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Abstract – We derive a Kubo-type formula that describes proper non-equilibrium stationary
states for finite-size systems. We first argue that the usual Kubo formula considers only equilibrium
states of the perturbed system, which are inappropriate to describe transport properties. Moreover,
we show that the standard Kubo formula for the dc conductance is only appropriate in the
thermodynamic limit. We demonstrate that taking into consideration explicitly the coupling to
the leads/baths solves both problems. This approach results in well-behaved response functions,
without the singular contributions from degenerate states encountered when Kubo formulae for
infinite-size systems are inappropriately used for finite-size systems. We also derive a second, more
efficient formulation which is valid only for a set of special physical quantities, which includes the
charge current density operator.

Copyright c© EPLA, 2010

Introduction. – In this letter, we consider a finite-size
one-dimensional system whose ends are coupled to two
baths/reservoirs which are held at different temperatures
T and/or chemical potentials µ, leading to flow of charge
or thermal currents through the system. The question of
interest to us is how can one find the stationary state
that is reached after a long enough time, in order to
characterize the steady-state currents flowing through the
system and thus the dc charge/thermal conductances of
the finite-size system. Note that we focus on a simple 1D
system coupled to only two baths for simplicity; our results
can be straightforwardly generalized to finite-size systems
with any topology and connected to any number of baths.
Different physical pictures have been used to describe

this problem and different calculation schemes have been
proposed. Here, we use the system-bath scenario as the
physical picture and present a Kubo-like formula as the
calculation scheme to find the steady-state currents in
the perturbational limit of a very small difference in
the parameters of the two baths. We start with a brief
review of commonly used physical pictures and calculation
schemes.
We begin by discussing charge currents. There are

two types of “driving forces” responsible for a steady-
state charge current flow. The first is the applied electric
field, which gives rise to an additional term V to be
included in the total Hamiltonian H =H0+V of the
system, where H0 describes the system without the field.
The second is the imbalance in the chemical potentials

and/or temperatures of the two baths, which results in a
non-equilibrium distribution function ρ. Only if the baths
have the same µ and T , does this distribution equal the
thermal equilibrium distribution ρeq(H) =

1
Z
e−β(H−µN).

However, this is not true when the two baths are biased.
The steady-state expectation value of the current is
〈J〉=Tr(Ĵρ∞), where ρ∞ = ρ(t→∞) is the steady-state
distribution for the non-equilibrium stationary state
(NESS) established in the system a sufficiently long time
after it was connected to the biased baths. For large
systems in the linear-response regime it is customary to
assume that ρ∞ ≈ ρeq(H) and use the later to calculate
the current [1]. Details regarding the baths and their
coupling to the system are totally irrelevant.
The situation is different for thermal currents, since

here there is only one driving force: the non-equilibrium
distribution. There is no thermal equivalent for the electric
potential. A calculation of the proper ρ∞ therefore seems
to be necessary. However, in fact it is still possible to
introduce either the assumption of local equilibrium [2]
or use gravitational potentials [3] to generate an artificial
potential V which is added toH0 and then one uses ρeq(H)
instead of the proper ρ∞, in direct analogy with the usual
approach for charge currents. In the following, we will refer
to this approach as the standard Kubo formula (SKF).
Again the baths play no explicit role in this approach,
and therefore their existence is ignored.
The SKF has been widely used for both infinite [4]

and finite-size systems [5], usually with periodic boundary
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conditions. Open boundary conditions have also been
used, leading to qualitatively different results [6]. In spite
of this, it is a widely held belief that when the size of
the systems approaches infinity, the difference between
different boundary conditions should disappear and both
should converge to the results for infinite systems [6].
For finite-size systems, it has also been suggested that

they could be coupled to baths through infinitely long,
perfectly conducting leads [7] so that the resulting total
system of lead-system-lead becomes infinite and can be
studied with the SKF. For non-interacting systems, this
has been shown to be equivalent to the Landauer formula
where ρ∞ is replaced by the assumption that the distri-
butions for states injected from the two leads are the
thermal distributions of their respective baths. However,
the vast majority of studies of conductances via the SKF
are for infinite homogeneous systems [4], or extrapola-
tions for N →∞ from results on finite-size systems [5]. For
the latter, once the eigenstates H0|m〉= εm|m〉 are found,
the SKF can be used to calculate physical quantities. For
example, the well-known Drude weight [4–6]:

D=
πβ

L

∑
m,n
εm=εn

e−βεm

Z
|〈m|Ĵ |n〉|2 (1)

is used often when discussing charge or thermal transport.
The first goal of this work is to show that the SKF

does not give correct results for finite-size systems coupled
to baths, which is the relevant experimental set-up. The
second task, therefore, is to find a proper solution and
hopefully also an efficient way to implement it.
A very different physical picture used to study transport

is based on quantum master equations derived under vari-
ous assumptions for a system explicitly coupled to baths.
The most common are the Redfield equation (RE) [8–10]
and the local-operator Lindblad equation (LOLE) [11–17].
LOLEs are easier to solve, for technical reasons. Systems
withN ∼ 100 were studied with a method based on density
matrix renormalization [15], which does not apply to REs.
Stochastic wave function methods have also been used
for systems with N ∼ 20 [13,18,19], comparable to what
direct diagonalization can handle. However, the LOLEs’
derivation has additional approximations to the REs’ [16],
and qualitative differences between their results have been
reported [10,13,15]. In particular, while REs predict the
correct ρ∞ = ρeq(H) for unbiased baths [16], LOLEs do
not. Their use to describe weakly biased baths, on which
we focus here, is therefore questionable.
Consequently, we use the RE in this work1. The down-

side is the significant computational cost which allows only
systems of size N ∼ 10 to be solved by direct means [9,10].
The stochastic wave function methods are also believed
to work for REs [16]. We present here another technique
for the linear-response limit of a weak bias, which requires

1We note that while the RE in principle can predict non-positive
density operators, we have not encountered such problems in any of
our simulations.

only the diagonalization of the Hamiltonian and therefore
works up to N ∼ 20. However, this more efficient approach
is valid only for certain response functions.

Limitations of the standard Kubo formula. – The
Liouville-von Neumann equation of motion for the density
matrix ρ(t) of a closed system is (�= 1):

∂ρ (t)

∂t
=LHρ (t) =−i[H, ρ], (2)

where H is its Hamiltonian. Stationary solutions of this
equation are not unique. They include the equilibrium
distributions ρeq (H) =

1
Z
e−βH for any β = 1/kBT .

If H =H0+V , where V is a static weak coupling to
an external field, one can use perturbation theory to find
ρ(t) = ρ0+ δρ(t) near a state ρ0 of the isolated system,
LH0ρ0 = 0. Neglecting LV δρ(t) in eq. (2), we integrate for
δρ(t) to obtain the t→∞, steady-state solution:

δρ=

∫ ∞
0

dteL0t−ηtLV ρ0, (3)

where η→ 0+ and L0 =LH0 . If ρ0 = ρeq(H0), this gives
the standard Kubo formula (SKF) [1,3]:

δρ=−i
∫ ∞
0

dte−ηt
[
V (−t) , e

−βH0

Z

]
, (4)

where V (t) = eiH0tV e−iH0t. We can use the identity
[V (−t), e−βH0 ] =−ie−βH0 ∫ β

0
dτ V̇ (−t− iτ) to rewrite

δρ=−
∫ ∞
0

dte−ηt
∫ β
0

dτρ0V̇ (−t− iτ) . (5)

In terms of the eigenvectors of H0, 〈m|V̇ (t) |n〉=
i (εm− εn)Vmnei(εm−εn)t leading to:

δρ=
∑
m,n
εm �=εn

e−βεm − e−βεn
Z

Vmn

εm− εn− iη |m〉〈n| . (6)

Incidentally, note that there is no contribution from
states with εn = εm, for which 〈m|V̇ (t) |n〉= 0. This also
follows directly from eq. (4); if we write V = V0+V⊥,
where V0 =

∑
εm=εn

Vmn |m 〉〈n| commutes with H0, then
[V (−t), ρ0] = [V⊥(−t), ρ0]. The “diagonal” part V0 of V
does not contribute to δρ and thus to transport properties.
We return to this important point below.
However, first we prove our claim that the resulting ρ̃=
ρeq(H0)+ δρ is the first-order perturbational expansion of
ρeq(H), not of a NESS. We assume 〈m|V |n〉= 0 if εm = εn.
If it is not, we simply remove the “diagonal” part V0 =∑
εm=εn

Vmn |m 〉〈n| from V and add it to H0. Consider
then the eigenstates of the full Hamiltonian, H|ñ〉= ε̃n|ñ〉,
to first-order perturbation in V . Since 〈m|V |n〉= 0 for
all εm = εn, we can apply perturbation theory for non-
degenerate states to all the states, whether degenerate or
not, to find ε̃n = εn+O

(
V 2
)
and

|ñ〉= |n〉+
∑

m,εm �=εn

〈m|V |n〉
εn− εm |m〉+O

(
V 2
)
. (7)
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This leads to ρeq (H) =
∑
n
1
Z̃
e−βε̃n |ñ〉〈ñ|= ρeq(H0)+

δρ+O(V 2), where δρ is given by eq. (6).
This verifies that indeed, the SKF predicts ρ∞→
ρeq(H). This is rather problematic because normally, if
invariance to time reversal symmetry is not broken, no
currents are generated in a thermal equilibrium state and
therefore no steady-state transport through the closed
finite system can be described by this approach. However,
because we only keep the first-order perturbational correc-
tion, the situation is less clear cut. In principle, it is not
impossible for δρ of eq. (6) to also be a first-order approx-
imation to the true NESS, ρ∞− ρeq(H0), as well, or at
least to capture a sizable part from it. This issue needs to
be investigated in more detail.
Before doing so, however, we point to an even more

serious problem with the SKF as used in literature, for
example for the Drude weight of eq. (1), and which is
only naturally resolved for infinite systems or for finite-
size systems with periodic boundary conditions. A cursory
comparison of eqs. (1) and (6) shows that while the
former has contributions only from degenerate states with
εn = εm, the latter has no contributions from such states.
To understand the reason for this difference, consider

the derivation of eq. (1) from eq. (5), e.g. for spinless
fermions in a one-dimensional chain (lattice constant a=
1), described by

H0 =−t
∑
l

(
c†l cl+1+h.c.

)
+V0

∑
l

nlnl+1, (8)

where nl = c
†
l cl, plus a static electric potential

V =
∑
l

Vlnl (9)

induced by a homogeneous electric field E =−∇V . From
the continuity equation,

V̇ (t) =
∑
l

Vl
d

dt
nl(t) =−

∑
l

Vl[Jl+1(t)−Jl(t)], (10)

where Jl = it(c
+
l+1cl− c+l cl+1) is the local current operator.

This can be changed to

−
∑
l

[Vl−1Jl(t)−VlJl(t)] =−EJ(t), (11)

where J(t) =
∑
l Jl(t) is the total current operator. Using

V̇ (t) =−EJ(t) in eq. (5) gives

δρ=E

∫ ∞
0

dte−ηt
∫ β
0

dτρ0J (−t− iτ) . (12)

The dc conductivity is then

σ=

∫ ∞
0

dte−ηt
∫ β
0

dτ 〈J (−t− iτ) J〉 , (13)

where 〈O〉=Tr[ρeq(H0)O]. This expression can be further
simplified to arrive at eq. (1).

The only questionable step in this derivation, and the
one responsible for going from a result with no contribu-
tions from states with εn = εm to one with contributions
only from these states, is the change∑

l

VlJl+1(t)→
∑
l

Vl−1Jl(t). (14)

This is only justified for an infinite system (where bound-
ary terms are presumed to be negligible), or a system with
periodic boundary conditions and an external field with
the same periodicity. This latter condition can only be
achieved for a charge current in a finite system with peri-
odic boundary conditions driven by a varying magnetic
flux through the area enclosed by the system. For a
finite-size system (even one with periodic boundary condi-
tions) in a static applied electric field this approach will
certainly fail. The same is true for thermal transport,
which cannot experimentally be induced in a system with
periodic boundary conditions. In both cases, the physical
relevance of the results of eq. (1) are hard to fathom.
That the use of eq. (1) and its equivalents for finite-size

systems is problematic can also be seen from the follow-
ing technical considerations. The spectrum of a finite-
size system is always discrete. As a result, any pair of
degenerate eigenstates εm = εn gives a δ-function contri-
bution to the response functions. Such a singular response
is unphysical for finite-size systems. Various techniques
have been proposed to smooth out these singular contri-
butions in order to extract some finite values, such as use
of imaginary frequencies [20] or averaging σ over a small
range of frequencies δω and then taking δω→ 0 [21]. These
different approaches may lead to different results. More-
over, the order in which the various limits are approached,
e.g., taking η→ 0 before N →∞ or vice versa, also make
a difference [21]. All of these subtleties of the SKF are
related to the potential divergence whenever εm = εn.
To summarize, using the SKF for finite-size systems is

fraught with both conceptual and technical problems. We
conclude that in order to describe a NESS with a steady-
state current flow in a finite-size system, one needs to
go beyond viewing the system as a closed system, and to
explicitly consider its connection to leads/baths.

Kubo formula for open finite-size systems. –
Transport through finite-size systems coupled to baths
has been considered previously in the literature, for
example in refs. [12,15–19,22]. In particular, ref. [22]
derived a Kubo-like formula by taking into consideration
currents flowing between the system and the baths in
a stochastic manner. Here we present an alternative
deterministic formulation that explicitly considers the
effects of coupling to leads (for charge transport) or
thermal baths (for heat transport) on the state of the
system. It is based on the Redfield equation (RE) [23]
which describes the evolution of the projected density
matrix for the central system of interest. This is obtained
from the Liouville-von Neumann equation for the total
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density matrix describing the system+baths after using
the projection technique [24] to trace out the baths.
For concreteness, let us assume coupling to thermal

baths kept at temperatures TL/R = T ± ∆T2 and investi-
gate the transport in the resulting steady state. If ∆T�T ,
this will lead to a Kubo-like formula which replaces eq. (5).
This approach can be generalized straightforwardly to
derive a Kubo-like formula for charge transport.
The Redfield equation has the general form [8,10,16,24]:

∂ρ(t)

∂t
= [LH +LL(TL)+LR(TR)] ρ(t), (15)

where LHρ=−i[H, ρ], just like for an isolated system,
while LL/R are additional terms that describe the effects
of the left/right thermal baths (assumed to be in equilib-
rium at their corresponding temperatures TL/R) on the
evolution of the system. The expressions for LL/R depend
on the Hamiltonian H of the system and on its coupling
to the baths (an example is provided below).
If ∆T � T , we can Taylor expand LL/R and re-arrange

the Redfield equation to read

∂ρ(t)

∂t
= [LH0 +LB(T )+LP (∆T )] ρ(t) =Lρ(t), (16)

where LB(T ) =LR(T )+LL(T ) is the contribution from
the thermal baths if both are kept at the same temper-
ature, while LP (∆T ) collects the terms proportional to
∆T . Here we assume that H =H0, i.e. that the thermal
coupling does not induce a potential V in the system. For
charge transport such a term appears, and its Liouvillian
LV should be grouped together with LP .
We are interested in the t→∞, stationary state solution

ρ∞ of the above equation, which satisfies

Lρ∞ = 0 (17)

and which we assume to be unique for any value of ∆T .
This means that L has a non-degenerate zero eigenvalue,
and that all its other (transient) eigenvalues have a nega-
tive real part. Note that L|∆T=0 =LH0 +LB(T ) indeed
has this property. In fact, it can be shown that in this
case the t→∞ solution converges to the expected ther-
mal equilibrium for the system held at temperature T ,
ρ∞ = ρeq(H0) [24].
For small systems, eq. (17) can be solved numerically to

find this eigenstate corresponding to the zero eigenvalue.
We call this solution ρex and we use it to validate the
solutions of various approximation schemes. A Kubo-
like formula, which is potentially more efficient, can be
obtained using the linear-response theory. The first step
is to separate the Liouvillian L of eq. (16) into a “large”
plus a “small” part. There are two possible choices:{

L
(1)
0 =LH0 +LB(T ),

∆L(1) =LP (∆T ),
(18)

or {
L
(2)
0 =LH0 ,

∆L(2) =LB(T )+LP (∆T ).
(19)

We begin with the first choice. Assume that L
(1)
0 has

eigenvalues {L(1)0,µ} and left/right eigenvectors {|Lµ)},
{|Rµ)}. As discussed, the unique (zero order in pertur-
bation theory) steady-state solution of L

(1)
0 ρ0 = 0 is ρ0 =

ρeq(H0). The deviation δρ
(1)
K due to the perturbation

∆L(1) is obtained like in eq. (3):

δρ
(1)
K =

∑
µ

∫ ∞
0

dteL
(1)
0,µt−ηt |Rµ) (Lµ|∆L(1)ρ0 =

−
∑
µ

|Rµ) (Lµ|
L
(1)
0,µ− η

∆L(1)ρ0 =−
∑
µ>0

|Rµ) (Lµ|
L
(1)
0,µ

∆L(1)ρ0.

(20)

Note that the only divergent term, due to L
(1)
0,0 = 0,

disappears because (L0|∆L(1)ρ0 = (ρ0|∆L(1)ρ0 = 0. To
see why, we start from eq. (17), L(ρ0+ δρ) = 0, pro-
ject it on (ρ0| and keep terms only to the first order, to
find 0= (ρ0|(L(1)0 + ∆L(1))(ρ0+ δρ) = (ρ0|∆L(1)ρ0 since
L
(1)
0 ρ0 = 0. As a result, eq. (20) has only regular contribu-
tions. A similar approach has been suggested in ref. [12],
but for the LOLE [11] instead of the RE.
However, eq. (20) is difficult to use in practice: finding

all eigenstates of L
(1)
0 is a hard task unless the system

has an extremely small Hilbert space. A computationally
simpler solution is obtained if we combine the eigenequa-
tion Lρ∞ = 0 with the constraint Tr(ρ∞) = 1 into a regular
system of coupled equations L̄ρ̄∞ = ν , where, in matrix
terms, L̄ is defined by replacing the first row of the
equation Lρ∞ = 0 by Tr(ρ∞) = 1, so that ν is a vector
whose first element is 1, all remaining ones being 0. As a
result det

(
L̄
) 	= 0 while det(L) = 0. If solved numerically,

L̄ρ̄∞ = ν produces the expected exact solution ρex.
We can also solve it to obtain a Kubo-like formula by

dividing L̄= L̄
(1)
0 +∆L̄

(1). Again, the overbar shows that

in matrix terms, L̄
(1)
0 is obtained from L

(1)
0 by replacing

its first row with Tr(ρ∞) = 1, while ∆L̄(1) is obtained from
∆L(1) by replacing its first row with zeros. We find

δρ̄(1) =−[L̄(1)0 ]−1∆L̄(1)ρ0. (21)

This is more convenient because inverting the non-singular

matrix L̄
(1)
0 is simpler than finding all eigenstates of L

(1)
0 ,

and works for up to N ∼ 10. We have verified that both
schemes produce identical results for small N where both

can be performed. We denote ρ0+ δρ̄
(1) = ρ

(1)
∞ .

The second option is to take L
(2)
0 =LH0 and ∆L

(2) =
LB(T )+LP (∆T ). In this case, we can still choose the

stationary solution associated with L
(2)
0 to be the ther-

mal equilibrium state at T , ρ0 = ρeq(H0). However, this
solution is no longer unique, since any matrix ρ0 that

commutes with H0 satisfies L
(2)
0 ρ0 = 0. Expanding the

corresponding analogue of eq. (4) in the eigenbasis of H0,
we now find

δρ(2) =−i
∑
n,m

〈m|∆L(2)ρ0|n〉
εm− εn− iη |m〉〈n|. (22)
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We call ρ0+ δρ
(2) = ρ

(2)
∞ . This expansion can be performed

as long as all eigenstates of H0 can be found, thus this can
be applied to systems up to N ∼ 20. Note that unlike ρ(1)
of eq. (21), this solution has divergent contributions from
states with εn = εm. As such, it is analogous to the SKF
for infinite systems. This is not an accident. As discussed,
the SKF for infinite systems always ignores the coupling
to the leads. It also takes L0 =LH0 and assumes that
ρ0 = ρeq(H0). Moreover, the driving force for transport is
only the potential V added to H0, so that ∆L→LV . With
these assumptions, eq. (22) maps straightforwardly into
the SKF of eq. (6).

Results and discussion. – To see which of these
two solutions —the regular solution ρ

(1)
∞ or the singular

solution ρ
(2)
∞— gives a proper density matrix, we compare

them against the exact numerical solution ρex of eq. (17)
in the limit ∆T � T .
We do this for an N -site chain of spinless fermions

H0 =−t
N−1∑
l=1

(
c†l cl+1+ c

†
l+1cl

)
+V0

N−1∑
l=1

c†l+1cl+1c
†
l cl.

(23)
coupled to two heat baths, modeled as collections of
fermions:

HB =
∑

k,α=L,R

ωk,αb
†
k,αbk,α, (24)

where α indexes the left- and right-side baths and we set
�= 1, kB = 1, the lattice constant a= 1, and hopping t= 1.
The system-baths coupling is chosen as:

VSB = λ
∑
k,α

V αk

(
c†αbk,α+ cαb

†
k,α

)
, (25)

where the left (right) bath is coupled to the first (last)
site: cL = c1 and cR = cN . Bath parameters, including
temperature and chemical potential, are chosen to be
(TL, µ) and (TR, µ) with TL/R = T ± ∆T2 .
The corresponding Redfield equation reads [8,10,24],

∂ρ(t)

∂t
= −i[H0, ρ(t)]−λ2

∑
α=L,R

{[
c†α, m̂αρ(t)

]
+
[
cα, ˆ̄mαρ(t)

]
+h.c.

}
, (26)

where operators m̂α and ˆ̄mα are defined as

m̂α = π
∑
m,n

|m〉〈n|〈m|cα|n〉 (1−nα (Ωnm)) , (27a)

ˆ̄mα = π
∑
m,n

|m〉〈n|〈m|c†α|n〉nα (Ωmn) , (27b)

where Ωmn =Em−En =−Ωnm and nα(Ωmn) is the
Fermi-Dirac distribution at temperature Tα. We have
furthermore assumed V αk and the densities of states of
the baths to be constants and absorbed them into λ2.
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Fig. 1: (Color online) D1 (squares) and D2 (circles) of
eq. (28) vs. δ=∆T/2T , for N = 8, t= 1.0, V0 = 0.2, T = 2.0,
µ=−1.0, λ= 0.1, η= 0.00001. The upper (lower) inset shows
the steady-state particle number (electric current) calculated

with ρex (triangles) and ρ
(1,2)
∞ (squares and circles).

Equation (26) is an example of the general eq. (15).
Since TL/R enters only in the Fermi-Dirac distributions,

it is easy to expand when TL/R = T ± ∆T2 , ∆T � T to
identify LB(T ) and LP (∆T ) needed in eqs. (21) and (22).
We characterize the distance between the exact numer-

ical solution ρex and the two possible Kubo solutions ρ
(i)
∞ ,

i= 1, 2 by calculating the norm

Di =

√∑
n,m

∣∣∣〈n|ρex− ρ(i)∞ |m〉∣∣∣2. (28)

For the proper solution, this difference should be small but
finite due to higher-order perturbation terms.
Results typical of those found in all the cases we

investigated are shown for N = 8, V0 = 0.2, λ= 0.1, η=
10−5 in fig. 1, where we plot D1,2 vs. δ=∆T/2T . This
small N value is used so that we can calculate ρex
reasonably fast. We see that D2 (circles, axis on the right)
is very large. In fact, because of the singular contributions
from εn = εm states, D2 is divergent, with a magnitude
controlled by the cutoff η. In contrast, D1 (squares, left
axis) is small and independent of η. The insets show
the total number of particles (N) and electric current

(J) calculated with ρex, ρ
(1)
∞ and ρ

(2)
∞ (triangles, squares,

respectively circles). Both N1 and J1 are very close to the
exact values Nex, Jex. However, N2 is very different from
Nex while J2 is close to Jex. These results confirm that

ρ
(1)
∞ of eq. (21) is the proper perturbational solution.

They also show that ρ
(2)
∞ can also be used, but only for

quantities A for which 〈m|A|n〉= 0 whenever εm = εn, so
that the divergences in eq. (22) disappear. This explains
the previous success of this formula to be somewhat of
an accident. Note that for eq. (22) only the eigenstates of
H0 are needed, so when valid it is computationally more
efficient.
Figure 2 shows the same quantities as fig. 1, at a fixed

bias ∆T as a function of the strength of the system-bath
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Fig. 2: (Color online) D1 (squares) and D2 (circles) of
eq. (28) vs. λ, for N = 8, t= 1.0, V0 = 0.2, T = 2.0, µ=−1.0,
δ= 0.1, η= 0.00001. The upper (lower) inset shows the steady-
state particle number (electric current) calculated with ρex

(triangles) and ρ
(1,2)
K (squares and circles).

coupling λ. It confirms again that ρ
(1)
∞ is the proper

approximation of ρex, but that for the charge current ρ
(2)
∞

works well too. It also shows that the NESSs depend
on coupling strength λ. This is not surprising for a
finite-size system: the intrinsic conductance of the system
is added to comparable “contact” contributions from
the interfaces between the system and the baths, and
experiments measure the total conductance. It follows that
quantitative modeling of transport in finite systems will
require a careful consideration of the entire experimental
set-up.

Conclusion. – In summary, we demonstrated that the
SKF fails to provide an approximation of NESSs. Instead
it gives the first-order correction to the equilibrium state
corresponding to the full Hamiltonian. Moreover, applying
the standard Kubo formula to finite systems generically
leads to unphysical divergences. We then showed that
taking explicitly into consideration the coupling to baths
solves both problems and leads to a well-behaved Kubo-
like formula, that can be used on systems with up to
N ∼ 10. This is still a very low value, therefore more
efficient methods like those of ref. [15] need to be extended
to the RE equation. Some progress in that direction has
recently been reported in ref. [25]. Finally, we argued
that the more numerically efficient but improper solution
similar to those used in literature can give correct values
for up to N ∼ 20, but only for certain physical quantities.
While elements of this work have similarities with work

published elsewhere —for example a similar formula to
our OKF has already been proposed for the LOLE [12],
and discussions about differences between SKF and LOLE
results are pursued in refs. [14,17–19]— to our knowledge
this is the first time when it is shown explicitly why the
SKF does not work for finite-size systems. Using methods

which explicitly consider the coupling to baths is thus no
longer just a possible alternative, but a necessary step
when dealing with transport through small open quantum
systems.
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