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Abstract. Urban traffic is modeled using a dual graph representation of the urban transport network, where
roads are mapped to nodes and intersections are mapped to links. The proposed model considers both the
navigation of the vehicles in the network and the motion of the vehicles along roads. The vehicle-holding
ability of roads and the vehicle-turning ability at intersections are also incorporated. The overall handling
ability of the system can be quantified by a phase transition from free flow to congestion. Simulations
show that the system’s handling ability greatly depends on the topology of the transportation network. In
general, a well-planned grid can hold more vehicles, and its overall handling ability is much greater than
that of a growing self-organized network.

PACS. 45.70.Vn Granular models of complex systems; traffic flow – 89.75.Hc Networks and genealogical
trees – 05.70.Fh Phase transitions: general studies

1 Introduction

Large cities like Beijing, London, and New York are cur-
rently facing very acute traffic problem. In Beijing, al-
most the whole city was congested for hours after the
fourth west-ring highway became jammed on Sep. 14,
2005. Similar occurrences happened again in 2006 and
2007. Traffic research has mainly focused on highway traf-
fic [1–6] or traffic on well-planned lattice grids [7–10]. Re-
cently, empirical evidence has shown that many trans-
portation systems can be better described by complex
networks [11,12]. The prototypes include urban road net-
works [13–17], nation-wide road networks [18], public
transport networks [19,20], railway networks [21,22], and
airline transport systems [23]. In addition, many investi-
gations have focused on the ensuring of free traffic flow
and the avoidance of traffic congestion in such transport
networks [24–28].

For urban traffic, one natural approach is the “primal”
representation, which considers intersections as nodes and
road segments as links between the nodes. However, this
representation can not characterize the common notion
of “main roads” in urban traffic systems. Also, it violates
the intuitive notion that an intersection is where two roads
cross, not where four roads begin. Hence it cannot repre-
sent the way we describe how to navigate the road net-
work [18], e.g., “stay on Manning Road passing 4 intersec-
tions, until you reach Kent Street and turn right.”
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Here, we study urban traffic by employing a dual rep-
resentation of the road network, in which a node repre-
sents a single road, and two nodes are linked if their cor-
responding roads intersect. This kind of transformation
was first proposed in the field of urban planning and de-
sign with the name “Space Syntax” [29–31], and has been
used recently to study the topological properties of urban
roads [13–17]. In this dual presentation, the “main roads”
of the city can be represented by the “hub nodes” in the
network. The node degree is not limited and it was found
that the dual degree distribution in some cities follows a
power-law.

One shortcoming of the dual representation is the
abandonment of metric distance. This means a street is
one node no matter how long its real length is. On the
other hand, the metric distance is the core element of most
traffic flow studies. To avoid this problem, we propose a
traffic model that considers the movement of the vehicles
along the road. We show that by using some parameters
that characterize the road and intersection ability, it is
possible to simulate the urban traffic and determine the
overall handling ability of the urban transportation sys-
tem.

2 Dual graph of urban network and the traffic
model

The basic steps of a dual representation can be illus-
trated as shown in Figure 1. More specifically, one should



128 The European Physical Journal B

Fig. 1. (Color online) Sketch showing the basic steps of the
dual representation. The road segments grouping method in
(b) is based on the line of sight. See text for details.

first group and define the road segments (Fig. 1b). Pre-
vious studies grouped the segments either by line of
sight [29–31], by their street names [13,14], or by using
a threshold on the angle of incidence of segments at an
intersection [15–17]. Then, in the derived “dual graph” as
shown in Figure 1c, each road is turned into one node,
while each intersection is turned into one link.

With this new paradigm, one can look at the urban
traffic from a new perspective. From common sense, “main
roads” are usually characterized by long lengths, wide
road widths, many intersections, and high traffic efficiency.
When main roads are congested, the entire transportation
system will be in danger of a capacity drop. By contrast,
the system will remain highly efficient even when some
minor roads are congested. In the dual graphs, the main
roads can be represented by hub nodes with many links
and high efficiency. In particular, when considering traf-
fic flow problems, the following node-related terms can be
introduced:

(1) Degree and degree distribution: the number of links
connecting to the node. In the dual graph, the de-
gree corresponds to the number of intersections along
road i. The way the degree is distributed among the
nodes can be investigated by calculating the degree
distribution P (k), i.e., the probability of finding nodes
with k links. Networks with a power-law distribution
are called scale-free networks [12].

(2) Holding Ability Ci: the maximum number of vehicles
the road can hold. This value can be calculated by:
Ci = Li/lv, where Li is the length of the road and lv
is the average length of the vehicles. Here we assume
that the length of each road segment are the same.
Thus, Ci is proportional to the degree of the node:
Ci = α×ki, where α denotes the maximum number of
vehicles that one road segment can hold. The system’s
total holding ability is the sum of the holding ability
of all nodes, that is Ct = ΣiCi.

(3) Turning Ability Ti: the maximum number of vehicles
turning from the road into the neighboring roads per
time step. This value reflects the ability of the inter-
sections along the road, and can also be measured in
practice. In the dual graph, Ti is the maximum number
of vehicles a node can send to its neighboring nodes
per time step. Without losing generality, we assume
that all intersections can handle the same number of
vehicle-turning. Thus Ti is also proportional to the de-

gree of the node: T = β × ki, where β denotes the
ability of one intersection.

In dual networks, the trajectory of a vehicle can be in-
terpreted as traveling along some roads (nodes) for some
distance, and then jumping from a node to another node
through a link representing an intersection. In this pa-
per, the vehicle motion along a given road is modeled in a
similar way to the traffic flow on highways [1–3], and the
jumping of vehicles from node to node is modeled as in
the Internet traffic models [32–36]. On the base of an un-
derlying dual infrastructure, the system evolves in parallel
according to the following rules:

1. Adding Vehicles − At each step, vehicles are added
to the system at a given rate R, at randomly selected
nodes, and each new vehicle is given a random desti-
nation.

2. Navigating Vehicles − If a vehicle’s destination is
found in its nearest neighborhood, its direction will be
set to the target. Otherwise, its direction will be set to
a neighbor n with probability: Pn = kφ

n

Σik
φ
i

, where the
sum runs over all neighbors, and φ is an adjustable
parameter reflecting the driver’s preference with the
roads. It is assumed that the drivers are unaware of
the entire network topology, and use a local routing
strategy to find the next route. They are more ready
to go to a neighboring “main road” when φ > 0, and
they are more likely to go to a minor road when φ < 0.
Generally, this assumption is acceptable in a concep-
tual physical model. Once a vehicle reaches its desti-
nation, it is removed from the system.

3. Motion of Vehicles along Roads − The intersections
along a road i are numbered with serial integers from
1 to ki. We use these integers to reflect the sequence
of intersections along the road. When a vehicle en-
ters a road at the mth intersection and leaves at
the nth intersection, it has to travel the distance of
d = l0 × |m − n| along the road, where l0 denotes the
length of one road segment, and |...| denotes taking the
absolute value. For the velocity, we assumed that the
traffic flow is homogeneous along one given road. The
mean velocity of the vehicles (the distance traveled per
time step on the road) is calculated using the following
equation: vi = Vmax×(1.0−ρi), where Vmax is the max-
imum velocity in the urban system, and ρi = Ni/Ci is
the local vehicle density on the road (Ni is the number
of vehicles on road i). This equation reflects that the
vehicles will take Vmax when there are no vehicles on
the road, and that the velocity decreases linearly until
no vehicle can move when ρ = 1.0. In each time step,
each vehicle on the road moves a distance vi towards
its preferred exiting intersection until d = 0, i.e., until
it reaches the intersection.

4. Vehicle-Turning at Intersections − At each step, only
Ti vehicles, at most, can be sent from a node to its
neighboring nodes. When the number of vehicles at a
selected node reaches the holding ability Ci, the node
will not accept any more vehicles, and the new incom-
ing vehicles will wait for the next opportunity.
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Fig. 2. (Color online) An example of a well-planned lattice
grid: (a) the original road map; (b) the dual representation.

One can see that the core parameters are α, β, and Vmax.
Parameter φ characterizes the behavior of drivers. With-
out losing generality, the road segment length l0 is as-
sumed to be 500 meters, and the average vehicle length lv
is 10 m. Thus, we set α = 50, i.e., each road segment can
hold at most 50 vehicles. The parameter β is also set to
a constant for all intersections, implying that the vehicle-
turning ability for every intersection is the same. Each
time step δt is assumed to represent 5 s in reality. Thus, if
the maximum velocity is 20 m/s, the maximum possible
distance a vehicle travels on the road in one step will be
Vmax = 100.

3 Simulation on a well-planned grid

We first simulate the traffic on a well-planned grid urban
network. The network consists of 24 north-south roads
intersecting 24 east-west roads. An example of the origi-
nal lattice grid and the dual graph of 8 roads are shown
in Figure 2. The studied system can be represented by a
dual graph with 48 nodes, each with the same connectiv-
ity k = 24. Thus there are no topological “main roads” in
this system. For this case, φ = 0 is applied for all vehicles.
Figure 3 displays the typical evolution of Nc(t), the num-
ber of vehicles within the system. One can see that when
R < Rc, Nc increases first and then comes to saturation,
indicating a balance of the number of vehicles entering the
system and the number of vehicles reaching their destina-
tions. However, when R > Rc, Nc will suddenly increase
and quickly reach the system’s total holding ability. Thus
the system is congested and the vehicles accumulate in the
system. Therefore, the critical Rc characterizes the phase
transition from free flow to congestion and can be used to
measure the system’s overall handling ability.

Figure 4 shows the variance of Rc with β. Rc first
increases linearly with β and then comes to saturation.
The saturated value of Rc increases with Vmax. Thus, we
can improve the overall efficiency only to some degree by
enhancing the intersection efficiency. To further improve
the efficiency, we should also enhance the road condition
so that the vehicles can move faster on the road.

In Figure 5, one can see that Rc increases with Vmax

until a saturation is reached. Thus, as the vehicle speed
can not go beyond a certain value in cities, there will be

Fig. 3. (Color online) Typical evolution of vehicle numbers
in the grid system. The critical generating rate of vehicles is
Rc = 113.

Fig. 4. (Color online) Rc vs. β with different values of Vmax.
The data are obtained by averaging Rc with ten simulations.

Fig. 5. (Color online) Rc vs. Vmax with different values of β.
The data are obtained by averaging Rc with ten simulations.

an unavoidable limit to the improvement of urban traffic
efficiency. There is an efficiency limit simply by enhancing
the intersection capacity, given that the network topology
is fixed. One should think of other ways to improve ur-
ban traffic efficiency, such as adding shortcuts, developing
subways, employing better navigation systems, and so on.
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Fig. 6. (Color online) Typical evolution of vehicle number in
the scale-free system. The critical generating rate of vehicles is
Rc = 42.

4 Simulation on a self-organized scale-free
network

Many recent studies using dual graphs of urban sys-
tems [14–19] show that the degree distribution of most
planned cities is exponential, while it follows a power-law
scaling in self-organized cities. In this section, we simulate
the urban traffic on a dual graph of a scale-free network.
To generate the underlying infrastructure, we adopt the
well-known Barabási-Albert scale-free network model [12],
in which the power-law distribution of degree is in good
accordance with many real observations. In this model,
starting from m0 nodes fully connected by links, the sys-
tem is driven by two mechanisms: (1) growth: one node
with m links (m ≤ m0) is added to the system at each
step; (2) preferential attachment: the probability Πi of
being connected to the existing node i is proportional to
the degree ki of the node: Πi = ki

Σjkj
, where j runs over

all existing nodes.
Note that we realize that the BA network model does

not exactly describe a self-organized system of urban
roads. We adopt this model to reflect the fact that new
roads are usually built to intersect existing main roads.
For example, the existing roads are often extended to new
fields and branch roads are built from the extension of
these roads. This mechanism can lead to the emergence of
“main roads” in an urban system, and it is quite similar
to the “growth” and “preferential attachment” in the BA
model.

Here, we simulate the traffic on a network of N = 100
nodes (roads) with m0 = m = 5. This relatively small
system can be seen as simulating the backbone of a city’s
urban network. Figure 6 shows the typical evolution of ve-
hicle numbers in the system. The same behavior as in the
lattice case can be observed. Figure 7 depicts the variation
of Rc with φ. It is shown that Rc is optimized at some typ-
ical value of φc. For the case of Vmax = 100, when β > 1.0,
the system’s overall handling ability is optimized with the
maximum Rc ≈ 42 when φc = −0.7. When β decreases to
values below one, the system’s efficiency decreases rapidly.
In addition, the optimal value of φ increases with the de-

Fig. 7. (Color online) The system’s handling ability vs. φ with
Vmax = 100. The data are obtained by averaging Rc over ten
network realizations.

Fig. 8. (Color online) The system’s maximal handling ability
Rcmax vs. β with different Vmax.

crease of β. When β = 0.3, φc = 0.0, which implies that
the best strategy is a random-walk. We note that φc < 0
means to navigate to the minor roads first. Therefore, if
the intersection turning ability and road condition are the
same for both the main roads and minor roads, the best
strategy for the whole system is to encourage drivers to
use minor roads first.

Figure 8 shows the variation of the maximum value
of Rc (the peak value in Fig. 7) with the increment of β
for different values of Vmax. One can see that Rcmax first
increases and then comes to saturation. In Figure 9, the
variation of Rcmax with Vmax is shown. The profiles are
similar to those found in the lattice grid.

Finally, we try to reproduce the dependencies of aver-
age velocity and traffic flux on vehicle density. These are
important for evaluating the transit ability of a traffic sys-
tem. To simulate the case where there is a constant vehicle
density, the number of arrived vehicles at each time step
is recorded, and the same number of vehicles are added to
the system at the beginning of the next step. In Figure 10,



M.-B. Hu et al.: Urban traffic from the perspective of dual graph 131

Fig. 9. (Color online) The system’s maximal handling ability
Rcmax vs. Vmax with different β.

Fig. 10. (Color online) Average velocity vs. density. The den-
sity values corresponding to the sudden transitions are 0.29 and
0.04 respectively. The arrows show the hysteresis as a guide for
the eyes.

the velocity-density relationship is displayed. Here, the ve-
hicle density of the system is calculated by ρ = Nc/Ct.
One can see that at the density of 0.29, the velocity sud-
denly drops to zero, indicating that the system enters into
a jam state. This behavior is similar to the BML model [7],
where a first order phase transition happens when the sys-
tem size increases. Moreover, two branches of the funda-
mental diagram coexist between 0.04 and 0.29. The up-
per branch is calculated by adding vehicles to the system
(increase density), while the lower branch is calculated by
randomly removing vehicles from a jam state and allowing
the system to relax after the intervention (reduce density).
In this way, a hysteresis loop can be traced. In the lower
branch, the velocity remains at zero until the density is
very low. This is because some main roads are congested.
Thus, the vehicles cannot move on these roads, and this
state will not be alleviated by removing vehicles randomly
from the system.

Two kinds of traffic flux are studied: the local flux and
the arriving flux. The local flux is calculated as the prod-

Fig. 11. (Color online) Flux vs. density.

Fig. 12. (Color online) Arriving flux vs. density.

uct of the average velocity and vehicle density. It corre-
sponds to the average number of vehicles passing a given
spot in the system per time step. Figure 11 shows this
flux-density relationship. The arriving flux is calculated
as the number of vehicles that successfully reach their
destination in each step. In Figure 12, the relationship
between the arriving flux and the traffic density is shown.
In both cases, the hysteresis exists between the same val-
ues of density as in Figure 10. Also, the maximum arriving
flux (44 vehicles per step) corresponds to Rc = 44 when
Vmax = 100 and β = 1.0 in Figure 8. The system’s sud-
den drop to the jam state indicates a first-order phase
transition. It can be explained as follows. According to
the evolution rules, when a road is full of vehicles, the ve-
locity will be zero and the vehicles on neighboring nodes
cannot turn into it. So, the vehicles may also accumulate
on the neighboring nodes, causing them to become con-
gested. This mechanism can trigger an avalanche across
the system when the density is high. Thus, a sudden phase
transition happens at this point. As for the lower branch,
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starting from an initial congested configuration, the sys-
tem will have some congested roads that are very difficult
to dissipate. These roads will reduce the system efficiency
by affecting the surrounding roads until all roads are not
congested. Thus, we get the lower branch.

5 Conclusions and discussions

In summary, urban traffic is simulated using a dual ap-
proach. The proposed model considers both the routing
and motion of the vehicles. The motion along a given road
is modeled in a similar way to the traffic flow on highways,
and the routing of vehicles is modeled as in the Internet
traffic models. The road and intersection capacities are
naturally incorporated in the model. In a systemic view
of overall efficiency, the model reproduces several charac-
teristics of traffic systems, such as the phase transition
from free flow to jam, hysteresis, and the velocity-density
and flux-density relationships.

The phase transition from free flow to jam is similar to
the change from free flow to congestion on highways [1,2],
the change from free flow to synchronized flow [3], and
some empirical data from highway traffic [4–6,8–10]. The
dependencies of average velocity and traffic flux on vehi-
cle density are similar to the “fundamental diagram” of
highway traffic. Nevertheless, since it is difficult to obtain
the relationship between overall traffic flux and overall
density in urban areas, presently, we could not compare
the simulation results with empirical data. In the present
model, the velocity-density relationship shows a sudden
drop when the density is high, which is similar to the re-
sult of the BML model [7–10].

By comparing the simulation results on a well-planned
grid and on a self-organized scale-free network, our re-
sults show that the grid networks are more efficient than
a self-organized one. Given that their total holding abil-
ities (Ct ≈ 57 600 and 50 000) are almost the same, the
maximum number of vehicles running on the grid is much
higher than that on the scale-free network (Figs. 3 and 6),
and the overall handling ability Rc has much larger value
on the lattice grid (Figs. 4 and 8). This is in agreement
with the previous studies which showed that homogeneous
networks can bear more traffic [28,34,37]. For the naviga-
tion effect, the results show that the system will be more
efficient by avoiding the central nodes, which is in agree-
ment with a previous report [36].

The present model does not consider the roles of traffic
lights, traffic signs, and other traffic control methods. So,
it basically models an uncontrolled urban traffic system.
Thus, the sharp drops in Figure 10 are not usually ob-
served in real urban traffic. In our future work, the traffic
control methods will be considered, together with more ra-
tional driving behaviors of the vehicles. Nevertheless, this
model reproduces the nontrivial phase transition from free
flow to jam, and the hysteresis. This study may be useful
for evaluating the overall efficiency of urban traffic sys-
tems, and the results may also help to alleviate the con-
gestion of modern cities and some other transportation
systems. This model may also shed some light on traffic

flow controlling and the design of modern communication
systems.

In future work, one can modify the model to capture
more details in real traffic, such as the role of traffic control
methods, and the differences between major and minor
roads. Better navigation strategies can be coined in the
dual perspective. The resilience of traffic systems against
road failures will be of great importance and research in-
terest.

Recently, Duch and Arenas combined a queuing the-
ory with a random walk process on complex networks to
investigate the traffic dynamics of data packets [38]. This
combination is very impressive and sheds a new light on
the modeling of not only information traffic, but also ur-
ban vehicle traffic, if a dual graph is considered, as was in
the present paper. In our model, to effectively model the
vehicle movements in urban transportation networks, we
use a dual graph representation and considerably simplify
the traffic dynamics of a single road by considering ex-
clusively the correlation between vehicle density and ve-
locity. In fact, the traffic dynamics of a single road and
the interaction between roads may be better modeled by
the incorporation of the queuing theory proposed in refer-
ence [38]. Queuing behavior is a common property of both
information traffic on communication networks and vehi-
cle traffic. Similar to the movement of data packets, vehicle
movement on a road will be restricted by the generation
of queues, which can be well described by the queuing the-
ory. With this in mind, the present model for urban vehicle
dynamics may be considerably improved by coupling the
queuing theory with the dual representation. This cou-
pling might better mimic the dynamics of vehicle traffic
in urban transportation network by neglecting the micro-
scopic dynamics of the vehicles. This investigation will be
carried out in our future work. Nevertheless, the present
model can characterize the dynamics of urban traffic to a
certain extent by the dual representation. Moreover, the
simplified vehicle dynamics of single road can significantly
reduce the simulation time compared to when the micro-
scopic movement of vehicles are considered.
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