as Wi. Then the strategy of each
agent (Cooperate or Defect) is updated in parallel accord-
ing to the following rule: whenever a site x is updated, a
neighbor y is drawn at random among all kx neighbors,
and the chosen neighbor takes over site x with probability:

Pxy =
1

1 + e(Px−Py)/γ
, (2)

where γ characterizes noise introduced to permit irrational
choices [33–35], and we make γ = 0.1 as in [34,35].

3 Simulation results

We carry out the simulation for a population of N = 104

agents occupying the vertices of a BA scale-free network.
The distributions of wealth, total wealth, and k-wealth
relation were obtained after a time period of T = 105

steps.
We first examine the wealth distribution P (W ) of the

system. Figures 1 and 2 show the P (W ) for PD (b = 1.5)
and SG (β = 0.5) respectively. One can see that both
charts show power-law distribution of personal wealth
which is in agreement with Pareto’s law with v = 1.90 and
v = 1.84 respectively. We perform different simulations by
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Fig. 1. Wealth distribution P (W ) for N = 104 agents playing
PD game with b = 1.5 for 105 steps. The frequency of coop-
erators is 0.2137, and the maximum personal wealth is about
10000.

Fig. 2. Wealth distribution P (W ) for N = 104 agents playing
SG game with β = 0.5 for 105 steps. The frequency of coopera-
tors is 0.9999, and the maximum personal wealth is about 107.

altering the values of b and β, and the results show simi-
lar wealth distributions with extremely robust power law.
For different simulations, the exponential factor v varies
between 1.6 and 2.0 that are in agreement with the em-
pirical values observed in economies including that of U.S
(1.60) [2] and Japan (1.80 ∼ 2.20) [3]. We focus on the
payoff and wealth accumulating behavior in population.
In this sense, the wealth distribution we study here essen-
tially corresponds to ‘real wealth’ or ‘material wealth’, and
not the ‘paper money’ that is generally conserved in the
economic system. We also note that the wealth distribu-
tion is independent of the system size N or the simulation
time T . Although the system’s maximum personal wealth
is different for Figures 1 and 2 because of the difference
in cooperators’ frequency, the power law persists for both
high and low cooperator’s frequency cases. All these fac-
tors indicate the robustness of our model to reproduce the
Pareto Law of wealth distribution.

Fig. 3. Total Wealth variation for N = 104 agents playing
PD game. The arrows with b1 = 1.10 and b2 = 1.40 show
the boundaries of the bistable region. The insert shows the
fluctuation of the total wealth in the high branch of the bistable
region.

Fig. 4. Total Wealth variation for N = 104 agents playing SG
game.

Now we consider the system’s total wealth variation
with the parameter b or β. Figures 3 and 4 show the vari-
ation of total wealth of a N = 104 agents system playing
PD and SG respectively. One can see from Figure 3 that
the total wealth takes a high value (≈4 × 109) when b is
relatively small (≤1.10). Then there is a bistable region
(1.12 < b < 1.40) where the total wealth can be either
high (≈4 × 109) or low (≈5 × 105). When b is greater
than 1.40, the total wealth remains low (≈5 × 105). The
high value of the system’s total wealth can be as large as
104 times of the low value. We note that the total wealth
value is related to the frequency of cooperators such that
the system’s total wealth is high when the frequency is
high, and a low total wealth shows up when the fre-
quency is low. For instance, the frequency of cooperators is
0.9999 and the maximum total wealth is 3996720318 when
b = 1.0. However, the frequency of cooperators is only
0.2137 and the total wealth is only 5461747 when b = 1.5.
This phenomenon implies that when the advantage of
defectors over cooperators is too high, the system will
take the risk of sharply reducing its total wealth. Thus,
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Fig. 5. K-Wealth relation for N = 104 agents playing PD
game with b = 1.5 and SG game with β = 0.5.

a defector-favored economic rule can prohibit the emer-
gence of cooperators and, what is more, greatly reduce
the total wealth of the system.

However, because the SG payoff matrix T > R > S >
P is intrinsically cooperator-favored, the total wealth for
SG fluctuates as the β value changes as shown in Figure 4.

Here we give a heuristic explanation for the emergence
of bistable regions in Figures 3 and 4. Firstly, according to
the rules of evolutionary game theory, one can easily find
out that, there is some correlation between the frequency
of cooperators and total wealth. If the frequency of co-
operators is low, most agents choose to Defect in each
game, and according to the rules of either PD or SG,
they get lower payoffs than when most of them choose
to Cooperate. Thus, the total wealth is high when the fre-
quency is high, and vice versa. Secondly, the frequency
of cooperators is determined by the dynamical updating
rule (Eq. (2) introduced by Szabó et al) which sometimes
produces unstable frequency of cooperators in scale-free
networks where hub node play an important role. When
the hub node (with greater connectivity) takes “Coop-
erate” initially, it will affect the surrounding nodes and
lead to a high frequency of cooperators. And when the
hub node takes “Defect” initially, it will lead to a low fre-
quency of cooperator. Therefor, for our wealth accumu-
lation model, there are some bistable regions in the total
wealth variation charts. And the emergence of coopera-
tion in our model is similar to the results of Santos et al
who reported and explained the appearance of coopera-
tion with high frequency in similar systems for the low
noise limit [18].

Figure 5 shows the relation of personal wealth W with
its connectivity k. And we show the cases that in PD with
b = 1.5, the system’s total wealth is low, whereas the sys-
tem’s total wealth is high in SG with β = 0.5. One can
see in both cases (PD and SG) the personal wealth is pro-
portional to its connectivity, though the total wealth is
different. This implies that an agent’s accumulative pay-
off is related to the number of agents it contacts. Since
the number of agents it contacts reflects the information
resources it has, this model also provides a framework to

explain the fact that agents with more information re-
sources can gain more profit in modern society’s economy.

This proportional relation between personal wealth
and its connectivity is also a possible mechanism for
the emergence of the Matthew Effect in economy. The
“Matthew Effect” refers to the idea that in some areas of
life (wealth, achievement, fame, success et al.), the rich
gets richer and the poor gets poorer [29–32]. The emi-
nent sociologist Robert Merton used the term “Matthew
effect” to describe the deplorable practice of scientists giv-
ing exclusive credit to the most distinguished one among
several equally deserving candidates [29]. The Matthew
effect for Countries (MEC) was also discovered [30]. Our
simulations capture a possible underlying mechanism for
these phenomena. In Figure 5, one can see that with both
PD and SG, the wealth of the agent with more connec-
tivity exceeds the agent with less connectivity. We note
that this tendency remains the same when different val-
ues of parameter b or β are used. And also the tendency
is independent of the system size N or the simulation
time T . Thus, the agents with more cooperation partners
will get richer and richer while those with fewer partners
will get relatively poorer. It is true, from our experience,
that a successful people (company, country etc.) usually
have more partners than a unsuccessful one, and this huge
relation network will provide him more profits. So, to some
extent, our model explains the Matthew Effect in economy
from a statistical point of view.

4 Conclusions

In conclusion, we have studied the wealth distribution in
economy by calculating the accumulative payoff of agents
involving in revolutionary games on the cooperation net-
work with scale-free property. The simulations confirm
Pareto’s power law of wealth distribution. And the values
of exponential factor v are in agreement with the empirical
observations.

The simulation shows that the system’s total wealth
varies with the game parameters. The results of the PD
game shows that agents tend to cooperate with a fre-
quency of nearly 1.0 and a high total wealth can be
achieved when the advantage of defector over coopera-
tor (b) is relatively low. But the total wealth will drop to
a very low value when b is high. The total wealth of SG
fluctuates as the β value changes.

The model also provides a possible explanation for the
Matthew Effect from a statistical physics point of view.
The simulations show that the agents’ personal wealth is
proportional to the number of its contacts (connectivity).
This leads to the phenomenon that the rich gets richer
and the poor gets poorer (Matthew Effect). Thus, in this
sense, one has to increase the number of partners in order
to gain more profit in modern society. This also suggests
a framework to explain why agents with more informa-
tion resources can gain more profit in modern society’s
economy, since the connectivity is a representation of an
agent’s information resource.
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It is evident from the above discussions that, our model
provides a simple but good approach to study the wealth
phenomena in economy, and therefore is worthy of more
attention.
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1. V. Pareto, Le Cours d’Économie Politique (Macmillan,
Lausanne, Paris, 1987)

2. A.A. Dragulescu, V.M. Yakovenko, Physica A 299, 213
(2001)

3. S. Moss de Oliveira, P.M.C. de Oliveira, D. Stauer,
Evolution, Money, War and Computers, edited by B.G.
Tuebner (Stuttgart, Leipzig, 1999)

4. Y. Fujiwara, W. Souma, H. Aoyama, T. Kaizoji, M. Aoki,
Physica A 321, 598 (2003)

5. M. Levy, S. Solomon, Physica A 242, 90 (1997)
6. Econophysics of Wealth Distributions, edited by A.

Chatterjee, S. Yarlagadda, B.K. Chakrabarti (Springer-
Verlag, Milan, 2005)

7. A. Chakrabarti, B.K. Chakrabarti, Eur. Phys. J. B 17, 167
(2000)

8. A. Dragulascu, V.M. Yakovenko, Eur. Phys. J. B 17, 723
(2000)

9. R. Fischer, D. Braun, Physica A 321, 605 (2003)
10. Y. Wang, N. Ding, L. Zhang, Physica A 324, 665 (2003)
11. A. Chatterjee, B.K. Chakrabarti, S.S. Manna, Physica A

335, 155 (2004)

12. N. Xi, N. Ding, Y. Wang, Physica A 357, 543 (2005)
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