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Abstract

In order to take the weight of connection into consideration and to find a natural

measurement of weight, we have collected papers in Econophysics and constructed a network

of scientific communication to integrate idea transportation among econophysicists by

collaboration, citation and personal discussion. Some basic statistics such as weight per degree

are discussed in Fan et al. J. Mod. Phys. B (17–19) (2004) 2505. In this paper, by including the

papers published recently, further statistical results for the network are reported. Clustering

coefficient of weighted networks is introduced and empirically studied in this network. We also

compare the typical statistics on this network under different weight assignments, including

random and inverse weight. The conclusion from weight-redistributed network is helpful to

the investigation of the topological role of weight.
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1. Introduction

Recently, many researchers in different fields use the topological properties and
evolutionary processes of complex networks to describe the relationships and
collective behaviors in their own fields [1,2]. This methodology, which is so-called
network analysis, often leads to discoveries. Also new analysis methods and new
topology properties are proposed by this approach. A network is a set of vertices and
a set of edges which represent the relationship between any two vertices. Just because
of its simplicity of this description, network can be used in so many different subjects
(see Ref. [1] and its references), including linguistics, collaboration of movie actors
and scientists, human sexual contacts, disease propagation and controls, community
structures, information networks, and food webs.

However, a single line representing the existence of the relation will be a limitation
when it is used to describe relations having more than one level. For instance, in the
network of scientists, both collaboration and citation are the ways of idea
transportation but with different contributions. When we analyze this transportation
as a whole, we have to use different weights to measure these different contributions.
Also, even for the same level interaction, such as collaboration, not only the
existence of connection but the times of collaboration is valuable information. So to
fully characterize the interactions in real networks, weight of links should be taken
into account. In fact, there are already many works on weighted networks, including
empirical studies and evolutionary models [3–6].

The way to measure the weight for weighted networks has been introduced
differently in several types by some authors. First type, converting some quantities in
non-weighted network into the weight of edge. In Ref. [7], the weight of an edge is
measured by the point degrees ki and kj (e.g. wij ¼ kikj) of its two ends. Second type,
in some networks, typically natural measurement of weight is already given by the
phenomena and event investigated by the network. In the scientific collaboration
network, the times of co-authorship are registered as the weight of link [8]. In Ref.
[9], in the case of the WAN the weight wij of an edge linking airports i and j

represents the number of available seats in flights between these two airports. In Ref.
[10], the weight wij stands for the the total number of flights per week from airport i

to airport j. The third type is in the works about modelling weighted networks. Some
prior weights are introduced in [4]. In Ref. [11], the weight wij of a link lij connecting
a pair of nodes (i and j) is defined as wij ¼ ðwi þ wjÞ=2; where wi is defined as i node’s
assigned number (from 1 to N) divided by N. In Refs. [12,13], the weight w is
assigned to the link when it is created, which is drawn from a certain distribution
rðwÞ: In fact, the first type of weight description should be regarded as an approach
of non-weighted networks. It is helpful to discuss new properties of the non-weighted
networks but without taking any more information than the non-weighted networks
about the real interactions. In the second type, which is a very large class of the
weighted networks, typical measurement of weight is already given by the
phenomena. The investigation of such network focuses mainly on how to define
and discover the topological character of the networks. In the last type, from the
viewpoint of empirical study, we never know whether or not such models already
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acquire the real structure of weighted networks or not. In fact, giving some hints on
modelling weighted network is also a part of the goals of our empirical investigation.
The empirical study of weighted network without a naturally given definition of
weight, is especially valuable to answer questions such as how to define a well-
behavior weight, and to extract structural information from networks, and what’s
the role of weight according to its effects on the structure of the network.

In our work, we apply the general approach of weighted network analysis onto
network-style phenomena without given measurement of weight. There are lots of
such kinds of networks. For example, in our case, we try to construct and reveal the
structure of the network behind the transportation of ideas in scientific community.
Actually the scientific collaboration has already become an interesting subject for
network researches [14,15]. But in this paper, how close two scientists are related in
our network and how easily the idea transferred between them, are the phenomena
we are interested in this network. This is similar to the situation that one want to
construct and reveal the structure of network of underground railroad by the
information about traffic, the passengers coming in and out at stations, without a
map of the subway. Therefore, both the existence and the times of coauthoring (or
citation, acknowledgement) are important for the network construction. And the
times, for sure, implies some information about ‘‘how close and how easily’’ in the
sense given above.

In order to extract relationship information from the times of interactions, a tanh
function is used to convert the times into weight, and all the weights from coauthor,
citation and acknowledgement are combined into a single weight of every edge. Tanh
function starts from tanhð0Þ ¼ 0; and increases up to 1 when the independent
variable is large enough. The times of the event, in our network, is a cumulative
number. Intuitively, the more times, the closer is the relationship, and the less
contribution that one new event can provide to the relationship. That means the
contribution of a new event to the relationship should decrease on marginal. The
reason of such a saturation effect is that, what we want to analysis is the relationship
of ‘‘how closely and how easily’’, not the events of the transportation, although we
have to start with the events and extract information from them. With the subway
analogy, the railroad network of ‘‘how wide is the road between any two stations’’ is
our object, not the traffic itself, although the only information we can make use of is
about the traffic. Because of the same reason we incorporate the three weights into a
single one. In the sense of idea transportation, they provide the same kind of
information about ‘‘how closely and how easily’’, only with different contributions.
Now, the next problem will be how to measure them differently by their deserved
contribution. Frankly, we have no principal way to measure the ‘‘deserved’’
contribution. The thumbrule here is the ratio of total times of the three events, 7:2:1,
which is used for their relative contributions. We have tried to reveal the effect of
different relative coefficients. But the topological quantities and their
distributions we have done now is not enough to describe such effects. It seems
the effect of different coefficients can only be shown by some new topological
quantities. Fig. 4 hints that in order to reveal such effect, we have to come to the
correlation analysis.
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In Ref. [16], we have constructed such a weighted network of idea transportation
between scientists in Econophysics, an active field oncoming recently [17,18]. Basic
statistics have been presented, including the weight per degree. In this paper, we
collected most papers till July 2004 in Econophysics, and constructed this networks
as a sample of weighted networks. Now we ask the questions: first, whether the
distribution and property of the basic statistics change after the one year
development; second, whether the way to measure the weight is significant for the
structure of network and what’s the effect on the structure of network if the weights
on the edges are redistributed; third, what are the definitions and properties of more
quantities such as cluster coefficient. The matching pattern in directed and weighted
networks, the robustness of weighted networks and the topological property of
weight will be discussed in later papers. The second part, the effect on network
structure by changing the matching pattern between weights and edges, plays an
important role in this paper. Because we think this investigation reveals the
topological role of weight: does the weight affect the network significantly, and for a
vertex, is there any inherent relation between its weight and its status in the network?
However these questions are not fully answered in this paper yet. In this work, we
randomize the relation between weights and edges with the similar idea of
randomizing the connection under fixed number of edges in WS model [19]. We
think this approach partially realized the idea about investigating topological role of
weight.

Just because the Econophysics is hot in both Finance and Statistical Physics, our
work will be of interest to econophysicists for another reason: it is about their works,
and it represents the idea transportation between them.
2. Measurement of weight and basic statistical results

Recently more and more researchers in economics take up Statistical Physics to
explore the dynamical and statistical properties of financial data, including time
series of stock prices, exchange rates, and the size of organizations [20,21].
Meanwhile many physicists from Statistical Physics and Complexity turn to working
in finance, as an important and copies research subject.

To investigate the development of such a new subfield is an interesting work itself.
In our previous paper [16], we have introduced the work of paper collection and the
construction of the scientific communication network. Concentrating on main topics
of Econophysics, we collected papers from the corresponding journal. The basic
statistical results of the network was given in Ref. [16]. It was constructed by papers
published from 1992 to 4/30/2003, including 662 papers and totally 556 authors.
After publishing our first paper on this research, we keep tracing the development of
Econophysics and enlarge our database in time. In this paper, we will give the basic
results for the network including totally 808 papers and 819 authors from 1992 to
7/30/2004.

Because the weight is a crucial factor in our network analysis, here we introduce
again the measurement of weight . Based on the data set, we extracted the times of
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three relations between every two scientists to form a file of data recorded as ‘S1 S2 x

y z’, which means author S1 has collaborated with author S2 ‘x’ times, cited ‘y’ times
of S2’ papers and thanked S2 ‘z’ times in all S1’s acknowledgements. One can regard
this record as data of three different networks, but from the idea of transportation
and development of this field, it’s better to integrate all these relations into a single
one by the weight of connection. Here we have to mention that in order to keep our
data set closed, we only count the cited papers that have been collected by our data
set and just select the people in acknowledgements which are authors in our data set.

We convert the times to weight by

wij ¼
X
m

w
m
ij ; (1)

in which m can only take a value from f1; 2; 3g: So w
m
ij is one of the three

relationships—coauthor, citation or acknowledgement and is defined as

w
m
ij ¼ tanh amT

m
ij

� �
; (2)

where T
m
ij is the time of m relationship between i and j.

As we mentioned in the introduction; we suppose that the weight should not
increase linearly, and it must reach a limitation when the times exceeds some value.
So we use tanh function to describe this nonlinear effect. We also assume that the
contributions to the weight from these three relations are different and they can be
represented by the different values of am: 0:7; 0:2; 0:1 are used for a1; a2; a3 in this
paper. The effect of different coefficients could not be revealed by any of the
quantities analyzed so far.

The similarity is used here as the weight, after the network has been constructed, it
is converted into dissimilarity weight as

~wij ¼
3

wij
ðif wija0Þ : (3)

It is timed by 3 because the similarity weight wij 2 0; 3½ 
: Therefore, we have ~wij 2

1;1½ 
; and it is corresponding to the ‘‘distance’’ between nodes. All quantities are
calculated under this dissimilarity weight from now on if not mentioned.

It is interesting to compare the basic statistical results of the enlarged data set with
the results given in paper [16]. Fig. 1 gives the results for degree and weight
distribution in Zipf plots. The qualitative properties are unchanged, but detailed
structures such as the position of a certain vertex have been changed. Fig. 2 are the
vertex betweenness for two data sets. Although the qualitative properties are the
same, the position of vertex has been changed. We label the positions of Stanley and
Zhang as examples. In the development of Econophysics, Stanley is well-known by a
series of pathbreaking works on empirical and modelling analysis of time series of
economical data, such as stock prices and firm sizes, and Zhang contributed the
significant step in Minority Game, an easy-understood but fruitful model for
collective decision making in the economic world. These changes may reflect the
development of Econophysics from the view point of network analysis. For example,
we can choose a group of people working on one aspect and then tracing their
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(c) (d)

Fig. 1. Zipf plot of degree and weight for different data set. Degree distribution for 2003(a) and 2004(b).

Weight distribution for 2003(c) and 2004(d).

(a) (b)

Fig. 2. Zipf plot of vertex betweenness for 2003(a) and 2004(b).
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positions in the plot given above. It is easy to know the whole picture of the recent
developments of this group relative to the others.

In Ref. [16], we also introduced weight per degree (WPD), a characteristic quantity
of vertex. In Ref. [16], it was defined by total weight divided by total degree of every
vertex. Now we will present more details of this quantities by out-WPD, in-WPD
and total-WPD. Out-WPD is the quotient between the strength of outgoing
relationship and the number of outgoing edges, so this represents how actively the
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Fig. 3. Linear-scale Zipf plot of total, in and out weight per degree for 2003(a) and 2004(b). The points are

marked are the WPD values of Stanley and Zhang. The platforms in all the curves suggest the working

style of a large group of vertex. Weight on the platforms is about 0:604; which is roughly tanh ð0:7 � 1Þ:
This looks like those people are connected to the community just by one cooperation.
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vertex communicate with others, more intensively or more extensively. The in-WPD
represents how intensively or extensively the community treated the specific vertex.
For a pioneer scientist in a field, the vertex will have more edges other than more
weight (times) on edges, while an evergreen vertex probably will have more weight
(times) on edges other than more edges. So WPD provides a character of the
working style of the vertex. For example, from Fig. 3, we can see the out-WPD of
Stanley is quite large compared with the other two WPDs of him, or even compared
with the out-WPD of Zhang. In some senses, this implies Stanley is a little bit more
outgoing than Zhang, as the figure suggested. Any way, here we proposed this
quantity only for fun, however, we wish later on it will be found some good meaning
in reality such as Social Network Analysis, hopefully.
3. Clustering coefficient and the role of weight

Now we turn to the effects of weight on the structure of weighted networks. First,
we introduce the way to varying the relations between weights and edges to
investigate the role of weight on the structure. Then compare the different behaviors
of topological quantity to reveal the effect of such variation. Especially, the
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clustering coefficient of weighted networks will be defined and discussed. Last, the
average shortest path and betweenness will be calculated and compared.

3.1. Clustering and distance

It is well-known that the efficiency of small world network and scale-free network
in real world is characterized by the coexistence of small relative distance LðpÞ=Lð0Þ
and high-relative clustering coefficient CðpÞ=Cð0Þ; compared with the distance L 0ð Þ

and cluster coefficient C 0ð Þ of the induced regular network with the same number of
vertex and edges. For a weighted network, a new type of random network can be
introduced. The weights on edges can be randomized in weighted networks, while in
non-weight networks, the only thing can be randomized is the link. This effect on the
network structure is new in weighted networks, and it can be interpreted as the
topological role of weight, which tells us whether the weights are distributed
randomly or are related with the inherent structure.

The general approach is to change the relationship between weights and edges at a
specific level p. Set p ¼ 1 represents the original weighted network given by the
ordered series of weights which gives the relation between weight and edge but in a
decreasing order,

W ðp ¼ 1Þ ¼ ðwi1j1
¼ w1

Xwi2j2
¼ w2

X   Xw iLð Þ jLð Þ ¼ wLÞ : (4)

p ¼ �1 is defined as the inverse order as

W ðp ¼ �1Þ ¼ ðwi1j1
¼ wLp   pw iL�1ð Þ jL�1ð Þ ¼ w2pw iLð Þ jLð Þ ¼ w1Þ ; (5)

which assigns the minimum weight to the edge with a maximum weight in the
original network, and so on. And p ¼ 0 represents a fully randomized series of
W ðp ¼ 1Þ:

W ðp ¼ 0Þ ¼ FullyRandomized w1;w2; . . . ;wL
� �

: (6)

Therefore, p in some senses behaviors like a correlation coefficient between the new
and the original weight series. If we know how to generate a random series from a
given series with fixed correlation p, then we can plot all the relative clustering
coefficients and relative distance vs. p just like the famous figure in Ref. [19]. The way
to generate a conditional random series from a given series is so-called ‘‘conditional
uniform graph tests’’[22], which has more general sampling procedures to randomize
a given series. However, in this paper, we only investigate the special cases
corresponding to p ¼ 1; 0;�1: The induced fully randomized weighted network is
constructed by keeping the ordered set of edges but randomizing choosing values
from the set of weights. Every edge is given a weight randomly selected from the
weight set. Then we compared the basic topological properties of the original
networks with the inverse or randomized one.

For a directed network, the nearest neighbor of a vertex can be defined as In, Out
and Total, so the clustering coefficient of a directed network also has these three
different quantities, named as Icc, Occ and Tcc for short. Let us take Icc for instance.
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For every vertex vi in the network, the vertex having edge ending at vi forms a
neighbor set qi of vertex vi: Then Icc is defined as

Icc ¼ Icci

� �
i
¼

Mi

jqijðjqij � 1Þ

� 	
i

; (7)

where

Mi ¼
X
j;k2qi

1

~wjk

: (8)

This definition will give the same value as the usual clustering coefficient for
directed non-weighted networks, and half of the corresponding value for undirected
and non-weighted networks. The meaning of the numerator is the summation of all
similarity among the neighborhood, while the denominator is the possible maximum
value of similarity among them and the maximum value can be reached if everyone
of the neighborhood is connected to each other and all the values of similarity are 1.
So this definition has the same meaning of the clustering coefficient of non-weighted
network with taking the weight of links into account.

The average shortest distance d is defined as

d ¼
1

NðN � 1Þ

X
ij

dij (9)

in which dij is the shortest distance between vertex i; j and equals to N (the size of
network) if no path exists.

The above definition is used to calculate the clustering coefficient and average
shortest distance for weighted networks. Table 1 gives the clustering coefficients for
the real, inverse, and randomized network respectively constructed by the data set of
Econophysists and the data set of scientists collaboration provided by Newman. The
later data set has the only times of collaboration between scientists, so the
corresponding network is a weighted but not a directed one. The weight is given by
the measurement we introduced in last section. For the fully randomized network,
the result of clustering coefficient is the average of 100 random samples. In next
section, the results of distribution of betweenness for fully randomized networks are
also the average of 100 sampling processes. It is interesting to find that the clustering
coefficient for the real network of Econophysists is obviously larger than the inverse
Table 1

Clustering coefficients of weighted network

Real Inverse Random

Clustering coefficients Tcc 0.064 0.029 0.038

Icc 0.057 0.033 0.037

Occ 0.067 0.015 0.029

Newman Tcc 0.430 0.407 0.400
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and randomized one. It is similar with situation of WS small world [19], where the
randomization also leads to a gradual decrease of cluster coefficient. The difference
on clustering coefficient among real, inverse and randomized networks also implies
that there is certain relationship between weight and inherent network structure.

There seems to be a large difference on clustering coefficient between our network
and Newman’s collaboration network. The most significant reason is that the largest
connected cluster dominant almost perfectly in Newman’s data (83.2% of nodes are
in the largest cluster), while in our case, only 25:3% nodes are in the largest cluster
when the co-authorship is considered. The link in our network are dominated by the
directed links for citations with smaller weight of similarity. The mean value of the
weight per degree of the two network confirms such an argument: 2:60; 1:52ð Þ in
dissimilarity or 0:48; 0:68ð Þ in similarity for our network and Newman’s separately.
This means the average length of our edge is much longer than Newman’s, or we say,
the relationship in Newman’s network is much stronger than ours. This is easy to be
understood because the topics covered in Newman’s data is much better developed
than the topics covered by our network. If we compare our clustering coefficient
from largest connect cluster, 0:093; and it should times a factor of 2 because of the
difference of directed and non-directed network, then it comes to 0:186: Considering
further the ratio of the weight per degree of the two networks, that is 2:60=1:52 ¼

1:7; the coefficient comes to 0:316: This is still smaller than 0:430; the result of
Newman’s network, yet comparable. Of course, it’s true that there is a long way to
go to develop Econophysics into a similar developed stage of Physics.

From the definition of average shortest distance expressed by formula (9), for the
sparse network, the average shortest distance is dominated by the isolated vertices or
small clusters, because the distance between any two disconnected vertex is set as N

the size of the network. In Table 2, we give only the corresponding results for the
largest connected cluster. The average shortest distance is the result of corresponding
undirected cluster (if there are two directed edges between two nodes, we simply
dropped the edge with smaller weight). The weight-randomized network has also
smaller average shortest distance and clustering coefficient. Again, this implies the
weight has some inherent relation with the structural role of edge.

In the right column of Table 2, the corresponding results for non-weighted cluster
are given. We cannot compare these values with that of weighted networks. So we
have compared the distribution of link and vertex betweenness for weighted and
non-weighted cluster in Fig. 4. We find that the weight affects the distribution, but
leads to qualitatively similar results. However, the detail according to every single
Table 2

Results for the largest cluster

Weighted Non-weighted

Real Inverse Random

Tcc 0.093 0.050 0.067 0.363

d 22.91 21.83 17.75 3.217
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Fig. 4. Comparison of weighted and non-weighted largest cluster: (a) link betweenness, (b) vertex

betweenness.
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vertex is different. This is shown by the two small hollow rectangles representing the
same person on the two curves. Although in the above studies we have found some
effects of weight distributions, it seems that other quantities and their distributions
may be needed to investigate the topological role of weight.

3.2. Distribution of clustering coefficient and betweenness

In order to study the impaction of weight to the topological properties of network,
we have introduced the way to re-assign weights onto edges with p ¼ 1; 0;�1 for
weighted networks. Besides the average clustering coefficient and average shortest
distance, the change of distribution of corresponding topological quantities should
give more detailed descriptions for the effects of weight. Figs. 5(a) and (b) give the
weight and clustering coefficient distribution for real, inverse, and randomized
weighted networks. It seems that in all the cases the vertex weight distribution keeps
the same forms while the distribution of clustering coefficient changes obviously.

Other important global and structural quantities of a network to investigate the
impaction of weight on the structure are the vertex betweenness and link
betweenness. Figs. 5(c) and (d) give the distribution of the vertex betweenness and
link betweenness in Zipf plot for all cases. The distribution of link betweenness seems
unchanged but if we focus on the position of a certain edge (the top one in real
weighted network for instance) in the curves, it changes a lot for different cases.
From the comparison here and in Fig. 4, we know the way of weight measurement
affects the structure of network, but not described very well by quantities all above.
We assume correlation analysis will provide more detailed information beyond this,
because the measurement of weight has different effects on different quantities. For
example, it does not affect the degree of vertex at all, but does affect betweenness of
vertex. Maybe a correlation analysis between such quantities will tell more about the
character of weighted networks. However, in Fig. 5(d), the upper tail of the
distribution for the vertex betweenness has been changed, but the position of a vertex
does not change as much as links. It seems that the betweenness of vertex is
dominated by links more than by the weights on the links.
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(c) (d)

Fig. 5. Comparison of real, inverse, and randomized weighted networks: (a) vertex weight distribution, (b)

clustering coefficient, (c) link betweenness, (d) vertex betweenness. All in Zipf plots.
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4. Conclusions

From the comparison between networks with real, inverse, randomized weight
and induced non-weight networks, we know the network structure depends on the
weight. We calculated global structure quantities as clustering coefficient, between-
ness of vertex and betweenness of edge under different cases. Even some global
distribution seems robust but the detailed structure has been affected by the weight.
These results give us clues to the question of the topological role of weight. As we
point out in Section 3.1, this question investigates the relationship between weight
and inherent network structure. It sounds like strong correlation existing between
them. But it seems that other quantities and distributions are needed to investigate
the topological role of weight. The conclusion depends on the more general
exploration in more networks and modelling research.

In summary, we have constructed a small network by collecting papers in
Econophysics. A new definition of weight and new topological properties are
introduced and some fundamental properties are analyzed, including preliminary
analysis of the topological role of weight. The idea to integrate networks with
multilevel but the same kind of relationship has further application value. We wish
more data can be collected including the time development of the network so that it
will help to analyze the evolution of networks, especially for the networks of
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scientist, in which the network structure and the dynamical phenomena such as
exchanging idea are in co-evolution. In this sense, network of idea transportation has
some special value, because the network structure and the dynamical behavior over
the network are always coupled together. So dynamical process over the network
and the evolution of this network are in fact always entangled each other. As in the
subway analogy, we want to extract the information about railway from traffic, but
at the same time, in our network of scientists, the traffic can generate new paths!

Therefore, works on modelling such network will have very important and special
value. Inspired by the empirical study in this paper, recently we have proposed a
model of weighted network showing almost exactly the same behavior qualitatively.
The most important character of the model is that the only dynamical variable is the
times of connection, not two variables as both of connection and weight as in usual
models of weighted networks. Hopefully, in the near future, we can complete the
modelling work and compare the results with the empirical results here.
Acknowledgements

The authors want to thank Dr. Newman for his cooperation data, thank Dr.
Yougui Wang and all other group members for the inspiring and warm discussion.
This project is supported by NSFC under the grant No. 70471080, No. 70371072 and
No. 70431002.
References

[1] R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74 (2002)

47–97.

[2] S.N. Dorogovtsev, J.F.F. Mendes, Evolution of networks, Adv. Phys. 51 (2002) 1079–1187.

[3] V. Latora, M. Marchiori, Economic small-world behavior in weighted networks, Eur. Phys. J. B 32

(2003) 249–263.

[4] S.H. Yook, H. Jeong, A.-L. Barabási, Weighted evolving networks, Phys. Rev. Lett. 86 (2001)

5835–5838.

[5] L. Egghe, R. Rousseau, A measure for the cohesion of weighted networks, J. Am. Soc. Info. Sci.

Technol. 54 (2003) 193C202.

[6] D. Garlaschelli, G. Caldarelli, L. Pietronero, Universal scaling relation in food webs, Nature 423

(2003) 165–168.

[7] P.J. Macdonald, E. Almaas, A.-L. Barabási, Minimum spanning trees on weighted scale-free

networks, arXiv:cond-mat /0405688.

[8] M.E.J. Newman, Scientific collaboration networks. I. Network construction and fundamental results,

Phys. Rev. E 64 (2001) 016131;

M.E.J. Newman, Scientific collaboration networks. II. Shortest paths, weighted networks, and

centrality, Phys. Rev. E 64 (2001) 016132.
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