Game Theory, from a physicist?

A New Representation of Classical and Quantum Game Theory

Jinshan Wu

Department of Physics, Simon Fraser University

Outline

- Starting point, one example to show the whole idea
- Some Background of Physics
- Quantum Mechanics
- Statistical Mechanics
- Classical Game Theory
- New Representation of Classical and Quantum Game
- Only equivalent description, something new?

Prisoner's Dilemma as an example

- $(-2,-2),(-5,0),(0,-5),(-4,-4)$, four pairs of number for pure-strategy combinations (Deny, Confess)

Prisoner's Dilemma as an example

- $(-2,-2),(-5,0),(0,-5),(-4,-4)$, four pairs of number for pure-strategy combinations (Deny, Confess)
- Weighted average for mixture-strategy combination

$$
E^{1}=(-2) p_{d}^{1} p_{d}^{2}+(-5) p_{d}^{1} p_{c}^{2}+(0) p_{c}^{1} p_{d}^{2}+(-4) p_{c}^{1} p_{c}^{2}
$$

Prisoner's Dilemma as an example

- $(-2,-2),(-5,0),(0,-5),(-4,-4)$, four pairs of number for pure-strategy combinations (Deny, Confess)
- Weighted average for mixture-strategy combination

$$
E^{1}=(-2) p_{d}^{1} p_{d}^{2}+(-5) p_{d}^{1} p_{c}^{2}+(0) p_{c}^{1} p_{d}^{2}+(-4) p_{c}^{1} p_{c}^{2}
$$

- Turns into a matrix form G^{i} (tensor form for N-player game)

$$
E^{1}=\left[p_{d}^{1}, p_{c}^{1}\right]\left[\begin{array}{cc}
-2 & -5 \\
0 & -4
\end{array}\right]\left[\begin{array}{l}
p_{d}^{2} \\
p_{c}^{2}
\end{array}\right]
$$

Prisoner's Dilemma as an example, continued

- Turns into a density matrix form ρ^{i} and $H^{i}((1,1)$ tensor for any-player game)

$$
\left.\left.\begin{array}{l}
E^{1}=\operatorname{Tr}\left(\left[\begin{array}{cc}
p_{d}^{1} & 0 \\
0 & p_{c}^{1}
\end{array}\right] \otimes\left[\begin{array}{cc}
p_{d}^{2} & 0 \\
0 & p_{c}^{2}
\end{array}\right]\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 0 \\
0 \\
0 & 0 & 0
\end{array}-4\right]\right.
\end{array}\right]\right)
$$

Quantum Mechanics

Quantum Mechanics

- State in Hilbert space $|\phi\rangle \in \mathcal{H}$, and base vectors $|\boldsymbol{\mu}\rangle$

$$
\begin{equation*}
|\phi\rangle=\sum_{\mu} \phi_{\mu}|\mu\rangle \tag{1}
\end{equation*}
$$

Quantum Mechanics

- State in Hilbert space $|\phi\rangle \in \mathcal{H}$, and base vectors $|\boldsymbol{\mu}\rangle$

$$
\begin{equation*}
|\phi\rangle=\sum_{\mu} \phi_{\mu}|\mu\rangle \tag{1}
\end{equation*}
$$

- Operators and physical quantities $\left.\boldsymbol{A}\right|_{\mathcal{H} \rightarrow \mathcal{H}}$

$$
\begin{equation*}
|\psi\rangle=A|\phi\rangle \text { and }\langle\boldsymbol{A}\rangle=\langle\phi| \boldsymbol{A}|\phi\rangle . \tag{2}
\end{equation*}
$$

Quantum Mechanics

- State in Hilbert space $|\phi\rangle \in \mathcal{H}$, and base vectors $|\boldsymbol{\mu}\rangle$

$$
\begin{equation*}
|\phi\rangle=\sum_{\mu} \phi_{\mu}|\mu\rangle \tag{1}
\end{equation*}
$$

- Operators and physical quantities $\left.\boldsymbol{A}\right|_{\mathcal{H} \rightarrow \mathcal{H}}$

$$
\begin{equation*}
|\psi\rangle=A|\phi\rangle \text { and }\langle\boldsymbol{A}\rangle=\langle\phi| \boldsymbol{A}|\phi\rangle . \tag{2}
\end{equation*}
$$

- Density matrix form for state

$$
\begin{gather*}
\rho=|\phi\rangle\langle\phi|=\sum_{\mu, \nu} \phi_{\nu}^{*} \phi_{\mu}|\mu\rangle\langle\nu| \\
\text { but more general } \tag{3}\\
\rho=\sum_{\mu, \nu} \rho_{\mu \nu}|\mu\rangle\langle\nu|
\end{gather*}
$$

Quantum Mechanics, continued

- Dirac notation for operators $\langle\psi| \in \mathcal{H}^{*} \mid \mathcal{H} \rightarrow \mathbb{C}$, so $|\phi\rangle\langle\psi|$ is a mapping from \mathcal{H} to \mathcal{H}.

Quantum Mechanics, continued

- Dirac notation for operators $\langle\psi| \in \mathcal{H}^{*} \mid \mathcal{H} \rightarrow \mathbb{C}$, so $|\phi\rangle\langle\psi|$ is a mapping from \mathcal{H} to \mathcal{H}.
- Then any operator on \mathcal{H} can be expanded as

$$
\begin{equation*}
A=\sum_{\mu \nu} A_{\mu \nu}|\mu\rangle\langle\nu| . \tag{4}
\end{equation*}
$$

In such sense, we denote both state space ρ and operator space A as \mathcal{H}

Quantum Mechanics, continued

- Dirac notation for operators $\left.\langle\psi| \in \mathcal{H}^{*}\right|_{\mathcal{H} \rightarrow \mathbb{C}}$, so $|\phi\rangle\langle\psi|$ is a mapping from \mathcal{H} to \mathcal{H}.
- Then any operator on \mathcal{H} can be expanded as

$$
\begin{equation*}
A=\sum_{\mu \nu} A_{\mu \nu}|\boldsymbol{\mu}\rangle\langle\nu| . \tag{4}
\end{equation*}
$$

In such sense, we denote both state space ρ and operator space A as \mathcal{H}

- Reduced density matrix

$$
\begin{equation*}
\rho_{R}^{i}=T r_{-i}\left(\rho^{S}\right),(\text { if indepedent }) \rho^{S}=\prod_{i} \rho_{R}^{i} \tag{5}
\end{equation*}
$$

Quantum Mechanics, continued

- In one word, Quantum Mechanics is a system
- State (ρ) and Liouville Equation (or Schrödinger Equation),

$$
\begin{equation*}
\rho(t)=\hat{U} \rho_{0} \hat{U}^{\dagger}, \tag{6}
\end{equation*}
$$

in which $\hat{U}=\exp (-i H t), H$ is the Hamiltonian, a hermitian operator.

- Physical quantities (A) and their values

$$
\begin{equation*}
\langle A\rangle=\operatorname{Tr}(A \rho) . \tag{7}
\end{equation*}
$$

Statistical Mechanics

Statistical Mechanics

- Dynamical problem VS Thermal Dynamical problem

$$
\begin{aligned}
& \rho_{i} \xrightarrow{\text { H, the Hamiltonian }} \rho_{f} \\
& \rho_{0} \\
& \xrightarrow[\text { heat bath, fluctuation }]{ } \\
& \rho_{e q}
\end{aligned}
$$

Statistical Mechanics

- Dynamical problem VS Thermal Dynamical problem

$$
\begin{aligned}
& \rho_{i} \xrightarrow{\text { H, the Hamiltonian }} \rho_{f} \\
& \rho_{0} \\
& \xrightarrow[\text { heat bath, fluctuation }]{ } \\
& \rho_{e q}
\end{aligned}
$$

- Equilibrium distribution, ensemble theory, Canonical Ensemble

$$
\begin{equation*}
\rho_{e q}=\frac{1}{Z} e^{-\beta H} \text { and } Z=\operatorname{Tr}\left(e^{-\beta H}\right) \tag{8}
\end{equation*}
$$

Statistical Mechanics, continued

- Master equation and other pseudo-dynamical equations (for classical system)

$$
\begin{equation*}
\frac{d}{d t} \rho(x, t)=\sum_{y} W(y \rightarrow x) \rho(y)-\sum_{y} W(x \rightarrow y) \rho(x) \tag{9}
\end{equation*}
$$

Statistical Mechanics, continued

- Master equation and other pseudo-dynamical equations (for classical system)

$$
\begin{equation*}
\frac{d}{d t} \rho(x, t)=\sum_{y} W(y \rightarrow x) \rho(y)-\sum_{y} W(x \rightarrow y) \rho(x) \tag{9}
\end{equation*}
$$

- For a quantum system, in a set of eigenvectors of H, we have

$$
\begin{equation*}
\rho_{e q}=\frac{1}{Z} e^{-\beta H}=\sum_{\mu} \frac{1}{Z} e^{-\beta E(\mu)}|\mu\rangle\langle\mu| . \tag{10}
\end{equation*}
$$

Classical Game Theory

- Solution of a game

Classical Game Theory

- Solution of a game
- Nash Equilibrium and Nash Theorem

$$
E^{i}\left(\vec{P}_{e q}^{1}, \cdots, \vec{P}_{e q}^{i}, \cdots, \vec{P}_{e q}^{N}\right) \geq E^{i}\left(\vec{P}_{e q}^{1}, \cdots, \vec{P}^{i}, \ldots, \vec{P}_{e q}^{N}\right)
$$

(11)

Classical Game Theory

- Solution of a game
- Nash Equilibrium and Nash Theorem

$$
\begin{equation*}
E^{i}\left(\vec{P}_{e q}^{1}, \cdots, \vec{P}_{e q}^{i}, \cdots, \vec{P}_{e q}^{N}\right) \geq E^{i}\left(\vec{P}_{e q}^{1}, \cdots, \vec{P}^{i}, \cdots, \vec{P}_{e q}^{N}\right) \tag{11}
\end{equation*}
$$

- Evolutionary Game and its relation with static game

$$
\begin{gather*}
\left(\vec{P}_{i}^{1}, \cdots, \vec{P}_{i}^{N}\right) \xrightarrow{\text { Evolution }}\left(\vec{P}_{f}^{1}, \cdots, \vec{P}_{f}^{N}\right) \tag{12}\\
\Leftrightarrow
\end{gather*}\left(\vec{P}_{e q}^{1}, \cdots, \vec{P}_{e q}^{N}\right)
$$

Classical Game Theory, continued

- Cooperative Game and its relation with static game

$$
\begin{equation*}
N=\bigcup_{j=1}^{K} N^{j}, \rho^{S}=\prod_{j=1}^{K} \rho^{j} \neq \prod_{i=1}^{N} \rho^{i} \tag{13}
\end{equation*}
$$

Classical Game Theory, continued

- Cooperative Game and its relation with static game

$$
\begin{equation*}
N=\bigcup_{j=1}^{K} N^{j}, \rho^{S}=\prod_{j=1}^{K} \rho^{j} \neq \prod_{i=1}^{N} \rho^{i} \tag{13}
\end{equation*}
$$

- Questions: Calculation of NE, Unstable NE as a solution, Refinement of NEs

Comparison between Game Theory and Physics

- Comparison with Quantum Mechanics
- Hamiltonian
- State, Density Matrix
- Dynamical Equation

Comparison between Game Theory and Physics

- Comparison with Quantum Mechanics
- Hamiltonian
- State, Density Matrix
- Dynamical Equation
- Comparison with Statistical Mechanics
- Ensemble, Distribution, Thermal Equilibrium
- Pseudo-dynamical Equation

The New Representation of Classical Game

- Traditional Classical Game

$$
\begin{equation*}
\Gamma^{c}=\left(\prod_{i=1}^{N} \otimes S_{i},\left\{G^{i}\right\}\right) \tag{14}
\end{equation*}
$$

- The new form

$$
\begin{equation*}
\Gamma^{c, \text { new }}=\left(\prod_{i=1}^{N} \otimes S_{i},\left\{H^{i}\right\}\right) \tag{15}
\end{equation*}
$$

The New Representation of Classical Game

- Traditional Classical Game

$$
\begin{equation*}
\Gamma^{c}=\left(\prod_{i=1}^{N} \otimes S_{i},\left\{G^{i}\right\}\right) \tag{14}
\end{equation*}
$$

- The new form

$$
\begin{equation*}
\Gamma^{c, \text { new }}=\left(\prod_{i=1}^{N} \otimes S_{i},\left\{H^{i}\right\}\right) \tag{15}
\end{equation*}
$$

- The relations, and question about non-zero off-diagonal elements of H^{i}

$$
\begin{array}{rlc}
\prod_{i} \vec{P}^{i} & \longrightarrow & \rho^{S} \\
G^{i} & \longrightarrow & H^{i}=\sum_{S S^{\prime}} G_{S}^{i} \delta_{S S^{\prime}}|S\rangle\left\langle S^{\prime}\right| \tag{16}
\end{array}
$$

The New Representation, continued

- Reduced Payoff Matrix

$$
\begin{align*}
& H_{R}^{i}=\operatorname{Tr}-i\left(\rho^{1} \cdots \rho^{i-1} \rho^{i+1} \cdots \rho^{N} H^{i}\right) \tag{17}\\
& E^{i}= \\
& \operatorname{Tr}^{i}\left(\rho^{i} H_{R}^{i}\right)
\end{align*}
$$

The New Representation, continued

- Reduced Payoff Matrix

$$
\begin{align*}
& H_{R}^{i}=\operatorname{Tr}-i\left(\rho^{1} \cdots \rho^{i-1} \rho^{i+1} \cdots \rho^{N} H^{i}\right) \tag{17}\\
& E^{i}= \\
& \operatorname{Tr}^{i}\left(\rho^{i} H_{R}^{i}\right)
\end{align*}
$$

- Pseudo-dynamical Equation

$$
\begin{equation*}
\rho^{i}(t+1)=\frac{e^{\beta H_{R}^{i}(t)}}{\operatorname{Tr} r^{i}\left(e^{\beta H_{R}^{i}(t)}\right)} \tag{18}
\end{equation*}
$$

The New Representation, Application

The New Representation, Application

- Prisoner's Dilemma
- Hawk-Dove Game

The New Representation of Quantum Game

- Manipulative Definition

$$
\begin{align*}
\Gamma^{q, o} & =\left(\rho_{o}^{q} \in \mathbb{H}^{q}, \prod_{i=1}^{N} \otimes \mathbb{H}^{i}, \mathcal{L},\left\{P^{i}\right\}\right) \\
E^{i} & =\operatorname{Tr}\left(P^{i} \mathcal{L}\left(\cdots, \hat{U}^{i}, \cdots\right) \rho_{0}^{q} \mathcal{L}^{\dagger}\left(\cdots, \hat{U}^{i}, \cdots\right)\right) \tag{19}
\end{align*}
$$

The New Representation of Quantum Game

- Manipulative Definition

$$
\begin{align*}
\Gamma^{q, o} & =\left(\rho_{o}^{q} \in \mathbb{H}^{q}, \prod_{i=1}^{N} \otimes \mathbb{H}^{i}, \mathcal{L},\left\{P^{i}\right\}\right) \\
E^{i} & =\operatorname{Tr}\left(P^{i} \mathcal{L}\left(\cdots, \hat{U}^{i}, \cdots\right) \rho_{0}^{q} \mathcal{L}^{\dagger}\left(\cdots, \hat{U}^{i}, \cdots\right)\right) \tag{19}
\end{align*}
$$

- Natural base strategies of operator space

The New Representation of Quantum Game

- Manipulative Definition

$$
\begin{align*}
\Gamma^{q, o} & =\left(\rho_{o}^{q} \in \mathbb{H}^{q}, \prod_{i=1}^{N} \otimes \mathbb{H}^{i}, \mathcal{L},\left\{P^{i}\right\}\right) \\
E^{i} & =\operatorname{Tr}\left(P^{i} \mathcal{L}\left(\cdots, \hat{U}^{i}, \cdots\right) \rho_{0}^{q} \mathcal{L}^{\dagger}\left(\cdots, \hat{U}^{i}, \cdots\right)\right) \tag{19}
\end{align*}
$$

- Natural base strategies of operator space
- Abstract Form

$$
\begin{align*}
& \Gamma^{q}=\left(\prod_{i=1}^{N} \otimes S_{i}^{q},\left\{H^{i}\right\}\right) \tag{20}\\
& E^{i}=\operatorname{Tr}\left(\rho^{S} H^{i}\right)
\end{align*}
$$

The New Representation, continued

- Quantum Nash Equilibrium
- General NE in system state space

$$
\begin{equation*}
E^{i}\left(\rho_{e q}^{S}\right) \geq E^{i}\left(T r^{i}\left(\rho_{e q}^{S}\right) \cdot \rho^{i}\right), \forall \rho^{i}, \forall i \tag{21}
\end{equation*}
$$

- NE in direct-product strategy space

$$
\begin{equation*}
E^{i}\left(\rho_{e q}^{1}, \cdots, \rho_{e q}^{i}, \cdots, \rho_{e q}^{N}\right) \geq E^{i}\left(\rho_{e q}^{1}, \cdots, \rho^{i}, \cdots, \rho_{e q}^{N}\right) \tag{22}
\end{equation*}
$$

- Strong dominant state

$$
\begin{equation*}
E^{i}\left(\rho_{e q}^{S}\right) \geq E^{i}\left(\rho^{S}\right), \forall \rho^{S} . \tag{23}
\end{equation*}
$$

The New Representation, continued

- Quantum Nash Equilibrium
- General NE in system state space

$$
\begin{equation*}
E^{i}\left(\rho_{e q}^{S}\right) \geq E^{i}\left(T r^{i}\left(\rho_{e q}^{S}\right) \cdot \rho^{i}\right), \forall \rho^{i}, \forall i \tag{21}
\end{equation*}
$$

- NE in direct-product strategy space

$$
\begin{equation*}
E^{i}\left(\rho_{e q}^{1}, \cdots, \rho_{e q}^{i}, \cdots, \rho_{e q}^{N}\right) \geq E^{i}\left(\rho_{e q}^{1}, \cdots, \rho^{i}, \cdots, \rho_{e q}^{N}\right) \tag{22}
\end{equation*}
$$

- Strong dominant state

$$
\begin{equation*}
E^{i}\binom{S}{e q} \geq E^{i}\left(\rho^{S}\right), \forall \rho^{S} \tag{23}
\end{equation*}
$$

- Non-direct-product NE means Cooperative?

Application I - QPF Game

- Manipulative Definition
- Base vectors of state space: $|1\rangle=(1,0)^{T},|-1\rangle=$ $(0,1)^{T}$
- Initial state of the quantum object: $\rho_{0}^{q}=$ $|1\rangle\langle 1|$
- Strategies of quantum players: $I, \sigma_{x}, \sigma_{y}, \sigma_{z}$ and their combination
- Payoff scale: player 1 win 1 when $|1\rangle$ lose 1 when $|-1\rangle$, inverse for player 2.
- So

$$
E^{1}=\operatorname{Tr}\left(\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] U^{2} U^{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left(U^{2} U^{1}\right)^{\dagger}\right)=-E^{2}
$$

Quantum Game, Application I - continued

- Payoff Matrix with non-zero off-diagonal elements, for example, $\langle I, I| H^{1}\left|\sigma_{x}, I\right\rangle=1$, while classically no such situation that looking on the left side, both players choose I, but according to right side, not.

Quantum Game, Application I - continued

- Payoff Matrix with non-zero off-diagonal elements, for example, $\langle I, I| H^{1}\left|\sigma_{x}, I\right\rangle=1$, while classically no such situation that looking on the left side, both players choose I, but according to right side, not.

$$
\left[\begin{array}{ccccccccccccccccc}
1 & 0 & 1 & 0 & 0 & 1 & 0 & i & 1 & 0 & 1 & 0 & 0 & -i & 0 & 1 \\
0 & -1 & 0 & i & -1 & 0 & 1 & 0 & 0 & -1 & 0 & i & i & 0 & -i & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & i & 1 & 0 & 1 & 0 & 0 & -i & 0 & 1 \\
0 & -i & 0 & -1 & -i & 0 & i & 0 & 0 & -i & 0 & -1 & -1 & 0 & 1 & 0 \\
0 & -1 & 0 & i & -1 & 0 & 1 & 0 & 0 & -1 & 0 & i & i & 0 & -i & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & i & 1 & 0 & 1 & 0 & 0 & -i & 0 & 1 \\
0 & 1 & 0 & -i & 1 & 0 & -1 & 0 & 0 & 1 & 0 & -i & -i & 0 & i & 0 \\
-i & 0 & -i & 0 & 0 & -i & 0 & 1 & -i & 0 & -i & 0 & 0 & -1 & 0 & -i \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & i & 1 & 0 & 1 & 0 & 0 & -i & 0 & 1 \\
0 & -1 & 0 & i & -1 & 0 & 1 & 0 & 0 & -1 & 0 & i & i & 0 & -i & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & i & 1 & 0 & 1 & 0 & 0 & -i & 0 & 1 \\
0 & -i & 0 & -1 & -i & 0 & i & 0 & 0 & -i & 0 & -1 & -1 & 0 & 1 & 0 \\
0 & -i & 0 & -1 & -i & 0 & i & 0 & 0 & -i & 0 & -1 & -1 & 0 & 1 & 0 \\
i & 0 & i & 0 & 0 & i & 0 & -1 & i & 0 & i & 0 & 0 & 1 & 0 & i \\
0 & i & 0 & 1 & i & 0 & -i & 0 & 0 & i & 0 & 1 & 1 & 0 & -1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & i & 1 & 0 & 1 & 0 & 0 & -i & 0 & 1
\end{array}\right]
$$

Application II - Quantum Battle of Sexes

- An Artificial Game and its classical limit ($\epsilon_{1}>$ ϵ_{2})

$$
H^{1}=\left[\begin{array}{cccc}
\epsilon_{1} & 0 & 0 & \epsilon_{1} \\
0 & \epsilon_{2} & \epsilon_{2} & 0 \\
0 & \epsilon_{2} & \epsilon_{2} & 0 \\
\epsilon_{1} & 0 & 0 & \epsilon_{1}
\end{array}\right]=H^{2},
$$

Application II - Quantum Battle of Sexes

- An Artificial Game and its classical limit ($\epsilon_{1}>$ $\left.\epsilon_{2}\right)$

$$
\begin{gathered}
\boldsymbol{H}^{\mathbf{1}}=\left[\begin{array}{cccc}
\epsilon_{1} & 0 & 0 & \epsilon_{1} \\
0 & \epsilon_{2} & \epsilon_{2} & 0 \\
0 & \epsilon_{2} & \epsilon_{2} & 0 \\
\epsilon_{1} & 0 & 0 & \epsilon_{1}
\end{array}\right]=H^{2}, \\
\boldsymbol{H}^{\mathbf{1}, c}=\left[\begin{array}{cccc}
\epsilon_{1} & 0 & 0 & 0 \\
0 & \epsilon_{2} & 0 & 0 \\
0 & 0 & \epsilon_{2} & 0 \\
0 & 0 & 0 & \epsilon_{1}
\end{array}\right]=\boldsymbol{H}^{2, c}
\end{gathered}
$$

Application II - Quantum Battle of Sexes

- An Artificial Game and its classical limit ($\epsilon_{1}>$ $\left.\epsilon_{2}\right)$

$$
\begin{gathered}
H^{\mathbf{1}}=\left[\begin{array}{cccc}
\epsilon_{1} & 0 & 0 & \epsilon_{1} \\
0 & \epsilon_{2} & \epsilon_{2} & 0 \\
0 & \epsilon_{2} & \epsilon_{2} & 0 \\
\epsilon_{1} & 0 & 0 & \epsilon_{1}
\end{array}\right]=H^{\mathbf{2}}, \\
\boldsymbol{H}^{\mathbf{1}, c}=\left[\begin{array}{cccc}
\epsilon_{1} & 0 & 0 & 0 \\
0 & \epsilon_{2} & 0 & 0 \\
0 & 0 & \epsilon_{2} & 0 \\
0 & 0 & 0 & \epsilon_{1}
\end{array}\right]=\boldsymbol{H}^{2, c}
\end{gathered}
$$

- Strong Dominant State, an entangled strategy state

$$
\rho_{M}^{S}=(|B B\rangle+|S S\rangle)(\langle B B|+\langle S S|) \neq \rho^{1} \otimes \rho^{2}
$$

Discussions: something
new?

Discussions: Something new?

- At least, an equivalent description of classical game
- At least, a general form of quantum game, a truly quantum game, not in the scope of traditional G^{i}

Discussions: Something new?

- At least, an equivalent description of classical game
- At least, a general form of quantum game, a truly quantum game, not in the scope of traditional G^{i}
- Unified framework for both classical and quantum game, so easier to transfer ideas between them

Discussions: Something new?

- At least, an equivalent description of classical game
- At least, a general form of quantum game, a truly quantum game, not in the scope of traditional G^{i}
- Unified framework for both classical and quantum game, so easier to transfer ideas between them
- Possible way leading to Evolutionary Game and Cooperative Game

Any Future?

- Quantum Nash Equilibrium Proposition, but, without a general proof (hopefully in near future)

Any Future?

- Quantum Nash Equilibrium Proposition, but, without a general proof (hopefully in near future)
- Better Dynamical Equations for classical game and one applicable equation for quantum game (still open problem in Physics)

Any Future?

- Quantum Nash Equilibrium Proposition, but, without a general proof (hopefully in near future)
- Better Dynamical Equations for classical game and one applicable equation for quantum game (still open problem in Physics)
- Application onto more specific games (which one?)

Any Future?

- Quantum Nash Equilibrium Proposition, but, without a general proof (hopefully in near future)
- Better Dynamical Equations for classical game and one applicable equation for quantum game (still open problem in Physics)
- Application onto more specific games (which one?)
- Application onto some tough theoretical problems (where?)

Reference and Thank You All, Question Time Now

- Jinshan Wu, arXiv:quant-ph/0404159.
- S. J. van Enk and R. Pike, Phys. Rev. A 66(2002), 024306.
- D.A. Meyer, Phys. Rev. Lett. 82(1999), 1052.
- J. Eisert, M. Wilkens, and M. Lewenstein, Phys. Rev. Lett, 83(1999), 3077.
- Jinshan Wu, arXiv:quant-ph/0405003.
- Jinshan Wu, arXiv:quant-ph/0405032.

