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We have studied the excitation properties of biophysical Hodgkin—Huxley neurons with the side-inhibition mech-

anism in small-world networks.

The result shows that the excitation properties in the networks are preferably

consistent with the characteristic properties of a brain neural system under external constant stimuli, such as
fatigue effect, extreme excitation principle, and the brain neural excitation response induced by different in-
tensity of noise and coupling. The results of the study might shed some light on the study of the brain nerve

electrophysiology and epistemological science.

PACS: 87.18.Sn, 05.45. —a, 84.35.+i, 87.18. Bb

For many years, the neural-response to external
stimulus and neural-information processing have been
challenging hot topics for the study of neurology. The
Hodgkin-Huxley (HH) equations, which describe neu-
ron discharge, are frequently used as node dynamical
equations in the coupling model.l' =1l For example,
Kim and Leel* have studied the mechanisms for syn-
chrony of neural networks based on biophysical HH
neurons by using the methods of nonlinear dynamics;
Lago-Fernéndez et al.l’] have shown that the features
of both fast response and temporal coherent oscilla-
tions of biophysical HH neurons in small-world net-
works; and Wang et al.l® have studied the coherence
resonance and noise-induced synchronization in glob-
ally coupled biophysical HH neurons. Although the
results of these models can mimic the dynamical prop-
erties and discharge features of a neural system to
some extent, the side-inhibition mechanism existing
in a real neural system is neglected. In this Letter, we
propose a new small-world biological neural network
model by combining the complex network theory with
the latest findings by American scientists: the neural
system of a human brain is just like a small-world net-
work in complex networks.? In such a complex net-
work model, a side-inhibition mechanism is considered
because the study of neurophysiology has verified the
mechanism existing in a brain neural system, and HH
equations are taken as the node dynamical equations.
The connecting strength with side-inhibition mecha-
nism is used to simulate the connecting intensity be-
tween neurons. Under the external constant stimulus,
these neurons of the network model behave with ex-
citation and rest, and interact with each other. The

purpose of this study is to characterize the process of
‘stimulating—exciting—conducting effect’ of brain neu-
rons via exciting and inhibiting. Simulation results
show that the model of biological neural networks has
different excitation properties under different intensi-
ties of dc stimuli, noise and coupling. These results are
quite consistent with the behaviour under the external
constant stimuli shown by a brain neural system.
Generally, the study of biological neurons focuses
on the electro-activities of neurons. The HH equations
are a kind of discharge model('3] of neurons closest to
the action potential and shows very complex dynami-
cal properties under different external stimuli as well
as environmental noises.[%1% We adopt the HH equa-
tions to govern the dynamical evolution of nodes, em-
ploy the side-inhibition mechanism existing in a brain
neural system into consideration, and take small-world
networks to be the underlying structure. The complex
network model is described by the following equations:
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where S;; describes the side-inhibition mechanism ex-
isting in a brain neural system; IV represents the total
number of neurons and for simplicity we use N = 100
throughout this study because the number of neu-
rons NV = 100 can be used to describe small-world
property;!14! V; represents the membrane potential of
unite ¢; C,, denotes the membrane capacity per unit
area; m;, h;, and n; are the voltage dependent acti-
vating and inactivating variables; a; and §; are func-
tions of V; adjusted to physiological data; gna, 9k,
and g;, are the maximal conductances for ion and
leakage channels; In addition, V., Vg, and Vi, are
the corresponding reversal potentials. We have used
the original functions and parameters employed by in
Ref. [13]. [i(ion) denotes the ionic current inside the
cell which satisfies Eq. (5); I;(syn) is the noise current
in a complex life system which satisfies Eq. (6), where
&; is Gaussian white noise with correlation given by
(& ()€ (t)) = D6;j6(t — s) which satisfies the zero-
mean value.!l? D and 7. are the intensity and the
correlation time of the synaptic noise, respectively;
7. = 2.0ms is employed throughout this study. ;(ext)

. . . c
is the external stimulating current; — Zj\le Sijai;Vj

is the coupling term of the complex neurons, where
c is the coupling strength; S;; is connection intensity
between neuron i and neuron j, which describes the
side-inhibition mechanism indicating the excited roles
of the neighbouring neurons and inhibition roles of
the neurons apart from each other, meanwhile Eq. (7)
is introduced. S;; decreases gradually with the in-
crease of the distance between two neurons leading to
the weakening of the excitation strength according to
Eq. (7). When the distance reaches a certain level, S;;
becomes a negative value. The positive value indicates
that the two neurons play a role of mutual excitation
through the connection of excitation bond, and the
negative value denotes that the two neurons play a
role of inhibition through the connection of inhibition
bond. Here a;; represents the matrix element of the
coupling, which takes the following form:!®! a;; =1,
when a connection exists between neuron 7 and j; oth-
erwise a;; = 0 and a;; = — Z;.V:Lj# a;j. The small-
world networks modelled by Watts and Strogatz[le] is
adopted with connection-rewiring probability p = 0.05
in this study.

Two physical quantities are firstly introduced to
describe the properties of the network stimulated by
direct current. One is the average transmembrane po-

1
tential Vo, (t) = N le\il Vi(t) as the signal output of

the whole neural network.!”] As the output voltage of
the network, it represents the excitation strength of
the whole network, and the variation rate of its peak
value with the change of the time indicates the exci-
tation rhythm. The other is the excitatory neurons

number nex.(t) in the whole network. The neuron is
regarded as the excited one on the assumption that
its excitation threshold is 5mV, i.e. V;(t) > 5mV,
otherwise it is regarded as the rested one.
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Fig.1l. The membrane potential V; under the weak dc

stimulus at I = 6.2uA-cm™2, D = 1.0, and ¢ = 0.1.
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Fig. 2. The excitation measurement, Vout, and the num-
ber of excitatory neurons, nexc, under D = 1.0 and ¢ = 0.1
at Ij(ext) = 8 uA-cm~2 (a) and 15 pA-cm~2 (b).

Figure 1 indicates that the neuron exhibits the fa-
tigue effect under weak dc stimulus. The excitation
and the rest occur alternatively until it rests com-
pletely and reaches a stable equilibrium state. In this
case, all of the neurons are in the state of fatigue.
The membrane potential V;(t) changes from strong to
weak when the network is excitatory. Higher excita-
tion strength at the beginning stage complies well with
the extreme excitation principle in the biomedicine.
Disappearing of the fatigue effect with the gradual
increase of the dc stimulus indicates that a stimu-
lating threshold I;(i1q) exists. A short period of re-
sponse occurs in the region Ij(ext) < Ij(tha), while for
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Ii(exty > Ii(tha) all the time response comes into be-
ing, which leads to the alternative occurrence of ex-
citation and rest. Under this circumstance, the du-
ration of excitation is extremely short compared with
the duration of rest, which complies with the practical
response of a brain neural system under the external
constant stimulation. Further analysis indicates that
the excitation strength and rhythm are different!”?]
under different dc stimuli, thus the output potential
and the number of excited neurons are also different.
The change of the values along with the change of the
dc stimulus is shown in Fig. 2. It is shown that the ex-
citation rhythm speeds up with the increase of I;(cxt),
while the rhythms of V1 and ney. are the same (in
Fig. 2, V,,; has been shifted 80 units upwards in order
to compare these two rhythms easily). It is also indi-
cated that both V_,; and n.y. can be used to describe
the strength of excitation, where V,,; indicates the
excitation strength quantitatively, and n... indicates
the excitation strength qualitatively.
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Fig. 3. Average excitation measure, Vouh versus dc stim-
ulus, Ij(ext), at ¢ = 0.5 for noise intensity D = 1, 50,
100.

Statistical method is used to describe the average
excitation strength of the network within a long period
of time. Two average excitation measures, V,u and
Tlexc, are introduced as expressed in Egs. (8) and (9).
The calculation starts from ¢; without the considera-
tion of transient process in order to reflect the average
strength of the excitation in the stable state after be-
ing stimulated. Here t; = 400 ms and t; = 600 ms are
selected for the following calculation and discussion.

_ 1 t2
Vout = / Vout (t)dta (8)
to —t1 Jy,

1 t2
Tloxe = / Nexc(t)dt. (9)
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The changing trend of V,; and fiexe under different
noise intensity D and coupling strength ¢ are calcu-
lated and analysed when the network response reaches
the stable state (as shown in Figs. 3-6).
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Fig. 4. Average number of excitatory neurons, fiexc, ver-
sus dc stimulus, I;ey), at ¢ = 0.5 for noise intensity

D =1, 50, 100.
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Fig. 5. Average excitation measure, Vout, versus dc stim-

ulus, Ij(ex¢), at D = 1.0 for coupling strength ¢ = 0.1, 0.5,
1.0, 1.5.

Figures 3 and 4 show the influence of the noise
on excitation. It is obvious that the noise almost has
no influence on the excitation properties in the region
Ii(ext) < Ii(sna) because the neurons are in the ‘fatigue’
state and the network hardly responds to the external
noises under weak dc stimulus. When () exceeds
a certain level of I;(4pq), the influence of the noise on
the excitation properties becomes remarkable. The
stronger the noise strength is, the higher the aver-
age excitation strength of the network is, due to the
coherence resonance induced by the noises.[¥l When
Ii(ext) continuously increases, the curves of different
noise intensities tend to overlap, which indicates that
the noise almost has no influence again on the exci-
tation properties. The reason is that the influence of
the noise can be ignored since the signal-to-noise ratio
of the stimulation imposed on the network is higher
under stronger dc stimulus. Figures 5 and 6 reveal
the influence of the coupling strength on the excita-
tion properties among neurons. Clearly, the coupling
strength imposes remarkable influence on the excita-
tion properties under weak dc stimulus. It also shows
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that the higher the coupling strength is, the lower the
average excitation of the network is, which is because
the rest period lasts longer compared with the excita-
tion period, thus most of the coupling period occurs
in the rest state of the neurons during the alternative
occurrences of the excitation and rest. In addition, as
Ii(cxt) continuously increases, the curves of different
noise strengths tend to overlap, which illustrates that
the excitation properties of the neurons under strong
constant stimulating signals are almost independent
of the coupling strength. This phenomenon is con-
sistent with the excitation reflects of different human
brains (different coupling strengths of different brain
neurons) occurring under strong constant stimulating
signals. Figures 4 and 6 show that the phase transi-
tion of the average number of the excitatory neurons
occurs (jumps from rest phase to excitation phase),
and the network gradually reaches saturation with the
increase of the dc stimulus strength. The phase tran-
sition exhibits the ON- and OFF-excitation effect of
the stimulating threshold.
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Fig. 6. Average number of excitatory neurons, fiexc, ver-
sus dc stimulus, Ij(ext), at D = 1.0 for coupling strength

c=0.1, 0.5, 1.0, 1.5.

Here we would like to further discuss the influence
on the stimulating threshold, which reaches the phase
transition, imposed by the change of the strength of
noise and coupling. According to Fig.4, the stim-
ulating threshold decreases with the increase of the
noise strength because the strong noise, as an addi-
tional interfering stimulus, is equivalent to the increas-
ing strength of external stimulus, which is called the
beyond-phase of excitation. In Fig.6, the stimulat-
ing threshold increases with the increase of the cou-
pling strength because the rest period of the neurons
is longer compared with the excitation period and the
duration of its action is longer than that of the excita-
tion period, which is called the lag-phase of excitation.

In conclusion, we have studied excitation proper-
ties of the neurons with the side-inhibition mechanism
under the stimuli of different strengths of dc and in-
tensity of noise and coupling, based on small-world

networks. According to the simulation of the model
described above, the biological neuron model built up
in this study shows many characteristics, such as fa-
tigue effect, extreme excitation principle, the rapid
alternation of excitation and inhibition are similar to
the workings of the brain neural system in real life.
Moreover, this model has some features as follows.
(1) Under weak dc stimulus, the coupling strength has
stronger influence on the excitation properties. This
shows that the higher the coupling strength is, the
lower the average excitation of the network is, and
the higher the stimulating threshold is. (2) When the
dc stimulation strength exceeds a certain level of the
stimulating threshold, the noise intensity has stronger
influence on the excitation properties. This shows that
the higher the noise intensity is, the higher the average
excitation of the network is, and the lower the stimu-
lating threshold is. In addition, the phase transition
of Tiexe occurs (jumps from rest phase to excitation
phase along with increase of Ij(ext)). (3) Under the
strong dc stimulus, the average excitation of the net-
work almost reaches the saturation and the strength
of noise and coupling has little effect on the excita-
tion properties. These features are preferably con-
sistent with the functional features of the real brain
neural system. The model brought forward by this
study possesses the side-inhibition mechanism of a real
brain neural system and the biological basics of the
small-world neuron-connecting networks. Therefore,
the outcome of this study is expected to provide a
theoretical insight to the study of the learning process
of a human brain towards the information processing,
memory and abnormal discharge of the brain neurons
(for instance, the falling sickness caused by the syn-
chronization discharge of the neurons), and generate
useful reference to the brain nerve electrophysiology
and epistemological science.[1”]
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