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A definition of network entropy is presented, and as an example, the relationship between the value of network

entropy of ER network model and the connect probability 𝑝 as well as the total nodes 𝑁 is discussed. The

theoretical result and the simulation result based on the network entropy of the ER network are in agreement

well with each other. The result indicated that different from the other network entropy reported before, the

network entropy defined here has an obvious difference from different type of random networks or networks having

different total nodes. Thus, this network entropy may portray the characters of complex networks better. It is also

pointed out that, with the aid of network entropy defined, the concept of equilibrium networks and the concept

of non-equilibrium networks may be introduced, and a quantitative measurement to describe the deviation to

equilibrium state of a complex network is carried out.

PACS: 89. 75. Hc

The complex interaction relationship between in-
dividuals in the real world can be abstractly described
by a network. In the network, each node represents
each individual in the system, and interactions be-
tween the individuals can be expressed in edges in the
network. For a network system with a large number
of nodes, Erdös and Renyi made a pioneering work in
the 1960s and gave the well-known ER random net-
work model.[1] However, the development of informa-
tion technology makes it possible to perform empirical
study on the actual real-world network. It was em-
pirically found that some of the actual statistical na-
ture of major networks is not consistent with the ER
model.[2−5] In recent years, represented in the small
world network model (WS model) given by Watts and
Strogatz [6] and the scale-free network model (BA
Model) given by Barabási and Albert,[7] many re-
searchers have given different network models.[8−17]

These models described the statistical characters of
the actual network from different aspects better. In
essence, these network models and the ER model are
all presented as random networks. Networks gener-
ated by each test are not exactly the same. Therefore,
such network systems are random systems.

A random system has some uncertainties. Entropy
is usually used to describe the uncertainty of a sys-
tem. In 1948, Shannon established general entropy
theory.[18] For complex networks, many researchers
have also given different definitions of entropy in re-
cent years.[19−21] These network entropies have played
very good roles in understanding of complex networks.

The most frequently cited definition of entropy[22−28]

is the Shannon entropy defined in the literature.[19]

However, the specific calculation shows that the dif-
ference between these entropies of different sizes and
different types of networks is not significant, and can
not sensitively distinct different networks. In this Let-
ter, we try to define an entropy based on the topol-
ogy configuration of complex network, and expect that
this entropy can describe the character of complex net-
works better. Specifically, we calculate the entropies
with the ER network model, to test if the entropy is
sensitive in network size and linking probability to the
ER network model. In addition, it will be discussed
if new physics concept can be proposed by the intro-
duction of the entropy we defined.

The information theory tells us that, for a sys-
tem that has 2𝑛 possible states, if the probability of
each state is the same, 𝑛-bit information is required
to determine which state the system is in. In other
words, log2 Ω bit information is necessary to consist
of a state from Ω possible states which have the same
probability. Therefore, as it reflects the uncertainty
of a system, log2 Ω can be defined as the system’s en-
tropy. For example, a throwing up dice has 6 possible
states if different faces landing on the floor represent
different states. The probability for each state is 1/6.
However, if the dice is not a cube shape, each proba-
bility of an upper surface appearing is no longer equal
to each other. A more extreme example is that a thin
sheet dice has the probability 1/2 for two faces and
0 for the remained four faces. Although the system
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at this time has still 6 states, only one-bit informa-
tion can determine the state of the dice. Obviously,
log2 Ω can not simply be used as the system’s entropy.
Shannon’s entropy theory has put forward a formula
for the situation that the probabilities are different for
different states,[18] i. e.

𝑆(Ω, 𝑃 ) = −𝐾

Ω∑︁
𝑖=1

𝑃𝑖 log 𝑃𝑖, (1)

where Ω is the number of possible system states, 𝑃𝑖

is the probability of the 𝑖th state, 𝐾 is a constant.
For the sake of brevity, 𝐾 = log2 10 is suitable. Then
formula (1) can be rewritten as

𝑆(Ω, 𝑃 ) = −
Ω∑︁

𝑖=1

𝑃𝑖 log2 𝑃𝑖. (2)

The above definition of entropy is generally called the
Shannon entropy.

For the complex network, from different points of
view, a range of definitions of entropy has been pro-
posed. Sole and Valverde[19] also presented a defini-
tion of Shannon entropy of complex network as fol-
lows:

𝐻(𝑞) = −
𝑁∑︁

𝑘=1

𝑞(𝑘) log(𝑞(𝑘)), (3)

where 𝑞 = (𝑞(1), · · · , 𝑞(𝑖), · · · , 𝑞(𝑁)), and 𝑞(𝑘) is de-
fined as

𝑞(𝑘) =
(𝑘 + 1)𝑃𝑘+1

⟨𝑘⟩
, (4)

and it is named as the remaining degree, with 𝑃𝑘 be-
ing the distribution of degrees, and ⟨𝑘⟩ the average of
degrees.

A number of results of Shannon entropy have been
presented in the literature,[19] by computing at some
real network systems and network models.

From the definition of entropy and the calcula-
tion results given in Ref. [19], we cannot believe that
this definition of entropy is better from the viewpoint
of characterizations of complex networks, at least it
is not appropriate to name it as Shannon entropy.
Firstly, with the Shannon entropy of the original def-
inition of inconsistency, 𝑞(𝑘) in Eq. (3) is not the dis-
tribution on all possible states; secondly, for different
sizes or different types of networks, this definition does
not lead to significant differences when one calculates
the entropy.

In order to describe the uncertainty of complex
networks, we propose a new network entropy concept
based on the topology configuration of network. For
a complex networks generated according to certain
rules, in the given parameters, each test can generate a
specific network configuration. Repeated tests, a wide

range of configurations will be produced. Naming all
possible configuration number as Ω, the probabilities
for various configurations as 𝑃𝑖, (𝑖 = 1, 2, . . . , Ω), the
network entropy can be defined as

𝑆(Ω, 𝑃 ) = −
Ω∑︁

𝑖=1

𝑃𝑖 log2 𝑃𝑖. (5)

Because this definition of entropy is suitable to the
general networks, not only confined to complex net-
works, we call it the topology entropy of network. As
an example, the ER random network model will be
analysed, and the entropy will be calculated.

Table 1. Results of the network Shannon entropy defined in
Ref. [19] for different networks.

Network type 𝑁 ⟨𝑘⟩ 𝐻(𝑞)

Technological networks

Software 1 168 2.81 3.04

Software 2 159 4.19 3.99

Internet AS 3200 3.56 4.77

Software 3 1993 5.00 4.82

Circuit TV 320 3.17 1.37

Circuit EC05 899 4.14 2.98

Software Linux 5285 4.29 4.47

Power grid 4941 2.67 3.01

Biological networks

Silwood park 154 4.75 4.09

Ythan estuary 134 8.67 4.74

p53 subnetwork 139 5.09 4.00

Metabolic map 1173 4.84 3.58

Neural net (C.elegans) 297 14.5 5.12

Metabolic map 821 4.76 3.46

Romanian syntax 5916 5.65 5.45

Proteome map 1458 2.67 3.85

Theoretical systems

Star graph 17 1.88 1.00

Barabási-Albert 3000 3.98 4.12

Erdös-Renyi 300 6.82 3.31

Modular E-R 500 10.3 3.67

The ER network model gives a typical random
undirected network. We try to calculate the value
of topology entropy of ER networks by means of anal-
ysis and simulation. For the ER network model, 𝑁
is the total number of nodes and 𝑝 is the probability
of any pair of nodes connected. Generally, 𝑝 ∈ [0, 1].
Especially, if 𝑝 = 1, the total number of edges is equal
to 𝑁(𝑁 − 1)/2. Here 𝑁(𝑁 − 1)/2 possible connected
processes can be treated as 𝑁(𝑁 − 1)/2 independent
random events. We mark 𝑀 = 𝑁(𝑁 − 1)/2, the ac-
tual link edge number 𝑚 is a random variable, it will
comply the binomial distribution

𝑃 (𝑚) =
𝑀 !

𝑚![𝑀 −𝑚]!
𝑝𝑚 · (1− 𝑝)𝑀−𝑚

(𝑚 = 0, 1, 2, . . ., 𝑀). (6)

For 𝑀 possible links and 𝑚 certain links, total scheme
number is

𝐶𝑚
𝑀 =

𝑀 !
𝑚!(𝑀 −𝑚)!

. (7)
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This result is based upon the assumption that the
nodes are distinguishable.

Mark the possible configurations as Ω(𝑁, 𝑝) when
total nodes are 𝑁 and probability 𝑝, there are

Ω(𝑁, 𝑝) =
𝑀∑︁

𝑚=0

𝐶𝑚
𝑀 =

𝑀∑︁
𝑚=0

𝑀 !
𝑚!(𝑀 −𝑚)!

,

for 𝑀 = 𝑁(𝑁 − 1)/2. (8)

For each 𝑚, there are 𝐶𝑚
𝑀 possible configurations cor-

respondingly. All the configurations in these 𝐶𝑚
𝑀 dif-

ferent configurations appear in the same probability,
and is equal to 1/𝐶𝑚

𝑀 without exception. Notes that
this is a conditional probability which links numbers
are 𝑚, so the realization of a random network has 𝑁
nodes, and link probability is 𝑝, here 𝑚 edges can be
regard as a random incident A𝑖 which has occurrence
probability

𝑃𝑖 = 𝑃 (𝑚)/𝐶𝑚
𝑀 = 𝑝𝑚(1− 𝑝)𝑀−𝑚,

for 𝑖 = 1, 2, . . ., Ω(𝑁, 𝑝). (9)

As the probabilities of each 𝐶𝑚
𝑀 configuration for cer-

tain 𝑚 are the same, the entropy value aimed to∑︀𝑀
𝑖=0 𝐶𝑚

𝑀 total configurations can be calculated for
different 𝑚 respectively, so 𝑆 can be written as

𝑆(𝑁, 𝑝)

= − 𝐶0
𝑀 [𝑝0(1− 𝑝)𝑀−0] log2[𝑝0(1− 𝑝)𝑀−0]

− 𝐶1
𝑀 [𝑝1(1− 𝑝)𝑀−1] log2[𝑝1(1− 𝑝)𝑀−1]

− 𝐶2
𝑀 [𝑝2(1− 𝑝)𝑀−2] log2[𝑝2(1− 𝑝)𝑀−2]− · · ·

− 𝐶𝑀
𝑀 [𝑝𝑀 (1− 𝑝)𝑀−𝑀 ] log2[𝑝𝑀 (1− 𝑝)𝑀−𝑀 ]

= −
𝑀∑︁

𝑚=0

𝐶𝑚
𝑀 [𝑝𝑚(1− 𝑝)𝑀−𝑚]

· log2[𝑝𝑚(1− 𝑝)𝑀−𝑚]. (10)

Given Eq. (10) a further simplification, we obtain the
ER random network entropy based on topology con-
figuration in an analytical form:

𝑆(𝑁, 𝑝) = −
𝑀∑︁

𝑚=0

𝐶𝑚
𝑀 [𝑝𝑚(1− 𝑝)𝑀−𝑚]

· [𝑚 log2 𝑝 + (𝑀 −𝑚) log2(1− 𝑝)]

= −
𝑀∑︁

𝑚=0

𝑃 (𝑚)[𝑚 log2 𝑝 + (𝑀 −𝑚) log2(1− 𝑝)]

= − ⟨𝑚⟩ log2 𝑝− ⟨𝑀 −𝑚⟩ log2(1− 𝑝), (11)

where 𝑀 → ∞ when 𝑁 → ∞, then 𝑃 (𝑚) tends to a
Gaussian distribution

𝑃 (𝑚) =
1

𝜎𝑀

√
2𝜋

exp
(︁
− (𝑚− ⟨𝑚⟩)2

2𝜎2
𝑀

)︁
, (12)

⟨𝑚⟩ = 𝑀𝑝 =
1
2
𝑁(𝑁 − 1)𝑝,

𝜎𝑀 =
√︀

𝑀𝑝(1− 𝑝) =
√︀

𝑁(𝑁 − 1)𝑝(1− 𝑝)/2. (13)

Entropy 𝑆(𝑁, 𝑝) as functions of 𝑁 and 𝑝 can be ob-
tained,

𝑆(𝑁, 𝑝) = −𝑀 [𝑝 log2 𝑝 + (1− 𝑝) log2(1− 𝑝)]

= − 1
2
𝑁(𝑁 − 1)[𝑝 log2 𝑝 + (1− 𝑝) log2(1− 𝑝)]. (14)

In order to verify Eq. (14), we take the simulation
method on ER network and obtain the experimen-
tal results of entropy (Fig. 1). The algorithms are as
follows.

Given the size of the network 𝑁 and the link proba-
bility 𝑝, the first test generates a random ER network.
Memorize the network with an adjacency matrix stor-
age, and as a template, set the template’s matching
number to be 1. The next test generates an another
random ER network, and compare it with existing
templates, if it fully consists of the known template,
we call it matching with the template, and the cor-
responding template’s matching number plus 1. Oth-
erwise, memorize the ER network generated just as a
new template, and set its matching number to be 1.
Repeat the above steps enough times, collect various
template matching numbers, the templates’ probabil-
ity distribution can be obtained. As each template
corresponds with one topology configuration, the tem-
plates’ probability distribution is just the probability
distribution 𝑃𝑖 of various configuration of the ER net-
work for given 𝑁 and 𝑝. However, 𝑃𝑖 to Eq. (5) we
can obtained the entropy in this situation.

Fig. 1. Comparison of experimental results with analyti-
cal results of network entropy based on topology configu-
ration of the ER network model.

On cases of that the network size 𝑁 is respec-
tively 3, 4, 5, 6, and link probability 𝑝 is respectively
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, ER
networks are generated randomly and the numbers of
each configuration are recorded. The total test num-
bers are all 𝑇 = 106 when 𝑁 = 3, 4, 5, and when
𝑁 = 6 the total test number is 𝑇 = 107. The ex-
perimental results are marked in different symbols in
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Fig. 1. The lines through the symbols in Fig. 1 are
plotted according to Eq. (14). It is clear that the ex-
perimental results agree well with the theoretical re-
sults.

The network entropy based on topology configu-
ration presented here is consistent with the original
definition of Shannon entropy, in which the probabil-
ity distribution is a description of possible state of net-
work. Compared to Ref. [19], it should be more appro-
priate that we call the entropy defined here the Shan-
non entropy of network. Because of the well-known
Shannon entropy defined in Ref. [19], the network en-
tropy based on the topology configuration defined here
can be called the topology entropy of network, and the
entropy in Ref. [19] the degree distribution entropy.

Our result shows that even only to ER random
network, in the case of different network size 𝑁 and
different link probability 𝑝, the topological configu-
ration entropy values are significantly different from
each other. Therefore, the network entropy based on
topology configuration can be a new physical quantity
describing the complex network character better.

Xie et al. studied the rewiring network model in
Ref. [29], and the results have shown that a network
with fixed node number 𝑁 takes the random rewiring

possibility 𝐺(𝑘) =
𝑘 + 𝛼

2𝐸 + 𝑁𝛼
, where 𝑘 is the degree of

the networks, 𝐸 is the total link number, 𝛼 is a non-
minus constant. Taking 𝛼 and 𝛾 = 2𝐸/𝑁 with differ-
ent values, the system evolutes into the networks in
Poisson’s form, power-law form and exponential form
after a period of time evolution processing. Inspired
by the network in Ref. [29], when we introduce the
rewiring mechanism, a network with fixed nodes can
be treated as a thermal dynamical system, each edge
in the networks rewires in certain rules. When the
rewiring possibility is a constant, no extra information
is needed in the processing, the system evolutes into
a random network, and the degree distributes in Pois-
son’s form. When each edge rewiring possibility is re-
lated to 𝑘, the system needs the degree distribution at
present, namely needs extra information, and the sys-
tem evolutes to one of other kind of networks. For in-
stance, when 𝛼 ≪ 1, the system evolutes into network
with degree distribution in a power-law form. Tak-
ing the rewiring network without extra information as
an equilibrium network,one needs extra information
input continually as a non-equilibrium network, a sta-
tistical value is needed to describe the deviation of
the system. Because of the assume that the proper-
ties of all configurations of ER network are equivalent
for given network size 𝑁 and edge number 𝑚, among
various evolution network models rewind ceaselessly

in different rules in the case of given nodes number 𝑁
and edge number 𝑚, ER network entropy value will be
the greatest. If we regard the ER network as a kind of
evolution networks in an equilibrium state, the differ-
ence of entropy values between an evolution network
and the ER network can be used as the deviation de-
gree to describe the evolution network departing from
the equilibrium state.

For example, to describe the deviation of the net-
work, we compare the network’s entropy 𝑆𝑥 with the
entropy 𝑆0 of the ER network with the same nodes.
We can define deviation 𝐷 = (𝑆0 − 𝑆𝑥)/𝑆0, and 𝐷
will belong to [0, 1]. When 𝐷 = 0, the network is
of equilibrium, 𝐷 ̸= 0 means that the network is not
of equilibrium, the larger the 𝐷 value, the more the
system deviated from equivalent state.

Therefore, via the network entropy we defined and
rewiring network presented in Ref. [29], we can intro-
duce the conceptions of equilibrium network and non-
equilibrium network, and estimate the degree of a net-
work deviating away from the equilibrium state.
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