
Spatial Games Based on Pursuing the Highest Average Payoff

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 Chinese Phys. Lett. 25 3504

(http://iopscience.iop.org/0256-307X/25/9/110)

Download details:

IP Address: 149.169.24.124

The article was downloaded on 13/08/2010 at 18:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0256-307X/25/9
http://iopscience.iop.org/0256-307X
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


CHIN.PHYS.LETT. Vol. 25,No. 9 (2008) 3504

Spatial Games Based on Pursuing the Highest Average Payoff ∗

YANG Han-Xin(º#)1∗∗, WANG Bing-Hong(�[÷)1∗∗∗, WANG Wen-Xu(�©R)2,
RONG Zhi-Hai(J�°)3

1Department of Modern Physics, University of Science and Technology of China, Hefei 23002
2Department of Electronic Engineering, Arizona State University, Tempe, Arizona 85287-5706, USA

3Complex Networks and Control Lab, Department of Automation, Shanghai Jiao Tong University, Shanghai 200240

(Received 29 May 2008)
We propose a strategy updating mechanism based on pursuing the highest average payoff to investigate the pris-
oner’s dilemma game and the snowdrift game. We apply the new rule to investigate cooperative behaviours on
regular, small-world, scale-free networks, and find spatial structure can maintain cooperation for the prisoner’s
dilemma game. In the snowdrift game, spatial structure can inhibit or promote cooperative behaviour which
depends on payoff parameter. We further study cooperative behaviour on scale-free network in detail. Interest-
ingly, non-monotonous behaviours observed on scale-free network with middle-degree individuals have the lowest
cooperation level. We also find that large-degree individuals change their strategies more frequently for both
games.

PACS: 87. 23.Kg, 02. 50. Le, 87. 23.Ge, 89. 75. Cc

Cooperative behaviour is ubiquitous in many bi-
ological, social and economic systems.[1] Yet, un-
derstanding the emergence and persistence of coop-
eration remains a challenge to many natural and
social scientists.[2] So far, evolutionary game the-
ory has provided a common mathematical frame-
work to characterize and investigate the evolution
of cooperation.[3−5] The prisoner’s dilemma game
(PDG) and the snowdrift game (SG), as general mod-
els, are often used in this field. In the original games
of PDG and SG, two players simultaneously decide
whether to cooperate or defect. They both receive R
upon mutual cooperation and P upon mutual defec-
tion. If one chooses defection and the other chooses
cooperation, the defector will get T and cooperator
receives S. In the PDG, the rank of the four payoff
values is T > R > P > S, so defection is the best
strategy regardless of the opponent decision. While in
the SG, the order of P and S is exchanged, such that
T > R > S > P . Thus, in the SG, the best action
now depends on the opponent: to defect if the other
cooperates, but to cooperate if the other defects.

Since the pioneering work of Nowak and May,[6]

many interests have been given to the effect of spa-
tial structures, such as regular graphs[7−11] and com-
plex networks[12−32] on cooperative behaviour. Many
interesting phenomena have been observed in struc-
tured games. A surprising finding is that cooperation
is often inhibited by the spatial structure in the SG,[8]

which is in sharp contrast to one’s intuition, since
the SG favours cooperation compared to the PDG.
Another important finding is that scale-free networks
provide a unifying framework for the emergence of

cooperation.[16] Very recently, Wang et al.[32] find that
there exist a discontinuous phase transition and hys-
teresis loops in structured games.

In the evolutionary game, players update their
strategies according to certain rules. ‘Tit-for-tat’,[33]

‘Win–Stay, Lose–Shift’,[12] and stochastic evolution-
ary rule proposed by Szabó et al.[12] are com-
monly used rules. Apart from these, players can
adopt death–birth mechanism,[28−30] self-questioning
mechanism,[18,27] global payoff-based mechanism,[32]

and other mechanisms to update strategies. It is well
accepted that the updating rule plays an important
role in the evolution of cooperation. In this Letter,
we propose a structured game model based on pursu-
ing the highest average payoff: a player will switch his
strategy with some probability if his average payoff is
not the highest among his neighbours and himself.

Consider that N players are placed on the nodes
of a certain network. In every round, all pairs of con-
nected players play the game simultaneously. In each
time step, each player gets his total payoff by playing
the game with all his immediate neighbours. As used
in Refs. [17,19,26], we evaluate the success (or fitness)
of the players by their average payoffs: total payoff
divided by their connectivity degree. In the next time
step, each player changes his current strategy to his
opposite strategy with probability

Wi = (max(i) − Pi)/D, (1)

where Pi is the average payoff of player i, max(i) is the
highest average payoff among all player i’s neighbours
and player i himself, D = T − S for the PDG and D
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= T − P for the SG. Following previous studies, we
set T = b, R = 1, S = 0, P = 0, where 1 < b < 2
for PDG; T = 1 + r, R = 1, S = 1 − r, P = 0, where
0 < r < 1 for SG. Hence each game is controlled by a
single payoff parameter, b for PDG and r for SG.

We aim to explore the cooperative behaviour influ-
enced by this new updating mechanism, which has not
been considered so far. Different from the stochastic
evolutionary rule introduced by Szabó et al.,[12] play-
ers do not adopt neighbours’ strategies, instead they
take self-questioning mechanism and only use payoff
information coming from themselves and their neigh-
bours.

Fig. 1. The density of cooperators ρc, on MF, RL, NW,
BA networks. For RL, NW, BA networks, average connec-
tivity 〈k〉 = 8. Each data point is obtained by averaging
over 20 individual realizations, network size N = 10000.
Left panel: ρc as a function of r for SG. Right panel: ρc

as a function of b for PDG.

The key quantity for characterizing the coopera-
tive behaviour is the density of cooperators ρc, which
is defined as the fraction of cooperators in the whole
population. We study ρc on four typical networks:
the fully connected network (mean-field case, MF),
regular lattices (RL) with periodic boundary condi-
tions, Newman–Watts small world network (NW)[35]

and scale-free Barabási–Albert network (BA).[36] In
our simulations, ρc is obtained by averaging from last
5000 Monte Carlo (MC) time steps of total 10000 MC
time steps, where the system has reached a steady
state. In the initial states, cooperators and defectors
are uniformly distributed among all the players. For
MF, we can provide analytical results for ρc. When
the system is stable, namely, no individuals change
their strategies anymore, the payoff of any cooperator
should be equal to that of defector. Hence for SG, we
have

ρc + (1 − ρc)(1 − r) = ρc(1 + r), (2)

where the left side is the average payoff of cooperator,
and the right side is the average payoff of defector.
From Eq. (2), ρc = 1− r. For the PDG, one can write
a similar equation:

ρc = ρcb, (3)

which gives ρc = 0.
From Fig. 1, one can observe that for both games,

BA network can best promote cooperation, while RL
network has the lowest cooperation level. The differ-
ence is caused by the heterogeneity of network. As
is well known, RL network is an extremely homo-
geneous network while BA network is heterogeneous.
For SG, ρc on three spatial networks (BA, NW, RL
networks) are lower than 1− r expected in well mixed
populations when r is small (r < 0.6). By contrast,
spatial structure can enhance cooperation for large r
(r > 0.6). This phenomenon is opposite to the pre-
vious results,[10] in which authors found that spatial
structure favours cooperation when r is small while
inhibits cooperation when r is large. Among many
previous studies on structured PDG, cooperators of-
ten die out when b is large, while cooperation can be
persistent over the entire range of b on all three spatial
networks using the new updating rule.

In the following, we focus on cooperative behaviour
on BA network. It is found that connecting degree
plays an important role in structured games with the
new updating rule. As shown in Fig. 2, for SG, large-
degree individuals have lower ρc than that of small-
degree individuals when r is small (r = 0.1). Inter-
estingly, when r becomes large (r = 0.9), ρc is non-
monotonous function of connecting degree k with the
middle-degree individuals having the lowest cooper-
ation level. Similar nontrivial phenomenons are ob-
served in the PDG over the entire range of b (b = 1.1,
b = 1.5, b = 1.9 respectively).

Fig. 2. The density of cooperators ρc, as a function of con-
necting degree k on BA network. Network size N = 10000,
average degree 〈k〉 = 8. Each data point is obtained
by averaging over 20 individual realizations. Left panel:
r = 0.1, 0.5, 0.9 for SG. Right panel: b = 1.1, 1.5, 1.9 for
PDG.

In order to understand non-monotonous behaviour
induced by connecting degree, it is necessary and in-
teresting to investigate the frequency of varying strat-
egy fv, which is defined as the proportion of varying
strategy times in total time steps. Higher value of fv

corresponds to change strategy more frequently, and
vice versa. If players keep their strategies unchanged
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through total time steps, then fv = 0. By contrast,
if players change strategies at each time steps, then
fv = 1. From Fig. 3, one can observe that fv increases
with r increases, but almost is independent of b. In
addition, larger-degree individuals are more frequent
to change strategies for both games. For larger-degree
individuals, although they earn more from more neigh-
bours compared to lower-degree individuals, the aver-
age payoffs obtained from each neighbour in general
will not be the highest, and may even much less than
the highest payoff. In contrast, if a small-degree in-
dividual defects and its neighbours at a certain time
step are just all cooperators (the probability of this
occurrence will be higher than that of higher-degree
individuals), then the small-degree defector will have
the highest average payoff. From this perspective,
smaller-degree individuals have higher probability to
gain the highest payoffs, so that tend to be inactive
in strategy updating; while higher-degree individu-
als change strategies more frequently. It is interest-
ing to note that high value of fv can inhibit or en-
hance cooperation for large-degree individuals in SG.
When r is small, changing strategies frequently means
large-degree individuals can not keep cooperation for
enough time, so they can not have high cooperation
level. By contrast, when r is large, high value of
fv makes large-degree individuals have approximately
equal probability to take defection or cooperation,
which prevents cooperation level from falling to very
low value. Individuals prefer to take defection in PDG
because defection usually bring higher payoff. Com-
pared with small-degree individuals, middle-degree in-
dividuals can keep defection more easily since they
have relatively steady number of cooperative neigh-
bours. On the other hand, middle-degree individuals
change strategies less frequently than large-degree in-
dividuals. As a result, middle-degree individuals have
the lowest cooperation level. Similar case occurs in
SG when r is large.

Fig. 3. Frequency of varying strategy fv , as a function of
connecting degree k on BA network. Here fv is obtained
from the last 5000 MC time steps of total 10000 MC time
steps of evolution. Left panel: r = 0.1, 0.5, 0.9 for SG.
Right panel: b = 1.1, 1.5, 1.9 for PDG. Other parameters
are the same as those in Fig. 2.

In conclusion, we have studied the prisoner’s
dilemma game and the snowdrift game based on a new
updating rule, in which a player will change his strat-
egy to opposite strategy with some probability if his
average payoff is not the highest among his neighbours
and himself. In the snowdrift game, we find that spa-
tial structure inhibits the cooperative behaviour for
small payoff parameter r, contrarily promotes the co-
operation when r is large. For the prisoner’s dilemma
game, cooperation can be persistent over entire range
of payoff parameter b on spatial networks, such as reg-
ular, small-world, and scale-free networks. In particu-
lar, non-monotonous behaviours are observed on scale-
free network with middle-degree individuals have the
lowest cooperation level for large r and entire range of
b. In addition, we find that large-degree individuals
are more frequent to change their strategies for both
games. Our work may be helpful in understanding the
role of strategy updating mechanism in the evolution-
ary games.
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[15] Szab ó G and Vukov J 2004 Phys. Rev. E 69 036107
[16] Santos F C and Pacheco J M 2005 Phys. Rev. Lett. 95

098104
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