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Abstract. In this paper, we propose a new routing strategy on the basis of the so-called next-nearest-
neighbor search strategy by introducing a preferential delivering exponent α. It is found that by tuning the
parameter α, the scale-free network capacity measured by the order parameter is considerably enhanced
compared to the normal next-nearest-neighbor strategy. Traffic dynamics both near and far away from the
critical generating rate Rc are discussed, and it is found that the behavior of 1/f -like noise of the load
time series not only depends on the generating rate R but also on the parameter α. We also investigate Rc

as functions of C (capacity of nodes), m (connectivity density) and N (network size). Due to the low cost
of acquiring next-nearest-neighbor information and the strongly improved network capacity, our strategy
may be useful for the protocol designing of modern communication networks.

PACS. 89.75.Hc Networks and genealogical trees – 89.20.Hh World Wide Web, Internet – 05.10.-a
Computational methods in statistical physics and nonlinear dynamics – 89.75.-k Complex systems

1 Introduction

A wide range of systems in nature and society can be
described as complex networks. Since the discovery of
some interesting common features of many real networks
such as small-world phenomena by Watts and Strogatz [1]
and Scale-free phenomena by Barabási and Albert [2],
the investigation of complex networks, such as the evo-
lution mechanism of network’s structure, has attracted
more and more attention of the physics community [3–8].
The ultimate goal of any study of network structures is
to understand and explain the dynamic processes taking
place upon the underlying structures [5]. Thus many kinds
of dynamic processes have been investigated in previous
works [9–15]. Traffic is one of the important dynamic pro-
cesses involved in complex networks including the Internet
and the WWW. Traffic on regular and random graphs has
been extensively explored [16,17]. Due to observations in
modern communication networks which show power-law
behavior of degree distribution [18,19], it is necessary to
study traffic processes on scale-free networks aiming to
alleviate the congestion and to enhance the utilization ef-
ficiency of the networks.

Random walk and diffusion processes on complex net-
works [20,21] have been extensively investigated due to
their basic dynamic properties and broad application.
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Their simplicity allows deep theoretical analysis of them.
However, these processes are so simple that they could
not reflect real traffic systems completely. Recently, some
models have been presented in order to describe real traf-
fic systems by introducing the concepts of packet gener-
ating rate R, as well as randomly selected sources and
destinations of packets [22–25]. For studying the most im-
portant phenomenon of phase transition from free flow
to congestion, an order parameter is introduced [16]. The
critical generating rate Rc at which the phase transition
occurs measures the capacity of the system. In the free
state, the numbers of created and delivered packets are
balanced, resulting in a steady state. However in the con-
gested state, the number of accumulated packets increases
with time due to the limited delivering capacity or the fi-
nite queue length of each node. Some models utilize the
shortest path routing strategy, according to which each
packet moves along the shortest path towards its desti-
nation [23]. However, for very large communication net-
works, the cost of acquiring the whole network topology
makes it impossible. Some previous works introduced an
interesting strategy called next-nearest-neighbor (NNN)
searching strategy [22,26]. This strategy can not only sig-
nificantly enhance the network capacity compared to ran-
dom walk strategy but also does not require complete
graph information. Hence, this strategy is considered to
be appropriate for large networks, but it is not the whole
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story. On the basis of NNN searching strategy, we pro-
pose a new routing strategy, namely, preferential next-
nearest-neighbor (PNNN) searching strategy which can
further alleviate the traffic congestion and greatly improve
the packet handling capacity of the network compared to
NNN strategy. In PNNN strategy, a parameter α is in-
troduced. The probability that a node i receives packets
from its neighbors is proportional to kα

i in each time step
(see Eq. (1)).

In this paper, we treat all the nodes both as hosts
and routers. The phase transition from free flow to the
jammed state when choosing different α is reported. We
find that the network capacity is considerably improved
by decreasing α and tends to be stable when α is lower
than a specific value. Moreover, by considering the av-
erage packet travel time with the maximal network ca-
pacity, the optimal parameter value α = −2 is obtained.
Near the phase transition point, a large fluctuation of
traffic load is observed, and the extent of the fluctuation
with PNNN strategy is larger than that with the nor-
mal NNN strategy in the cases of large α. Another mean-
ingful phenomenon is the exhibition of 1/f -like noise of
power spectrum of traffic load series, which indicates long
range correlation [22,24]. If the system shows the behav-
ior of 1/f2-like noise, it reflects the zero correlation of
the series. The 1/f noise is supported by real traffic sys-
tems such as vehicular flow in highway networks and data
packet flow in computer networks. Simulation results show
that when R is far away from the critical packet generating
rate Rc, 1/f noise emerges. The exponent φ of the power
spectrum S(f) ∼ f−φ not only depends on R but also cor-
relates with parameter α. The connectivity (link) density
of the Barabási-Albert model (BA) can be adjusted by a
parameter m [2], thus we also investigate Rc as a function
of m. The position of phase transition point influenced
by node delivering ability C and network size N is also
studied in detail.

The paper is organized as follows. In the next section,
the traffic model is described in more detail. In Section 3
numerical simulations are demonstrated in both free flow
and the congested state and traffic behavior is discussed
extensively as well. In Section 4 this work is summarized.

2 The model

As we have mentioned, the classic ER random graph can
not reflect the topology of many real-world networks such
as the Internet and the WWW which perhaps possess the
self-organized mechanism. Therefore, a famous scale-free
network model called the BA model is addressed to mimic
the structure of real observations. With the introduced
preferential attachment mechanism, the model can gener-
ate power-law degree distribution which is in good agree-
ment with the empirical evidence. In this paper, we use
the BA model to establish the underlying structure on
which the traffic processes take place. Our traffic model is
described as follows: at each time step, there are R pack-
ets generated in the system with randomly chosen sources
and destinations, and all the nodes can post at most C

packets towards their destinations. To forward data pack-
ets, each node (node l) performs a search on the area of
its next-nearest-neighbor. If the target node of a packet is
found within the searched area of node l, the packet is for-
warded to a neighbor of l which is connected to the target
node. Otherwise, if no target exists in the searched area,
the packet will be delivered to a node i, one of the neigh-
bors of l, according to the preferential posting probability
of that neighbor:

Πi =
kα

i∑
j kα

j

, (1)

where the sum runs over the neighbors of the node l and
α is an adjustable parameter. Once the packets arrive at
their destinations, they will be removed from the system.
Here, the buffer (queue) size of each node is assumed to
be unlimited, but the handling and delivering capacity of
all the nodes is set to be the same finite constant C. The
first-in-first-out (FIFO) rule [16,17,22–25] is applied at
each queue of the nodes in our model. Another important
introduced rule called path iteration avoidance (PIA) is
that a link between a pair of nodes can not be visited
more than twice by the same packet. The effect of PIA
on the traffic dynamics is discussed in detail in the next
section.

The total number of packets existing in the net-
works Np is called “load”, and the load as a function of
time t forms the load series. Two other important quan-
tities for measuring the efficiency of the network is the
individual packet travel time τ and the average packet
travel time 〈T 〉.

3 Numerical simulation results

The phase transition of traffic systems has been observed
both in real-world systems and some traffic models. A nat-
ural quantity called the order parameter to characterize
the phase transition point more accurately has been intro-
duced [16]. This order parameter is described as follows:

η(R) = lim
t→∞

C

R

〈∆Np〉
∆t

, (2)

where ∆Np = N(t + ∆t) − N(t) where 〈· · · 〉 indicates
average over time windows of width ∆t, and Np(t) repre-
sents the load of the networks at time t. When R is less
than a critical value Rc, 〈∆N〉 = 0 and η = 0, which in-
dicates that the system is in the free flow state without
the occurrence of traffic congestion. However in the con-
dition of R > Rc, η → r (r is a real number more than
zero) which results in the global jam of the system. After
a long period of time, the system will ultimately collapse.
Therefore, the network capacity can be represented by the
critical value Rc. Figure 1a reports the order parameter η
versus generating rate R for different parameter α. It is
easily found that for all different α, η is approximately zero
when R is small; it suddenly increases when R is larger
than the critical value. Figure 1a also obviously shows that
the capacity of the network depends on α. One of the main
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Fig. 1. (a) The order parameter η versus R for a BA network with different parameter α. (b) The critical generating rate Rc

as a function of α for network size N = 1000 and N = 5000, respectively. The other parameters is C = 1.

Fig. 2. (a) Rc versus α without the PIA rule for N = 5000 and C = 1. (b) The packet travel time distribution NP (τ ) versus
τ for different α all in the steady state, the simulation lasts for 8000 time steps with N = 1000, C = 1.

goals of our work is to seek out the optimal value of α
corresponding to the maximal network capacity. For this
reason, the behavior of Rc versus α for different network
size N is explored as shown in Figure 1b. Instead of ob-
taining an optimal value of Rc, the capacity of the network
reaches an upper limit when α decreases to a specific value
approximately −2. The simulation results also show that
the specific value does not depend on N . In our opinion,
the capacity of the network is mainly determined by a few
easily congested hub nodes. The effect of reducing α is to
allow data packets to bypass those large degree nodes and
alleviate the traffic congestion of them. From Figure 1b,
we find that compared to the normal NNN strategy cor-
responding to α = 0 of our strategy, the capacity of the
network is strongly improved with α decreased to a spe-
cific value α = −2. However, with further reducing α,
the network capacity tends to a steady value. In order
to explain this phenomenon, we investigate the behavior
of Rc as a function of α without PIA. In Figure 2a, it is
found that for N = 5000, the system possesses an exclu-
sive maximal capacity point corresponding to α = −1.5.
Thus the phenomenon that the network capacity reaches
an upper limit is ascribed to the PIA. Moreover, compared
to Figure 1b, one can find that PIA enhances the maximal
capacity approximately from 29 to 34. Because unneces-
sarily repeated visits of the packets along the same link

are prevented by PIA, the packet’s transmission speed is
improved. Therefore the network capacity is enhanced by
introducing PIA.

Packet travel time is also an important factor for mea-
suring the efficiency of the network. The travel time τ of a
packet is defined as the time spent by the packet between
its origin and destination. Observations of real computer
networks reveal that the packet travel time has a power-
law distribution, which means that most packets reach
their destination in a short time while a few packets spend
a very long time within the network. Figure 2b reports the
packet travel time distribution NP (τ) versus τ for differ-
ent α in the free flow state. In the steady state, almost no
congestion on nodes occurs and the time of packets wait-
ing in the queue is negligible, therefore, the travel time is
approximately equal to the actual travelling path length
of the packets. The simulation results show that when α is
large, power-law behavior emerges, which is in accordance
with the empirical evidence. Otherwise, the distribution
exhibits exponential distribution. Large α in our model
denotes that packets tend to move to the nodes with large
connectivity in the case of not finding their destinations
within the search area. This phenomenon indicates that in
real systems, perhaps hub nodes are extensively utilized
and afford heavy traffic flow.
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Fig. 3. Average packet travel time 〈T 〉 versus R for (a) N = 1000 and (b) N = 5000 for different α. The other parameter is
C = 1.

Fig. 4. (a) The evolution of traffic load with time for different R in the congested state. (b) The increasing speed of load
∆Np/∆t versus R − Rc with different α. N is set to 1000 and C = 1.

Decreasing α in a PNNN strategy allows packets to cir-
cumvent the heavily loaded nodes. Although the network
capacity reaches an upper limit when α is lower than a
specific value, considering the contribution of hub (large
capacity) nodes to the high transmission speed, further
reducing α will indeed affect the average packet travel
time 〈T 〉. Thus by studying 〈T 〉 in the case of maximal
network capacity, the optimal α can be sought out. Fig-
ures 3a and 3b show the 〈T 〉 versus R for different α lower
than −2 with N = 1000 and N = 5000, respectively. It
is found that in the whole range of R, the system demon-
strates the smallest 〈T 〉 by choosing α = −2, and the
lower the value of α, the larger the 〈T 〉. Therefore, we can
conclude that α = −2 is the optimal choice for both max-
imizing Rc and minimizing 〈T 〉. In addition, compared to
Figure 2a, we find that the PIA rule shifts the optimal
value of α from 1.5 to 2.0.

Studying traffic properties in the jammed state is also
meaningful for alleviating traffic congestion. Figure 4a
shows the evolution of traffic load i.e. Np versus t with
different R. In the cases of R > Rc, all the curves fol-
low linear functions and the distinction among them is
the increasing speed of accumulated packets within the
network. In Figure 4b, we report the increasing speed of
traffic load with changing R for different α. When R does

not approach the phase transition point Rc, three curves
display linear functions of R − Rc and the slopes of them
are all less than 1 and decrease with reducing α. On one
hand, a slope of less than 1 indicates that although the sys-
tem enters the jammed state, not all the R − Rc packets
are piled up per step in the network. On the other hand,
small slope corresponding to small α implies that packets
are more easily accumulated on the congested nodes in the
case of larger α. The phenomenon of slope less than 1 also
suggests that when R is not too large in the congested
state, the congested nodes in the network only take the
minority, while most of the other nodes can still work.
Therefore, the congestion of the system can be alleviated
just by enhancing the handling and delivering capacity of
small quantities of severely congested nodes.

When the generating rate approaches the critical
point Rc, the load series exhibits some interesting proper-
ties. A big fluctuation is observed near the critical Rc. This
phenomenon is called temporary crises in reference [22],
and the huge load will dissipate over a relatively long time
period. Under the condition of the steady state, the load
series shows almost no fluctuations. When R exceeds Rc,
the balance of the number of created and removed pack-
ets is destroyed and the load increases linearly with time
as depicted in Figure 4a. The big fluctuation near the
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Fig. 5. The slope φ of the load time series spectrum as a function of (a) α with fixed R = 1 and (b) generating rate R with
fixed α = 2. Other parameters are N = 3000 and C = 1.

phase transition point reflects the self-regulating ability
of the system. The severe transient local congestion cor-
responding with the climax of the fluctuation can still be
evacuated after a considerable long period of time. More-
over, we observe that the extent of the big fluctuation
strongly depends on α. It is found that the biggest fluctu-
ation appears when α is approximately equal to 1.5. Small
α according to equation (1) results in the redistribution
of heavy load from the large degree nodes to the small
ones. However, the big fluctuation near the critical point
is mainly due to the contribution of the large degree nodes
with severe traffic burdens. Therefore, for small α, the ex-
tent of fluctuation is less than that of large α. Otherwise,
for very large α, the quite low network capacity which can
be seen in Figure 1b induces the small fluctuation values.
Due to the competition of these two effects, the largest
fluctuation is obtained by choosing α = 1.5.

The features of power spectrum of load series are dis-
cussed in detail. In real traffic systems such as computer
networks and highway traffic, 1/f -like noise is observed as
a common property. The 1/f noise denotes that the power
spectrum varies as a power-law S(f) ∼ f−φ with the slope
φ = 1. The spectrum exponent φ characterizes the nature
of persistence or the correlation of the load series. φ = 2 in-
dicates zero correlation associated with Brownian motion;
φ > 2 indicates positive correlation and persistence i.e., if
the process was moving upward (downward) at time t, it
will tend to continue to move upward (downward) at fu-
ture times t′; φ < 2 represents negative correlation and
anti-persistence. Therefore, the exhibition of 1/f noise
of real traffic systems indicates the characters of nega-
tive correlation and anti-persistence. The power spectrum
S(f) vs. f of load series in our model is investigated and
we find the slope φ of the spectrum is not only correlated
with generating rate R but also with parameter α. The
simulations show that for large α, 1/f -like noise emerges
and the system shows the anti-persistence property. With
decreasing α, the slope φ reduces, ultimately to 2 when α
reaches the flat range of Figure 1b. The disappearance of
the correlation is mainly caused by the regularity of pref-
erentially forwarding packets to the smaller degree nodes
for small α. This routing strategy leads to the averaging

of traffic load on all the nodes, and therefore alleviates the
traffic burden of large degree nodes and improves the ca-
pacity of the network. This rule weakens the effect of hub
nodes on which the packet destinations will be found with
high probability and more packets can go directly toward
their destinations. When the packet density on the large
degree nodes is high, the packets will be quickly delivered
and removed from the network and contribute to the de-
crease of the traffic load. However, the hub nodes only take
the minority, which leads to the fluctuation of packet den-
sity on them, therefore, the property of anti-persistence of
load series is attributed to the scale-free structure of BA
model and the routing strategy in the condition of large α
which increases the packet density on the hub nodes.

The slope φ of the spectrum as a function of generat-
ing rate R is also investigated. We find that the negative
correlation of load series is destroyed by increasing R. For
large R, heavy traffic goes on the network and packets
are accumulated on some nodes. The queues are perma-
nently formed on the nodes with heavy traffic burden and
usually these nodes are large degree nodes with a large
search area. The formed queues weaken the randomness
of the packets density on those nodes, therefore, as men-
tioned above, the feature of anti-persistence disappears.
Figures 5a and 5b report the behavior of φ as functions
of α and R, respectively.

The position of phase transition point Rc influenced
by the nodes forwarding capacity C, link density of BA
network m and network size N is also studied. Figures 6a
and 6b show that the network capacity is strongly im-
proved for small α with increasing C and m. As we have
mentioned, small α leads to the average of the load among
all the nodes, hence, enhancing the individual node ca-
pacity intensively increases the entire network capacity
and the system shows better performance in the case of
small α. High link density can decrease the average packet
travel time. Suppose that if the network is fully connected
with links existing among any pair of nodes, then each
packet can arrive at its destination during one time step.
However, increasing m according to the preferential at-
tachment mechanism of the BA model also enhances the
connectivity of the maximal degree node who bears the
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Fig. 6. The critical rate Rc versus (a) individual node capacity C with fixed m = 2 and (b) link density parameter m of BA
model with C = 1 for different α. N is set to 1000.

heaviest traffic burden and determines the network ca-
pacity for large α. These two effects can explain the be-
havior shown in Figure 6b. The plot of Rc versus network
size N displays some interesting phenomena as shown in
Figure 7. When α is not small, Rc is not a monotonous
function of N . This phenomenon may be ascribed to the
interplay of three factors. The first one is that each node
has its own forwarding capacity C and a larger network
size contains larger quantities of nodes which naturally
enhance the network capacity. The second factor is the
increment of average path length of the network topology
with expanding size N , which results in the longer average
packet travel time and therefore reduces the network ca-
pacity. The third factor is the larger maximal degree corre-
sponding with the larger network size. As discussed above,
the larger maximal degree following our PNNN strategy
for the same C will decrease the capacity of the system.
Perhaps in the medium network size, Rc is mainly affected
by the second and third factors, and in the other range,
the first factor becomes a dominator. Therefore, the non-
monotonous behavior when α is not small is observed. As
to the situation of small α, due to the load averaging ef-
fect, the third factor is negligible, and compared with the
first factor, the second factor is not important because
the increment of average path length is very slow with
increasing network size. Hence, for small α Rc is an in-
creased function of N .

4 Conclusions

We introduce an efficient traffic routing strategy enlight-
ened by the so-called NNN search strategy. The low cost
of acquiring the local NNN information makes the strat-
egy possess potential application. By adjusting parameter
α, the scale-free network can reach its maximal handling
and delivering capacity and the new strategy has proved
its efficiency for routing data packets. Traffic properties
including packet travel time distribution and evolution of
traffic load series are investigated in detail. We find that
the extent of the huge fluctuation appearing near the crit-
ical point is correlated with α. Moreover, it is found that
the anti-persistence property of load series not only de-

Fig. 7. Rc versus network size N for different α with C = 1.

pends on the generating rate but also on the parameter α.
For large α or small R, traffic load displays the 1/f -like
noise behavior which is confirmed with empirical observa-
tions of computer networks. The condition under which
the 1/f -like noise is observed also indicates that the hub
nodes bear a severe traffic burden and the volume of traf-
fic flow is far from the maximal capacity of the networks
in real traffic systems. Moreover, we find that increasing
individual node capacity and the link density of the un-
derlying structure can considerably improve the capacity
of scale-free networks, especially in the case of small α.
The network capacity influenced by the network size N is
also discussed and some interesting behavior is found. Our
strategy may be useful for designing communication pro-
tocols for large scale-free networks due to the low cost of
local information requirement and the strongly improved
network capacity.
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