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We investigate Kuramoto dynamics on scale-free networks to include the effect of weights, as
weighted networks are conceivably more pertinent to real-world situations than unweighted net-
works. We consider both symmetric and asymmetric coupling schemes. Our analysis and compu-
tations indicate that more links in weighted scale-free networks can either promote or suppress
synchronization. In particular, we find that as a parameter characterizing the weighting scheme is
varied, there can be two distinct regimes: a normal regime where more links can enhance synchro-
nization and an abnormal regime where the opposite occurs. A striking phenomenon is that for
dense networks for which the mean-field approximation is satisfied, the point separating the two
regimes does not depend on the details of the network structure such as the average degree and the
degree exponent. This implies the existence of a class of weighted scale-free networks for which the
synchronization dynamics are invariant with respect to the network properties. We also perform a
comparison study with respect to the onset of synchronization in Kuramoto networks and the
synchronization stability of networks of identical oscillators. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3087420�

Understanding synchronization in complex networks of
large numbers of interacting oscillators is important for
areas ranging from communication to biology. How net-
work properties affect the synchronization dynamics has
been an issue of active research in recent years. In real-
world networks, the interactions among oscillators are
often asymmetric and nonuniform. This has motivated
research on synchronization in weighted complex net-
works. Previous studies on this topic focused on the syn-
chronizabilities of networks of identical oscillators, for
which the approach of eigenvalue analysis is applicable.
However, in realistic networked systems, node dynamics
can be nonidentical. There is thus a need to study syn-
chronization in weighted complex networks with hetero-
geneous node dynamics. Here, we use the Kuramoto
model to address this problem. We consider both sym-
metric and asymmetric weighting schemes and obtain
analytic predictions concerning the synchronization
properties of the network. Our analysis and computa-
tions indicate that more links in weighted scale-free net-
works can either promote or, counterintuitively, suppress
synchronization. A finding is that, regardless of the cou-
pling scheme, two regimes with the opposite synchroniza-
tion behaviors are separated by a point, at which the
onset of network synchronization does not depend on the
link density. This then implies the existence of a class of
weighted scale-free networks for which the synchroniza-
tion dynamics are invariant with respect to network
connectivity.

I. INTRODUCTION

Synchronization in large networked systems has been an
active area of research in statistical and nonlinear physics1,2

since the pioneering work of Kuramoto.3 Given a network
of coupled nonlinear oscillators, Kuramoto focused on the
phase variables and derived a model of phase-coupled
oscillators,

�̇i = �i + ��
j=1

N

Cji sin�� j − �i� , �1�

where �i and �i are the phase and the natural frequency of
oscillator i, respectively, N�1 is the total number of oscil-
lators, � is a global coupling parameter that is identical for
all oscillators, and �Cij� is the coupling matrix. In the model,
each oscillator, when isolated, is characterized by a uniform
rotation of a given frequency. The frequencies of all oscilla-
tors are drawn from a probability distribution g��� with a
single maximum at zero. The interactions among the oscilla-
tors are described by nonlinear coupling terms. The model is
thus relatively simple but highly nontrivial in the sense that it
captures many generic features of the dynamics of realistic
oscillator networks. A particularly appealing feature of the
model is that it is amenable to analysis partly because of the
simple node dynamics. In addition, because of the different
intrinsic frequencies associated with the oscillators, the iso-
lated node dynamics are not identical but heterogeneous. The
model thus enables the problem of synchronization of large
networks of heterogeneous elements to be addressed. Indeed
the Kuramoto model has been a paradigm for obtaining
analytic insights into a variety of synchronization phenom-
ena in physics and biology, as well as in engineering and
technology.4,5

The coupling scheme in the original Kuramoto paradigm
is all-to-all.3,4 The network is thus densely connected, so the
standard mean-field theory can be used to analyze the tran-
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sition to synchronization. More specifically, let � be a global
coupling parameter and R�0 be an order parameter, where a
nonzero value of R indicates certain degree of coherence
among the dynamics of the coupled oscillators. A mean-field
treatment usually gives �c, the critical coupling value at
which R starts to increase from zero, or the transition to
partial synchronization. Recently, the Kuramoto model has
been adopted to networks of complex topologies.6,7 For ex-
ample, transition to synchronization in scale-free networks8

has been investigated with predictions for �c under both mu-
tual and directed coupling schemes.6 At the onset, partial
synchronization emerges in the form of small synchronous
clusters. Mean-field theory predicts that �c is determined by
the frequency distribution of the phase oscillators and the
first two moments of the node-degree distribution. The onset
of global synchronization where all oscillators begin to syn-
chronize in complex clustered networks has also been
considered.7

In this paper, we investigate the transition to synchroni-
zation in weighted scale-free networks under the Kuramoto
paradigm. Our goal is to understand, quantitatively, the in-
fluence of weighting on the onset of synchronization. Such a
network model takes into account the nonuniform interac-
tions among nodes in the network and is therefore believed
to better describe large networked systems in reality. Usually,
there is a correlation between the weight distribution and the
network topology.9 For scale-free networks, due to the alge-
braic degree distribution, the weights can be highly hetero-
geneous, far beyond those in the Boolean representation.9

Synchronization in weighted scale-free networks has been
investigated recently where all existing works assume iden-
tical node dynamics and are mostly based on the eigenvalue
analysis.2 Our approach is to use the formula for transition to
synchronization in Ref. 6 as a theoretical tool to derive ex-
plicit expressions for �c for different weighting schemes. To
be as general as possible, we shall consider both symmetric
and asymmetric couplings.

The main results of this paper can be stated in terms of
the dependence of �c on some parameter � that characterizes
the weighted coupling scheme and controls the degree of
homogeneity in link weights. We find that for both symmet-
ric and asymmetric weighted networks, the dependence of �c

on � is approximately exponential but with different rates for
different densities of links even when the network size and
the topological parameter are the same. As a result, there
exists a critical point �c such that for ���c, networks of
sparser linkage are more synchronizable than networks of
denser linkage in the sense that the critical values �c required
for partial synchronization in the former case are less than
those in the latter case, whereas the opposite holds for
���c �Figs. 3 and 4�. The striking phenomenon is that the
synchronization dynamics of networks with values of � in
the vicinity of �c are invariant with respect to changes in the
network link density, and the value of �c at �c is independent
of the network structural details. In both the ���c and the
���c regimes, the network connectivity changes little in the
sense that links associated with larger-degree nodes are as-
signed with smaller weights, but the synchronization dynam-
ics are qualitatively different in the two regimes. In general,

this phenomenon can be attributed to the complex interplay
between network structure and dynamics. The phenomenon
is predicted analytically with solid numerical support.

A result in Ref. 6 is that for random networks with some
prescribed degree distribution, the critical coupling strength
�c for transition to synchronization is determined by the larg-
est eigenvalue of the adjacency matrix. We will also use this
eigenvalue approach to investigate the onset of synchroniza-
tion in weighted networks to provide additional support for
our results. In addition, we will compare results for the onset
of synchronization in the Kuramoto network with those from
the analysis of synchronization stability in networks of iden-
tical oscillators with the same topology.

In Sec. II, we describe our network model with both
symmetric and asymmetric weighted coupling schemes. In
Sec. III, we provide theoretical and numerical results with
respect to the order parameter near the onset of synchroniza-
tion and �c. An eigenvalue analysis for the critical coupling
strength is presented in Sec. IV, providing additional support
for the generality of our findings. In Sec. V, the dynamics of
weighted Kuramoto networks are compared with the dynam-
ics of networks of identical oscillators with the same cou-
pling scheme. Conclusions and discussions are offered in
Sec. VI.

II. MODEL DESCRIPTION

We construct scale-free networks by using the standard
preferential-attachment model.8 At each time step, a new
node with m links is added and preferentially attached to m
existing nodes with probability proportional to the degrees of
the existing nodes. Degree distributions of the networks are
given by P�k��k−3, the minimum node degree of the net-
works is m, and the average degree is 2m. We then assign
weights to links in terms of the node degrees. Two types of
schemes are considered.

�1� Symmetric coupling. We assume the weight associated
with the link between nodes i and j to be wij = �kikj��,
where ki and kj are the degrees of i and j, respectively,
and � is a control parameter. The coupling strength Cij

between nodes i and j becomes Cij =Aijwij, where �Aij�
is the adjacency matrix of the network. As a result, the
coupling strength is symmetric: Cij =Cji. This weighted
scheme is supported by empirical data of some real-
world weighted networks.9

�2� Asymmetric coupling. If the directional couplings be-
tween two connected nodes are asymmetric, the network
will typically be weighted and directed. The weight from
node i to node j is wij =ki

�, but wij�wji=kj
� for ki�kj.

The coupling matrix element from node i to node j is
Cij =Aijwij. This choice of the weighting scheme is mo-
tivated by the fact that in certain real-world networks,
the weight of a node has a nonlinear correlation with its
degree in the form si�ki

�, where s is the node weight.9

The asymmetric coupling scheme takes into account
both the nonlinear correlation and the fact that the influ-
ences from a node to its neighbors are the same.
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A global order parameter can be defined to quantify the
degree of coherence in the network,6

r =
�n=1

N
rn

�n=1

N
dn

, �2�

where the local order parameter rn is defined as

rnei	n = �
m=1

N

Cmn	ei�m
t. �3�

In Eq. �3�, 	n is the phase associated with the order param-
eter and 	·
t denotes the average over time t. The local total
coupling strength of node n is given by

dn = �
m=1

N

Cmn, �4�

where, for a directed network, the subscript mn indicates that
the coupling is from node m to node n. When the phase
oscillators are not synchronized, the order parameter r has
near-zero values; whereas if the oscillators are fully synchro-
nized, r becomes unity. In between the two extreme states,
oscillators are partially synchronized. The onset of partial
synchronization can be identified by a sudden and rapid in-
crease in the value of r from zero. The order parameter r thus
quantifies the degree of phase coherence among the oscilla-
tors in the network.

III. EFFECT OF WEIGHTS ON SYNCHRONIZATION

For the Kuramoto model, a general formula for �c, the
critical coupling parameter for the onset of synchronization,
has been obtained previously,6,10 as follows:

�c = 
1�1 = �
1	d
/	d2
 , symmetric coupling


1	din
/	dindout
 , asymmetric coupling,
�

�5�

where 
1=2 / ��g�0��, 	·
 stands for the average over nodes
in the network, d is the total local coupling strength, and dn

in

and dn
out are total local incoming and outgoing coupling

strengths, respectively. The value of the order parameter r is
given by

r2 =
�2


1
2
2

 �

�c
− 1� �

�c
�−3

, �6�

where for ���c, 
2=−�g��0�
1 /16. For symmetric cou-
pling, �2 is given by

�2 =
	d2
3

	d4
	d
2 . �7�

For asymmetric coupling, we have

�2 =
	dindout
3

	�din�3dout
	din
2 . �8�

For heterogeneous coupling, � can be regarded as a nominal
coupling parameter. In this case, formulas �5�–�8� are still
applicable. To analyze the effect of weighted coupling on the

onset of synchronization, we set out to calculate the various
averaged quantities in Eqs. �5�–�8�.

A. Symmetric coupling scheme

To obtain the critical coupling strength from Eq. �5� re-
quires that the total local coupling strength be calculated,
which then yields �1. We start by rewriting di as

di = �
j=1

N

Cij = �
j=1

N

Aij�kikj��

= ki
��

j=1

N

Aijkj
� = ki

�+1 �
k�=kmin

kmax

P�k��ki�k��,

where P�k� �ki� is the conditional probability that a node of
degree ki has a neighbor of degree k�. For a network without
degree-degree correlation, we have P�k� �ki�=k�P�k�� / 	k
,
where P�k�� is the degree distribution of the network. This
can be understood by noting that a node of degree k� will be
counted k� times as a neighbor of some other nodes in the
network. We thus have

di = ki
�+1 �

k�=kmin

kmax

P�k��ki�k��

= ki
�+1 �

k�=kmin

kmax k��+1P�k��
	k


=
ki

�+1	k�+1

	k


, �9�

where the identity

�
k�=kmin

kmax

k��+1P�k�� = 	k�+1


has been used. Taking the ensemble average of di, we obtain

	d
 =
1

N
�
i=1

N
ki

�+1	k�+1

	k


=
	k�+1
2

	k

. �10�

Similarly, the ensemble average of di
2 is

	d2
 =��
j=1

N

Aijki
�kj

��2�
=�ki

�+1 �
k�=kmin

kmax k��+1P�k��
	k
 �2�

=� ki
2�+2	k�+1
2

	k
2 � =
	k2�+2
	k�+1
2

	k
2 . �11�

The critical coupling parameter can be written as

�c = 
1
	d

	d2


= 
1
	k


	k2�+2

, �12�

where for any given value of , 	k
 can be approximated by
�k=kmin

kmax kP�k�dk. For a scale-free network, the degree distri-
bution can be written as P�k�=ck−�, where c is given by
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c = �� − 1�kmin
�−1,

as a result of the normalization condition �kmin

� P�k�dk=1
�assuming ��1�. The maximum degree of the network is
determined by �kmax

� P�k�dk=1 /N, from which we obtain
kmax=kminN

1/��−1�. The ensemble-averaged value of k can
thus be calculated as

	k
 = �
kmin

kmax

kP�k�dk =
� − 1

 − � + 1
kmin

 �N�−�+1�/��−1� − 1� ,

�13�

which is valid for −��−1. Inserting this result into Eq.
�12�, we get

�c =
2

�g�0�
2� + 3 − �

2 − �

1

kmin
2�+1

N�2−��/��−1� − 1

N�2�+3−��/��−1� − 1
. �14�

The order parameter can be calculated in a similar way. In
particular, from Eq. �7�, we have

�2 =
	d2
3

	d4
	d
2

=  	k2�+2
	k�+1
2

	k
2 �3��	k4�+4
	k�+1
4

	k
4  	k�+1
2

	k

�2�

=
	k2�+2
3

	k4�+4
	k�+1

. �15�

Using Eq. �13�, we can express �2 as

�4� − � + 5��� − � + 2�2

�2� − � + 3�3

�
�N�2�−�+3�/�−1 − 1�3

�N�4�−�+5�/�−1 − 1��N��−�+2�/�−1 − 1�2 . �16�

Finally, we obtain

r2 = − �2
g��0�

2�2g3�0�
 �

�c
− 1� �

�c
�−3

, �17�

where �c is given by Eq. �14�.
We now provide numerical support for our theoretical

predictions �Eqs. �14� and �17��. The frequency distribution
of the phase oscillators is chosen �somewhat arbitrarily� to be
g���=3�1−�2� /4 for ����1 and g���=0 otherwise. Thus

1=8 / �3�� and g��0�=−3 /2. Four curves of r2 versus �,
corresponding to four different values of the weighting pa-
rameter �, are shown in Fig. 1 for � in the vicinity of �c. For
each value of �, the order parameter r is approximately zero
for ���c. At �c, r starts to increase from zero, signifying a
transition to partial synchronization. The transition point de-
pends on the weighting parameter �. We see that �c increases
as � decreases, indicating that partial synchronization is
more difficult to achieve as � becomes more negative. A
larger negative value of � stipulates that links between
larger-degree nodes be less weighted, effectively making the
network more homogeneous. The results in Fig. 1 thus sug-
gest that homogeneous weights actually hinder synchroniza-
tion. Equivalently, a heterogeneous weighting scheme tends
to facilitate the transition to synchronization. This is some-
what different from the result of eigenvalue analysis of glo-
bal synchronization in oscillator networks of identical node
dynamics, where heterogeneity has been found to suppress
synchronization.1 This seeming “paradox” can be resolved
by noting that our analysis yields information about the tran-
sition to partial synchronization only, while the eigenvalue
analysis is for the global synchronizability of the underlying
network. In all four cases, we observe satisfactory agreement
between the numerical and theoretical values of �c. For �
��c, the agreement between the numerical and theoretical
values of the order parameter is also good. It should be re-
marked that the empirical results of Ref. 9 suggest a value of
�=0.5, which is different from the crossover point �=−0.5
for the onset of synchronization on weighted networks.

The results in Fig. 2 raise the question as to which nodes

FIG. 1. For an ensemble of standard scale-free networks of N=2000 nodes
and average degree 	k
=60, squared order parameter r2 as a function of
global coupling strength � for different values of the weighting parameter �.
The coupling scheme is symmetric. Each data point is obtained by averaging
over 20 network realizations. Curves are theoretical predictions given by Eq.
�17�. Due to the finite-size effect, the algebraic exponent � in the degree
distribution is slightly lower than 3. Here, we use ��2.9 in Eq. �17� to draw
the theoretical curves.

FIG. 2. �Color online� Nodal order parameter rn /dn as a function of node
degree k for �a� �=0, �b� �=−0.4, �c� �=−0.6, and �d� �=−1.0 for different
values of � close to the onset of partial synchronization. The network size is
2000 and the average degree is 	k
=20.
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contribute more significantly to the emergence of partial syn-
chronization. To address this question, we study the depen-
dence of the nodal order parameter rn /dn on degree k at the
onset of synchronization. As shown in Fig. 2, for different
values of � and for � close to the onset of synchronization,
lower-degree nodes tend to be more responsible for the emer-
gence of partial synchronization, regardless of whether node
strengths are heterogeneous or homogeneous. This is some-
what counterintuitive for the case of heterogeneous nodal
strengths because high-strength nodes and their neighbors
are expected to first synchronize. This phenomenon can be
explained by noting that the nodal order parameter is normal-
ized by the node strength dn. Although high-degree nodes
can synchronize with some of their neighbors more easily,11

their contributions to the global order parameter are smaller
due to the normalization over their strengths.

Another phenomenon observed from Fig. 1 is that het-
erogeneous strength distribution �corresponding to higher
values of �� tends to facilitate the onset of partial synchro-
nization since lower values of �c are required. This can be
explained by noting that the total coupling strength among
all nodes, �i=1

N di=N	k�+1
2 / 	k
, is a decreasing function of �.
This means that a larger value of the total coupling strength
is associated with more heterogeneous strength distribution,
which generally requires smaller values of the global cou-
pling �c to achieve partial synchronization. Thus, that hetero-
geneous strength distribution favors the emergence of partial
synchronization can be ascribed to the behavior of the total
coupling strength.

The critical coupling strength �c as a function of the
weighting parameter � for different values of the average
degree is shown in Fig. 3 on a semilogarithmic scale. We
observe that the dependence of �c on � is approximately
exponential but the exponential rate is different for different
values of 	k
. As a result, two different curves will intersect

at some value of �. A remarkable phenomenon is that all
curves apparently intersect at the same point! In Fig. 3, the
intersecting point is �c=−0.5. There are two consequences.
First, for �=�c, networks with different values of 	k
 share
the same critical point of transition to synchronization. Sec-
ond, the dependence of �c on 	k
 shows opposite trends for
���c and ���c. In particular, for ���c, networks with
smaller values of 	k
 exhibit smaller values of �c and thus are
more synchronizable. This is quite counterintuitive, as the
results suggest that networks with more links are less syn-
chronizable. We call ���c the abnormal synchronization
regime. For ���c, the values of �c required for synchroni-
zation are smaller for larger values of 	k
, indicating that
networks with more links are more synchronizable. This is
then the normal synchronization regime.

The existence of a common intersecting point among the
�c�� curves for different values of 	k
 can be explained by
Eq. �14�. For scale-free networks, the minimum degree kmin

is positively correlated with the average degree 	k
. For ex-
ample, for the standard scale-free network model we use
here, 	k
=2kmin. In Eq. �14�, for �=−0.5, kmin

2�+1=1, indicating
that �c is independent of both kmin and 	k
. Because the
intersecting point is common for �c, the two regimes
�i.e., ��−0.5 and ��−0.5� exhibit a reverse relation-
ship between �c and 	k
. The common intersecting point
�c��=−0.5� can actually be calculated by inserting �=−0.5
into Eq. �14�. We have

�c�� = − 0.5� =
2

�g�0�
. �18�

This value depends only on the frequency distribution of
oscillators not on values of quantities such as the weighting
parameter �, the exponent of the degree distribution, and the
average degree 	k
.

B. Asymmetric coupling scheme

For the asymmetric coupling scheme, the coupling ma-
trix is given by Cij =Aijki

�. The value of �c for the onset of
synchronization can be derived from Eq. �5�. The average
incoming coupling value becomes

	din
 =��
j=1

N

Ajikj
�� =�ki �

k�=kmin

kmax k�P�k��k��

	k
 �
=� ki	k�+1


	k
 � = 	k�+1
 . �19�

The average outgoing coupling strength of node i can be
written as

dout
i = �

j=1

N

Aijki
� = ki

��
j=1

N

Aij = ki
�ki = ki

�+1.

We have

FIG. 3. �Color online� For symmetric coupling scheme, critical global cou-
pling strength �c as a function of the weighting parameter � for different
values of the average degree 	k
. The common intersecting point for differ-
ent cases occurs at �=−0.5 and is marked by the vertical dash line. This
point defines two regimes: �i� ��−0.5, the abnormal synchronization re-
gime, where networks with more links are less synchronizable, and �ii�
��−0.5, the normal regime, where the opposite that more links tend to
facilitate synchronization. Data points are from simulations and the curves
are analytical results given by Eq. �14�. Other parameters are the same as
those in Fig. 1.
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	dindout
 = � ki	k�+1

	k


· ki
�+1�

= � ki
�+2	k�+1


	k
 � =
	k�+2
	k�+1


	k

. �20�

The quantity �1 in Eq. �5� is given by

�1 =
	din


	dindout

=

	k

	k�+2


. �21�

Inserting Eqs. �19�–�21� into Eq. �5�, we obtain

�c = 
1�1 = 
1
	k


	k�+2

= 
1

� kmin

kmax�� − 1�kmin
�−1k−�kdk

� kmin

kmax�� − 1�kmin
�−1k−�k�+2dk

=
2

�g�0�
� − � + 3

2 − �

1

kmin
�+1

N�2−��/��−1� − 1

N��−�+3�/��−1� − 1
. �22�

Comparison between the theoretical prediction �Eq.
�22�� and simulation results is given in Fig. 4. Behaviors
similar to those for the symmetric coupling case are observed
except that the value of �c separating the abnormal and the
normal synchronization regimes becomes �c=−1. For cases
of relatively large average degrees, there is a good agreement
between numerics and theory. The slight difference for the
case of 	k
=20 is due to the requirement of reasonably dense
connectivity in the mean-field framework, which is better
satisfied when the average degree of the network is larger.
The value of �c for �=�c is still 2 / ��g�0��, which depends
only on the natural frequency distribution of the oscillators.
The value of �c��c� is thus identical for both the symmetric
and the asymmetric coupling cases. It can be regarded as a
general quantity characterizing the transition to synchroniza-
tion in weighted scale-free networks, as it is apparently in-
dependent of structural details such as the degree-distribution
exponent, the average degree, and the coupling scheme.

IV. EIGENVALUE ANALYSIS FOR CRITICAL
COUPLING STRENGTH

A result from Ref. 6 is that the critical coupling strength
�c at which the transition occurs is determined by the largest
eigenvalue of the adjacency matrix for random networks
with a prescribed degree distribution,6

�c =

1

�N
, �23�

where 
1 is determined by the frequency distribution g���. It
is thus useful to investigate the dependence of 1 /�N on the
weighting parameter � to gain more support for our results
from mean-field analysis. As we will show, the eigenvalue
approach suggests strongly the existence of the abnormal and
normal synchronization regimes and a crossover point sepa-
rating the two regimes. The eigenvalue approach for the on-
set of synchronization is, however, restricted to cases where
the mean-field treatment is meaningful as the underlying net-
works are randomly constructed with some prescribed degree
distribution. For standard scale-free networks generated by
the preferential-attachment mechanism, although nodes are
not randomly connected, the degree-degree correlation
among nodes is weak, so the mean-field approximation is
still valid. In this case, results from the eigenvalue analysis
and from the mean-field theory agree with each other.

The elements of the weighted adjacency matrix C are
given by Cij =Aijwij for i� j and Cii=0 otherwise. For the
symmetric coupling case, for ��−0.5, the corresponding
weighted networks are highly heterogeneous. In this case, �N

can be obtained by considering the square of the weighted
adjacency matrix C2. The largest eigenvalue �N� of the matrix
C2 is determined by the largest diagonal term, according to
the nondegenerate perturbation theory.12,13 The diagonal
terms of C2 are given by

Cii
2 = �

j=1

N

AijwijAijwji = ki
2�+1 �

k�=kmin

kmax

P�k��ki�k�2�

=
ki

2�+1	k2�+1

	k


. �24�

We thus have �N� =maxi�Cii
2� and �N=��N� .

For ��−0.5, the total local coupling strength d is more
homogeneous and, hence, �N can be obtained by using the
random matrix theory.14 In particular, �N is determined by
the maximum value of d to which nodes of the lowest degree
contribute, i.e.,

�N � dmax = �
j=1

N

Aijkmin
� kj

�. �25�

Summarizing results for both cases, we have

�N ���kmax
2�+1	k2�+1
/	k
 , � � − 0.5

kmin
�+1	k�+1
/	k
 , � � − 0.5,

� �26�

where kmax can be obtained by averaging over different net-
work realizations, and 	k�+1
 and 	k
 are given by Eq. �13�. A
comparison of results from Eq. �26� and from simulation is
shown in Fig. 5. We see that, except for the region around

FIG. 4. �Color online� For asymmetric coupling scheme, critical global cou-
pling strength �c vs the weighting parameter � for different average degree
	k
. As for the case of symmetric coupling, two distinct regimes exist: �i�
��−1.0, the abnormal synchronization regime and �ii� ��−1.0, the normal
regime. Data points are from simulations and the curves are from analytical
predictions Eq. �22�. Other network parameters are the same as those in
Fig. 1.
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�=−0.5, there is a reasonable agreement between analytical
and numerical results. The interesting feature is the persistent
existence of the abnormal and normal synchronization re-
gimes, and the crossover point separating them at which the
network synchronizability is apparently independent of,
among others, the average degree of the network.

For the asymmetric coupling case, �N can be obtained in
a similar way. In particular, for ��−1.0, we have

Cii
2 = �

j=1

N

Aijki
�kj

� = ki
�+1	k�+1
/	k
 .

For ��−1.0, we have

di = �
j=1

N

Aijkj
� = ki	k�+1
/	k
 .

We thus have

�N = ��kmax
�+1	k�+1
/	k
 , � � − 1.0

kmin	k�+1
/	k
 , � � − 1.0.
� �27�

Figure 6 shows 1 /�N as a function of � for the asymmetric
coupling scheme for weighted, sparse scale-free networks.
There is a reasonable agreement between theoretical and nu-
merical results. The key feature of Fig. 6 is similar to that of
Fig. 5, i.e., the existence of the abnormal and normal syn-
chronization regimes and a crossover point separating the
two regimes.

V. COMPARISON WITH SYNCHRONIZATION
IN NETWORKS OF IDENTICAL OSCILLATORS

For comparison with the results concerning the onset of
synchronization in the Kuramoto networks, we consider syn-
chronization in networks of identical oscillators1 for both
coupling schemes, which can, in general, be described by

dxi

dt
= F�xi� + ��

j=1

N

GijH�x j� , �28�

where H�x� is a linear coupling function, � is the global
coupling parameter, and G is the coupling matrix underlying
the network topology. The matrix G satisfies the condition
� j=1

N Gij =0 for any i, where N is the network size. The varia-
tional equations are

d�xi

dt
= DF�s� · �xi − ��

j=1

N

GijDH�s� · �x j , �29�

where DF�s� and DH�s� are the Jacobian matrices of the
corresponding vector functions evaluated at the synchroniza-
tion state s�t�. Diagonalizing the coupling matrix G yields a
set of eigenvalues ��i , i=1, . . . ,N� and the corresponding
normalized eigenvectors are denoted by e1 ,e2 , . . . ,eN. The
eigenvalues are real and non-negative and can be sorted as
0=�1��2� ¯ ��N. The smaller the ratio �N /�2, the
stronger the synchronizability of the network.1

Figure 7 shows the eigenratio �N /�2 as a function of �
for both symmetric and asymmetric coupling schemes. One
can see that the synchronizability of identical oscillators is
different from that of the Kuramoto network. In particular,
there are no crossover behavior and abnormal synchroniza-
tion regime for both coupling schemes. Instead, the synchro-
nizability is optimized for �=−1, and higher connection den-
sity 	k
 leads to stronger synchronizability. In this case, our
coupling schemes are equivalent to those studied in Ref. 2,
and our results are consistent with previously obtained re-
sults. The different behaviors between the onset of synchro-
nization in the Kuramoto network and the stability of syn-
chronization state in networks of identical oscillators can
partly be explained by the eigenvalue approach. As we have
seen, the onset of synchronization in the Kuramoto network
is determined by the largest eigenvalue of the adjacency ma-
trix with zero diagonal elements, whereas the synchroniz-
ability of networks of identical oscillators is determined by
the ratio of the largest and the second lowest eigenvalues of
the coupling matrix. From a physical point of view, at the

FIG. 5. �Color online� For an ensemble of weighted, symmetrically coupled
scale-free networks of N=1500 nodes, reciprocal of the largest eigenvalue
of the weighted adjacency matrix as a function of � for different values of
	k
. Note that the average degrees are quite small. Data points are obtained
by numerical simulations, where each point is the result of averaging over
20 random network realizations, and curves are predicted by Eq. �26�.

FIG. 6. �Color online� For weighted, asymmetrically coupled scale-free net-
works, the quantity 1 /�N vs � for different values of the average degree 	k
.
Data points are obtained by numerical simulations and curves are predicted
by Eq. �27�. Other parameters are the same as those in Fig. 5.
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onset of synchronization, partial synchronization emerges
from a completely disordered state, while the synchronizabil-
ity in networks of identical oscillators describes the stability
of synchronization state with respect to perturbation. Hence,
it is not unreasonable that the emergence of partial synchro-
nization can exhibit quite distinct behaviors.

VI. CONCLUSIONS

In this paper, we have investigated the onset of synchro-
nization in weighted scale-free networks using the Kuramoto
model as the platform. We have considered both symmetrical
and asymmetrical coupling schemes. Our focus is on the ef-
fect of the weighting scheme, characterized by the weighting
parameter �, on �c, the critical global coupling strength re-
quired for coherence in the network to set in. For networks
of relatively large values of the average degree, the mean-
field theory has been used, which is the standard theoretical
tool for treating Kuramoto networks. We have also studied
the onset of synchronization in terms of the eigenvalue
approach.

Our findings can be summarized as follows. Regardless
of the coupling scheme, for weighted scale-free networks
there exist two regimes with opposite synchronization behav-
iors. In the normal regime, the network’s ability to synchro-
nize can be enhanced by increasing the number of links in
the network, while the opposite behavior occurs in the ab-
normal regime. A striking phenomenon is that, in the vicinity
of the point separating the two regimes, network synchroni-
zation has little dependence on the average degree. That is,
no matter how the number of links is changed in the net-
work, insofar as the network is connected, the synchroniza-
tion dynamics are invariant in the sense that the value of �c

at the separating point does not depend on details such as the
link density and the degree exponent. In fact, the value of �c

is determined only by the natural frequencies of oscillators,
which are fixed when the networked dynamical system is
initially defined. These results indicate that weighting can
play a quite counterintuitive role in network synchronization.
Understanding the effects of coupling weights on synchroni-
zation in large-scale complex networks has been an active
area of ongoing research. Our work has provided some in-
sights into the issue that may be useful for understanding
synchronization-related phenomena in various complex
physical, biological, and technological systems.
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