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In this paper, the relationship between network synchronizability and the edge-addition of its associated graph is

investigated. First, it is shown that adding one edge to a cycle definitely decreases the network synchronizability. Then,

since sometimes the synchronizability can be enhanced by changing the network structure, the question of whether

the networks with more edges are easier to synchronize is addressed. Based on a subgraph and complementary graph

method, it is shown by examples that the answer is negative even if the network structure is arbitrarily optimized. This

reveals that generally there are redundant edges in a network, which not only make no contributions to synchronization

but actually may reduce the synchronizability. Moreover, a simple example shows that the node betweenness centrality

is not always a good indicator for the network synchronizability. Finally, some more examples are presented to illustrate

how the network synchronizability varies following the addition of edges, where all the examples show that the network

synchronizability globally increases but locally fluctuates as the number of added edges increases.
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1. Introduction and problem for-

mulation

Systems composed of dynamical units are ubiqui-
tous in nature, ranging from physical to technological,
and to biological fields. These systems can be natu-
rally described by networks with nodes representing
the dynamical units and links representing the inter-
actions among them. The topologies of such networks
have been extensively studied and some common ar-
chitectures have been discovered.[1−3] The small-world
property, for example, characterized by short aver-
age distance and high clustering among nodes, is one
of the most common properties shared by many real
networks.[4] More significantly, many networks show
high heterogeneity of node connectivity, which typi-
cally possesses a power-law distribution, named scale-
free networks.[5] It is known that these topological
characteristics have a strong influence on the dynam-
ics of the structured systems, such as epidemic spread-

ing, traffic congestion, collective synchronization, and
so on.[6,7] From this viewpoint, systematically under-
standing the network structural effects on their dy-
namical processes is of both theoretical and practical
importance.

Synchronization behavior, in particular, as a
widely observed phenomenon in networked systems,
has received a great deal of attention in the past
few decades.[8−15] Oscillator network models have
been commonly used to characterize synchronization
behaviors. Based on the master stability function
method,[16−18] one knows that two factors influence
the network synchronizability: one is related to the
eigenvalues of the Laplace matrix of the network, and
the other is related to the synchronized region, which
is determined by the node dynamics and the inner-
linking function of the network. The product of the
network coupling strength and the eigenvalues of the
Laplace matrix plays an important role in character-
izing the network synchronizability: the more eas-
ily it falls into the synchronized region, the more
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easily the network achieves synchronization, namely,
the larger the network synchronized region, the eas-
ier the synchronization of the network. On the other
hand, for a network with given node dynamics and
a fixed inner-linking function, the synchronized re-
gion has been determined. It is found that, in this
case, when the synchronized region is unbounded, the
smallest nonzero eigenvalue of the Laplace matrix de-
termines the network synchronizability; when the syn-
chronized region is bounded, the ratio of the small-
est nonzero eigenvalue to the largest eigenvalue of the
Laplace matrix determines the network synchroniz-
ability. In this framework, it has been found that a
smaller average distance does not necessarily imply
better synchronizability.[19] And the node between-
ness centrality was provided as a good indicator to
the network synchronizability.[20] Since the synchro-
nizability is correlated with many topological proper-
ties, a natural question is which property is the most
significant to the synchronizability? Donetti et al [21]

tried to answer this question by an optimization argu-
ment. They believed that a network with optimized
synchronizability should have an extremely homoge-
neous structure, i.e., the distributions of some funda-
mental topological properties should be very narrow.
However, a recent result[22] shows that the network
synchronizability has no direct relationship with the
statistical properties. Therefore, this is still a diffi-
cult question to answer, although it has been studied
by many authors.[19−24] Perhaps a good index which
can characterize the synchronizability has not been
found. In recent years, graph-theoretic methods were
used to analyze the network synchronizability, e.g.,
degree sequences were discussed;[25] complementary
graph and subgraph techniques were used;[22,26] it was
shown that the expectation of the largest eigenvalue
can be well approximated by the lower bound dmax+1
in random scale-free networks,[27] and different bounds
for the eigenvalues of the Laplace matrix and the syn-
chronizability index were established.[28,29]

Motivated by the above work, this paper focuses
on the relationships between the network synchroniz-
ability and the edge-addition of the associated graph.
The effects of the connection patterns of graphs on
the synchronizability are analyzed both theoretically
and numerically. It is found that adding an edge to
a cycle of size N ≥ 5 definitely decreases the net-
work synchronizability, but the synchronizability may
be improved by changing the cyclic structure. How-
ever, a further example shows that, by arbitrarily op-

timizing the network structures, networks with more
edges are not necessarily easier to synchronize. This
implies that there are redundant edges in the network
with respect to synchronization.

Consider a dynamical network consisting of N

coupled identical nodes, with each node being an n-
dimensional dynamical system, described by

ẋi = f(xi)− c
N∑

j=1

aijH(xj), i = 1, 2, . . . , N, (1)

where xi = (xi1, xi2, . . . , xin) ∈ Rn is the state vec-
tor of node i, f(·) : Rn → Rn is a smooth vector-
valued function, constant c > 0 represents the cou-
pling strength, H(·) : Rn → Rn is called the inner
linking function, and A = (aij)N×N is called the outer
coupling matrix or topological matrix, which repre-
sents the coupling configuration of the entire network.
This paper only considers the case that the network
is diffusively connected, i.e., the entries of A satisfy

aii = −
N∑

j=1,j 6=i

aij , i = 1, 2, . . . , N.

Further, suppose that if there is an edge between node
i and node j, then aij = aji = −1, i.e., A is a Laplace
matrix. If the graph corresponding to A is connected,
then 0 is an eigenvalue of A with multiplicity 1, and all
the other eigenvalues of A are strictly positive, which
are denoted by

0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λN . (2)

The dynamical network (1) is said to achieve
(asymptotical) synchronization if x1(t) → x2(t) →
. . . → xN (t) → s(t), as t → ∞, where, because of
the diffusive coupling configuration, the synchronous
state s(t) ∈ Rn is a solution of an individual node, i.e.,
ṡ(t) = f(s(t)).

For given node dynamics and inner-linking func-
tion, if the synchronized region is bounded, then the
eigenratio r(A) = λ2/λN of the network structural
matrix A characterizes the synchronizability. The
larger the r(A) is, the better the synchronizability
will be. The enhancement of the network synchro-
nizability and the relationships between r(A) and the
network structural characteristics, such as average dis-
tance, node betweenness, degree distribution, cluster-
ing coefficient, etc., have been well studied.[11,22,23,25]

This paper further investigates the relationship be-
tween the network edges and its synchronizability by
graph-theoretical tools.
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Throughout this paper, for any given undirected
graph G, eigenvalues of G mean eigenvalues of its cor-
responding Laplace matrix. Notations for graphs and
their corresponding Laplace matrices are not differen-
tiated, and networks and their corresponding graphs
are not distinguished, unless otherwise indicated.

2. Adding one edge to a cycle

It has been known that more edges do not neces-
sarily imply a better synchronizability,[22] and it was
found[24] that in scale-free networks where the nodes
are coupled symmetrically, if some overloaded edges
are removed, the network will become more synchro-
nizable. This section gives a definite result for one
edge addition to cycles. To show this, the following
lemmas are needed.[25,30,31]

Lemma 1 For any given connected graph G

of size N , its nonzero eigenvalues indexed as listed
in formula (2) grow monotonically with the num-
ber of added edges; that is, for any added edge e,
λi(G + e) ≥ λi(G), i = 1, . . . , N .

Lemma 1 shows the eigenvalue changes of graphs
due to the addition of edges, but it does not show any
information about the eigenratio r(A). Therefore, this
eigenratio needs to be studied in more detail.

Lemma 2 For any given connected graph G

of size N , its largest eigenvalue λN satisfies λN ≥
dmax + 1, with equality if and only if dmax = N − 1.
Further, if G is not a complete graph, then the small-
est nonzero eigenvalue of G satisfies λ2 ≤ dmin. Here
dmax and dmin denote the maximum and minimum
degrees of G.

Lemma 3 For any cycle CN with N (≥ 4) nodes,
its eigenvalues are given by µ1, . . . , µN (not necessarily
ordered as in formula (2)) with µ1 = 0 and

µk+1 = 3−
sin

(
3kπ

N

)

sin
(

kπ

N

) , k = 1, . . . , N − 1.

Lemma 4 Given a connected graph G, if the
multiplicity of its smallest nonzero eigenvalue λ2 is
larger than or equal to 2, then adding one edge to G

cannot change this eigenvalue, i.e., λ2(G+e) = λ2(G).
Proof This lemma follows from the fact that

rank(λ2I − (G + e)) ≤ rank(λ2I −G) + 1. ¤
By the above lemmas, one can obtain the follow-

ing result for cycles.

Theorem 1 For any cycle CN with N ≥ 4 nodes,
adding one edge cannot enhance its synchronizability
r(CN ); specifically, one has r(C4 + e) = r(C4) and
r(CN + e) < r(CN ) (N ≥ 5).

Proof r(C4+e) = r(C4) holds obviously. For the
case of N ≥ 5, by Lemma 2, one has λN (CN + e) > 4.
But by Lemma 3, λN (CN ) ≤ 4. And Lemma 3 shows
that the multiplicity of the smallest nonzero eigen-
value λ2 of CN is 2. By Lemma 4, λ2(CN + e) =
λ2(CN ). Therefore, r(CN + e) < r(CN ) for all N ≥ 5.
¤

Theorem 1 shows that adding one edge to a cy-
cle with N ≥ 5 nodes definitely decreases the net-
work synchronizability, as shown by the two exam-
ples in Figs.1–5. By simple computation, one ob-
tains r(C5) = 1.3820

3.6180 = 0.3820 and r(C5 + e{1, 3}) =
1.3820
4.6180 = 0.2993 < r(C5); r(C6) = 1

4 = 0.25,
r(C6 + e{1, 3}) = 1

4.4142 = 0.2265 < r(C6) and
r(C6 + e{1, 4}) = 1

5 = 0.2 < r(C6).

Fig.1. Graph G5.

Fig.2. Graph C5 + e{1, 3}.
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Fig.3. Graph C6.

Fig.4. Graph C6 + e{1, 3}.

Fig.5. Graph C6 + e{1, 4}.

From the above two examples, one can find that
the synchronizability of cycles strictly decreases if only
one edge is added, and the results vary depending
upon where the edge is placed, e.g., r(C6 + e{1, 3}) >

r(C6 + e{1, 4}). Considering the optimization of net-
work structures, r(C6 + e{1, 3}) is still not the best
one among all the graphs with 7 edges connecting 6
nodes in a cycle, as demonstrated in the next section.

3. Changing the network struc-

ture to enhance its synchroniz-

ability

It is shown in the above section that adding one
edge to a cycle decreases its synchronizability. A fur-
ther question is whether the synchronizability can be
enhanced by changing the network structure after edge
addition. The answer is ‘yes’ in some cases. For exam-
ple, one can change C5+e{1, 3} to C5o as in Fig.6, and
C6+e{1, 3} to C6o as in Fig.7. Then, r(C5o) = 2

5 = 0.4
and r(C6o) = 1.2679

4.7231 = 0.2684.

Comparing the graphs in Figs.1–5, one can see
that both the synchronizabilities of C5o and C6o have
been improved. In fact, two cycles share a common
edge in Figs.2, 4 and 5. In this case, generally the
betweenness centrality is large, or the node-to-node
distances are not homogeneous. In comparison, the
network structural characteristics are more homoge-
neous in Figs.6 and 7. This is consistent with the
result of Ref.[21]. For simple graphs with a few nodes
and edges, as those shown above, one can compute
their eigenvalues to find a good structure for the syn-
chronizability. However, for a general graph, how
does one optimize the network structure toward the
best possible synchronizability? Some optimal rules
are provided based on an optimizing algorithm:[21] to
have homogeneous degree, node distance, between-
ness, and loop distributions. But these rules are
observed from simulations, and theoretical proofs are
not available by now. And, sometimes, these rules
are contrary to each other. For example, comparing
C6 + e{1, 3} with C6 + e{1, 4}, one can find that the
cycle of C6 +e{1, 4} is more homogeneous, but the av-
erage node distance of C6+e{1, 3} is smaller. It seems
that the importance of these rules should be ordered.

Fig.6. Graph C5o.
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Although some rules are provided,[21] optimizing the
network structure for better synchronizability is still a
hard problem, since it is possible that the optimizing
algorithm converges to a suboptimal solution.

Fig.7. Graph C6o.

Other than the rules for optimization, comple-
mentary graphs can be used to characterize the net-
work synchronizability.[22] For a given graph G, the
complementary graph of G, denoted by Gc, is the
graph containing all the nodes of G and all the edges
that are not in G. For eigenvalues of graphs and com-
plementary graphs, the following lemma is useful (see
Refs.[30], [31] and references therein).

Lemma 5 For any given graph G, the following
statements hold:

(i) λN (G), the largest eigenvalue of G, satisfies
λN (G) ≤ N.

(ii) λN (G) = N if and only if Gc is disconnected.
(iii) If Gc is disconnected and has (exactly) q con-

nected components, then the multiplicity of λN (G) =
N is q − 1.

(iv) λi(Gc) + λN−i+2(G) = N , 2 ≤ i ≤ N .
For example, the complementary graph of C5o is

disconnected (see Fig.8) and the largest eigenvalue of
C5o is 5, the number of nodes. Its smallest nonzero
eigenvalue λ2 = 2 can be easily obtained by com-
puting the largest eigenvalue of its complementary
graph. Further, according to the complementary
graph, adding one more edge to graph C5o cannot en-
hance its synchronizability. However, if adding two
more edges to C5o, e.g., e{1, 5} and e{3, 5}, then the
synchronizability increases to r = 3

5 . The correspond-
ing complementary graph becomes the complementary
graph of cycle C4 (see Fig.9). Cycle C4 and its comple-
mentary graph are very important in graph theory[31]

(see the section below for their further applications).
For a given graph G, if its complementary graph

is disconnected and includes two separated graphs G1

and G2, then by Lemma 5 the synchronizability of G is
r(G) = (N −max{λmax(G1), λmax(G2)})/N , where N

is the number of nodes of G and λmax denotes the max-
imum eigenvalue of the corresponding Laplace matrix.
It is well known that the complementary graphs of bi-
partite graphs are disconnected,[22,32] so the synchro-
nizability of bipartite graphs can be simply analyzed
by the above method. Actually, C5o in Fig.6 is a bipar-
tite graph. Obviously, better understanding and care-
ful manipulation of complementary graphs are useful
for enhancing the network synchronizability (see the
section below for further applications of complemen-
tary graphs).

Fig.8. Graph Cc
5o.

Fig.9. Graph Cc
4 .

4. Are networks with more edges

easier to synchronize?

For a given graph G, let V and E denote the sets
of nodes and edges of G, respectively. A graph G1 is
called an induced subgraph of G, if the node set V1 of
G1 is a subset of V and all the edges of G1 are the edges
in E . In this section, subgraphs and complementary
graphs are used to discuss network synchronizability.

Concerning the optimization of network struc-
tures, an interesting question is whether networks with
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more edges are easier to synchronize. In order to an-
swer this question, the following lemma is needed.

Lemma 6 For any given graph G, suppose G1 is
its induced subgraph including all nodes of G with the
maximum degree dmax. If G1 includes a cycle C2k with
even nodes 2k (k ≥ 2) is an induced subgraph, then
the largest eigenvalue of G satisfies λN (G) ≥ dmax+2.

Proof By Lemma 3, for any cycle C2k with even
nodes, its largest eigenvalue is 4. And since the degree
of every node is 2, −2 must be an eigenvalue of the
adjacency matrix of C2k. Let L1 be the sub-matrix of
the Laplace matrix of G associated with all the nodes
in G1. By this assumption, one has

(dmax + 2)I − L1 = 2I + A(G1) 6> 0,

where A(G1) is the adjacency matrix of G1. This im-
plies that the largest eigenvalue of G1 is larger than or
equal to dmax + 2. Thus, Lemma 1 leads to the result
directly. ¤

Remark 1 Besides Lemma 2, there are few re-
sults on the lower bounds of the largest eigenvalue of
Laplace matrices in graph theory.[30,32] Since networks
with good synchronizability always have homogeneous
degree distributions, Lemma 6 is very useful for the
study of network synchronization.

Theorem 2 For any connected graph G with
16 edges on 10 nodes, its eigenratio is bounded by
r(G) < 2/5.

Proof If the largest node degree of G is dmax ≥ 6,
then the smallest node degree must satisfy dmin ≤ 2.
The conclusion follows directly from Lemma 2. In or-
der to have good synchronizability, the degree distri-
bution of G should be homogeneous. Then, first sup-
pose that G has 8 nodes with degree 3 and two nodes
with degree 4. In this case, by Lemma 2 the largest
eigenvalue of G is λ10(G) > 5 (G is connected).

In what follows, consider the largest eigenvalue of
the complementary graph Gc. By the above discus-
sion, Gc must have 8 nodes with degree 6 and two
nodes with degree 5. Suppose G1 is the subgraph of
Gc composed of 8 degree-6 nodes. By direct comput-
ing, G1 must have 19 or 20 edges, and the degree of
every node is at least 4. Hence, Gc

1 has 9 or 8 edges
and the degree of every node is at most 3. If the largest
eigenvalue of G1 is 8, i.e., Gc

1 is disconnected (Lemma
5), then the largest eigenvalue of Gc is larger than or
equal to 8. Therefore, the smallest nonzero eigenvalue
of G is λ2(G) ≤ 10− 8 = 2. By the above discussion,
the theorem obviously holds. According to the edges

and node degrees, G1 must be connected. Hence, sup-
pose both G1 and Gc

1 are connected. Then, G1 must
have a cycle C4 as an induced subgraph. This holds if
and only if Gc

1 has Cc
4 (see Fig.9) as an induced sub-

graph. With only 9 or 8 edges having a node degree
at most 3, drawing Gc

1 directly one can easily reach
the conclusion. By Lemma 6, the largest eigenvalue
of Gc must be larger than or equal to 8. Repeating
the above discussion concludes the proof.

When G has 9 nodes with degree 3 and one node
with degree 5, the proof can be similarly completed.
¤

Remark 2 Theorem 2 shows that there is not
a graph G with 16 edges on 10 nodes whose synchro-
nizability is r(G) ≥ 2/5. However, there does exist a
graph Γ 1 with 15 edges on 10 nodes whose synchro-
nizability is r(Γ1) = 2/5 (see Fig.10), consistent with
the result of Ref.[21]. This clearly shows that net-
works with more edges are not necessarily easier to
synchronize. In fact, by the optimal result of Ref.[21],
r = 2/5 is the optimal synchronizability for graphs
with 15 edges on 10 nodes. For any graph G with
16 edges on 10 nodes, if both G and Gc have cycles
with even nodes, then by Lemma 6 and Theorem 2,
r(G) ≤ 2/6 = 1/3. Therefore, adding one more edge
definitely decreases the synchronizability. The exis-
tence of cycles with even nodes can be easily tested
by drawing graphs, so Lemma 6 is very useful for ana-
lyzing the synchronizability of homogeneous networks.
Actually, the graph shown in Fig.10 is quite homo-
geneous in structure.[21] With one more edge being
added, such a structure is destroyed. It is therefore
easy to understand why adding more edges does not
necessarily result in better synchronizability.

Fig.10. Graph Γ1, r(Γ1) = 2/5.

Remark 3 Figure 11 shows a new graph Γ2

with 20 edges on 10 nodes. It also has quite ho-
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mogeneous structural characteristics as discussed in
Ref.[21]. In fact, the betweenness centrality of each
node of Γ1 is 6, larger than that of Γ2, 5. But,
the synchronizability of graph Γ2 is worse than that
of graph Γ1, contrary to the result of Ref.[21]. So
far, the existing theories19−23] cannot explain why
the synchronizability of Γ1 is better than that of
Γ2. This shows the complexity of the relationships

Fig.11. Graph Γ2, r(Γ2) =
2.7639

7.2361
≈ 0.382 < r(Γ1) = 2/5.

between the synchronizability and network structural
characteristics. Although Γ2 has the property of ho-
mogeneity, another question is whether there exists
another graph with 20 edges on 10 nodes having bet-
ter synchronizability than that of Γ1 or Γ2? If the
answer is negative, it implies that generally there are
many redundant edges in a network with respect to
its synchronizability. These kinds of questions are still
open today.

5. Some examples

In this section, some examples are given to show
the changes of the synchronizability versus the addi-
tion of edges.

Example 1 The synchronizability changes by
adding edges to graphs with cycles are shown in
Figs.12 and 13, where their initial graphs are C10 and
C50, respectively, and madd denotes the number of
added edges.

Fig.12. The synchronizability changes of graphs obtained from C10 by adding edges. (a) Adding

edges with degree homogeneity, (b) randomly adding edges.

Fig.13. The synchronizability changes of graphs obtained from C50 by adding edges. (a) Adding

edges with degree homogeneity, (b) randomly adding edges.
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The figures in (a)s show the synchronizability changes during the process of adding edges with degree
homogeneity (i.e., guaranteeing the node degrees be as homogeneous as possible during edge-adding). The figures
in (b)s show the cases corresponding to random edge-adding. Naturally, the corresponding synchronizabilities
in (a)s are better than those in (b)s, since degree homogeneity is an important property for networks to achieve
good synchronizabilities. In all graphs, it is shown that the synchronizability globally increases but locally
fluctuates. According to Theorem 2 and Remark 2, this is the expected phenomenon.

Example 2 The synchronizability changes of graphs obtained from a scale-free graph by randomly adding
edges are shown in Fig.14, for which, the same conclusion can be drawn as in Example 1.

Fig.14. The synchronizability changes of graphs obtained from a scale-free graph by adding

edges. (a) Adding edges with degree homogeneity, (b) randomly adding edges.

6. Conclusion

In recent years, complex networks have received great attention from various research areas.[1,3,8,33−37] In
fact, complex networks are closely related to their corresponding graphs, e.g., the network synchronizability is
closely related to the eigenvalues of the network Laplace matrix. The properties of Laplace matrix have been
well studied in algebraic graph theory.[30−32] Obviously algebraic graph theory can be used to analyze network
synchronization behaviors.[26,29] In this paper, the relationship between the network synchronizability and the
edge distribution of the associated graphs has been further studied by graph tools. It has been proved that
the synchronizability definitely decreases if one edge is added to a cycle with N (N ≥ 5) nodes. However, it
has also been shown that the synchronizability can be improved by changing the network structure. Further,
examples have shown that some networks with more edges, unexpectedly, have worse synchronizabilities even if
the network structures are in some sense optimized. This implies that, for network synchronization, generally
there are redundant edges, which do not make any contribution to synchronization but may actually destroy the
synchronizability. In addition, an example of a graph with 20 edges on 10 nodes has been provided to show that
existing theories cannot explain why it has worse synchronizability than that of a graph with 15 edges on 10
nodes. Some other examples have also been given to show that the network synchronizability globally increases
but locally fluctuates due to edge-adding. According to these results, in practical synchronization problems,
the synchronizability and the number of communication edges should have a coordinative relation. And one
may utilize the redundant edges to improve robustness or other network properties. These kinds of important
questions remain open for further research in the future.
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