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Synchronizability of Highly Clustered Scale-Free Networks *
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We consider the effect of clustering coefficient on the synchronizability of coupled oscillators located on scale-free
networks. The analytic result for the value of clustering coefficient aiming at a highly clustered scale-free network

model, the Holme—Kim model is obtained, and the relationship between network synchronizability and clustering
coefficient is reported. The simulation results strongly suggest that the more clustered the network, the poorer

the synchronizability.
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Many social, biological, and communication sys-
tems can be properly described as complex networks
with nodes representing individuals and edges mim-
icking the interactions among them. 3 There have
been examples such as the Internet, the World Wide
Web, social networks, metabolic networks, food webs,
and many others.*~7 Recent empirical studies indi-
cate that the networks in various fields have some
common characteristics, the most important one of
which are called the small-world effect®! and scale-free
property.l”) Networks of the small-world effect have
small average distances as random networks and large
clustering coefficient as regular ones. The scale-free
property means that the degree distribution of net-
works obeys the power-law form.

One of the ultimate goals of research on complex
networks is to understand how the structure of com-
plex networks affects the dynamical process taking
place on them, such as traffic flow,19~13] epidemic
spread,1416] cascading behaviour.!7~19] In this Let-
ter, we concentrate on the synchronization, which
is observed in a variety of natural, social, physical
and biological systems.[2°=22] The large networks of
coupled dynamical systems that exhibit synchronized
state are subjects of great interest.
ies mainly focus on the Watts-Strogatz!8! networks
and Barabasi-Albert!® networks, which have demon-

Previous stud-

strated that scale-free and small-world networks are
much easier to synchronize than regular lattices.[23—26]
Since many real-life networks are scale-free small-
world networks, there have already been some mod-
els that can simultaneously reproduce the small-world
and scale-free characteristics, 2773 to investigate the
synchronizability of the scale-free small-world net-
works if of great interest and importance.

Since the scale-free networks are always of very

small average distances,®! the scale-fee small-world
networks can also be referred as highly clustered scale-
free networks. One of the earliest highly clustered
scale-free models is the Holme-Kim (HK) model,?”
which has successfully reproduced the indirectly ac-
quainting mechanism in real networks thus is closer to
reality than the Barabdsi—Ansatz (BA) model. In this
Letter, we present an analytical result about the clus-
tering coefficient of the HK model, which is helpful for
understanding the underlying evolution mechanism of
the HK model. Then we investigate the relationship
between the network synchronizability and clustering
coefficient based on the HK model.

As a remark, previous studies mainly concentrate
on how the average distance and heterogeneity of
degree/betweenness distribution affect the network
synchronizability,[24:25:32=36] while there are few sys-
temic works about the effect of clustering coefficient.
Although there are a number of highly scale-free mod-
els, the HK model is a typical one which has tunable
clustering coefficient thus provides us a good research-
ing stage. This is the reason why we choose the HK
model as our theoretic template.

The HK network is generated by the following pro-
cesses: (1) In each step, m edges are added in the
networks, and ¢ is a discrete parameter which denotes
the global time that the system totally moves. (2) An
edge is add with the probability IT(k;),

k;

(k) = 5

(1)

(3) Then, in the following m — 1 time steps, do a
PA (preferential attachment) step with the probability
p or a TF (triad formation) step with the probability
1 — p (see Ref. [27] for details).
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By using the rate-equation,®”] one can obtain the
evolution of nodes’ degree as follows:

o= ()™

(- Zzezsz:,-tkll(;(tl)ml()f—l) yrer,

j=1

(2)

where ; denotes the set of neighbours of node 4, k;(t)
is the degree of node 7 at time step t. In the above for-
mula, mrp is the number of edges that is connected
by following the rule of triad formation in each step
while mp4 denotes the number of those connected by
following the rule of preferential attachment. Denote
k; := k;(N), where N is the network size, the two
terms in the right side of the above formula are the
degree increment rate of node ¢ in PA and TF steps,
respectively. By using the initial condition k;(¢;) = m,
and the expressions of mpy = (m—1)(1 —p)+1 and
mrr = p(m — 1), one can obtain the solution as fol-
lows:

k‘l(t) = ki(t;ti,m), (3)

from which and by using of the continuum theory,?3°

one can obtain

2m? m?2

P(k,p):F+Am, (4)
where A is a quadric polynomial of p. Clearly, p(k) =
k=3 in the limit case N — co.

The clustering coefficient of the whole network is
the average of ¢; over all nodes ¢, where ¢; is the ratio
between the number of edges among node ¢’s neigh-
bours which is denoted by n; and the total possible
number. Then,

;= ———.
ki(k; — 1)

Using the rate-equation approach,®” the detailed
expression of ¢(k), which denotes the average cluster-
ing coefficient over all the k-degree nodes, should be
as follows:

1 2mpamrr (

R i e A

1 2mpamrrp
+k(k—|—1){ ko)
 mealnea )WY

Here we assume that mg (the number of initial nodes)
is equal to m (the edges added each time step). The
three items in the right side in the above expression is
obtained from the three mechanisms shown in Fig. 1.

TF PA PA
(a) (b) (c)

Fig. 1. The three parts represent three mechanisms: (1)
node ¢ is connected by a PA step while its neighbours are
also connected by a TF step; (2) one of the neighbours
of node i is connected by a PA step while the node 7 is
connected by a TF step; (3) node 7 as well as one of its
neighbours is connected by a PA step respectively.

Thus the clustering coefficient C' can be solved as
a function of the free parameter p,

kmax
)= [ el P(k)a (")
In the above formula, kmax — 2myV/N and ki =
m.[8 For p € [0,1], ¢(p) can be simplified in a linear
approximation.

¢(p) = B(m, N) + ¢(m, N)p. (8)

The extensive simulation results with different p and
¢ for networks of different sizes strongly support the
analytic results, especially in the larger-size networks,
as shown in Fig. 2.
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Fig. 2. Clustering coefficient c(p) versus the parameter p
in the HK model. The squares represent the simulation
result while the circles denote the analytic solution. The
network size is NV = 5000, and m = mg = 10.

Other simulations have been carried out on the
variation of average path length [ and standard devi-
ation of degree distribution . The results show that
both the average path length [ and standard deviation
of degree distribution ¢ behave slightly variation with
p. The intuitive explanation is quite easily understood
that o is directly related with degree distribution, that
is to say, it is determined totally by the degree distri-
bution, and the degree distribution will hardly vary
when is N large enough. Thus we have the reason to
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neglect the effect of the two structural properties on
synchronizability.

Here, we concern the system of linear coupled
limit-cycle oscillators on HK networks. Describing the
state of the ith oscillator by x;, the equations of mo-
tion governing the dynamics of the N coupled oscilla-
tors are

;= F(z:) + K Y  M;G(x;), (9)

J=1

where #; = F(z;) characterizes the dynamics of in-
dividual oscillators, G(z;) is the output function, K
denotes the coupling strength and the N x N coupling
matrix M is

—k;, fori=7
Mi]’ = 1, for JEN; (10)
0, otherwise.

In the above expression, A; denotes the neighbours of
node i. Because of the negative semidefinition and the
zero sum of each raw of the matrix, all its eigenvalues
are nonpositive real values and the largest eigenvalue
Ao is always zero. Thus the eigenvalues can be ranked
as A\g > A1 > ... > An, and A\g = A; = 0 if and only
if the network is disconnected.

In our coupled dynamic network, all the oscillators
are identical and the same output function is used,
the coupling fashion ensures that the synchronization
manifold is an invariant manifold and the nodes can
be well approximated near the synchronous state by a
linear operator. Under these conditions, the eigenra-

A
tio R = /\—N can be used to measure the network syn-
2

chronizability; the smaller the R value, the stronger
the synchronizability.[25:33—35,39—46]
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Fig. 3. Synchronizability R measured by /\—N versus the

2
parameter p in the HK model. The simulation has been
carried out under the condition that the size of the net-
works is n = 1800. Other parameters are m = mg = 10.

We take only synchronizability R(p) and clustering

coefficient ¢(p) into consideration. Having simulated
R(p) for different configurations versus p (see Fig. 3),
we know that R(p) is positively correlated with p, and
so is ¢(p) although it is not completely linear with p.
In addition, we can easily find that when p is not very
large, the curve is approximately linear (see Fig.4).
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Fig. 4. Clustering coefficient ¢(p) versus parameter p un-
der the condition of N = 1800, and m = mg = 10. The
linear fitted line is for the first seven points.
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Fig. 5. Synchronizability R measured by }\—N as a func-

2
tion of clustering coefficient ¢ in the case of N = 1800,
and m = mg = 10. The fitted curve follows the tendency
of exponential growth.

Furthermore, we report the relationship between
synchronizability R(p) and clustering coefficient ¢(p)
as shown in Fig.5. From the figure, one important
fact the curve reveals is exponential growing tendency.
The function of fitted curve can be set as follows:

c

R(c) = A(m,N) + B(m, N)eTtm~), (11)

The terms A(m,N),B(m,N), and T(m,N) can be
obtained by simulation. Here the simulation averaged
over 50 different realizations is to measure the effect
of random fluctuation of degree distribution, since the
degree distribution can both affect [ and o. In our
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simulation, due to the average effect, the two param-
eters, [ and o do not vary significantly so that we can
only focus on clustering coefficient exclusively which
causes the change of synchronizability.

Compared to the previous works, the advantages of
the HK model is that the clustering coefficient can be
tuned while the other structural properties are almost
kept to be fixed. Therefore, combining the behaviours
of ¢(p) versus p and R(p) versus p, we obtain the rela-
tionship between synchronizability and clustering co-
efficient. Figure4 demonstrates that the larger the
clustering coefficient, the poorer the synchronizability.
Due to the fact that the synchronizability R is deter-
mined by the ratio of maximal and minimal eigenval-
ues of coupling matrix which is exclusively related to
the network topology, moreover c¢ is the only varied
topological property, the clustering coefficient plays a
crucial role in synchronizability. The size effect has
not been discussed so far in this study. As the size
N increases, the average distance becomes larger. As
a result, the synchronization become harder, but any
qualitative changes will presumably not occur, espe-
cially on the negative correlation between clustering
and synchronizability. Preliminary simulation results
strengthen this conjecture.

To ascertain the effect of each structural charac-
teristics on synchronizability is a meaningful work be-
cause if future study can ascertain the relationships
between each typical structural characteristics (I and
o etc.) and synchronizability exclusively, we can fi-
nally obtain the expression of synchronizability as
functions of those properties. We still wonder whether
a network can achieve synchronization and how syn-
chronizability of a specific structure can be easily pre-
dicted only by the topological characteristics.
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