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Abstract. Non-equilibrium stationary states are solved from the equation
of motion of open systems via a Bogoliubov–Born–Green–Kirkwood–Yvon
(BBGKY)-like hierarchy. As an example, we demonstrate this approach for
the Redfield equation, which is derived from the whole dynamic equation
of motion of a central system coupled to two baths through the projector
technique. Generalization to other equations of motion is straightforward. For
non-interacting central systems, the first equation out of the hierarchy is closed,
whereas for interacting systems it is coupled to higher-order equations in the
hierarchy. In the case of interacting systems, two systematic approximations,
in the form of perturbation theories, are proposed to truncate and solve the
hierarchy. A non-equilibrium Wick’s theorem is proved to provide a basis for
the perturbation theories. As a test of reliability of the proposed methods, we
apply them to small systems, where it is also possible to apply other exact direct
methods. Consistent results were found.
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1. Introduction

A dynamic equation, such as Newton’s equation or Schrödinger’s equation, describes only
dynamical processes and, strictly speaking, does not describe evolution towards thermal
equilibrium or non-equilibrium stationary states (NESSs). Sometimes, however, it is used to
do so together with a presumed thermal equilibrium distribution, such as in the derivation
of the Kubo formula of linear response theory [1]. Starting from the dynamic equation
and its corresponding Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy [2],
the uniqueness of a stationary solution at thermal equilibrium, in particular the Boltzmann
distribution, remains an assumption but not a proved theorem [2]. The Redfield equation [3],
on the other hand, puts the description of dynamical evolution, thermal evolution towards the
equilibrium state and evolution towards NESSs under a common framework, although it may
show an unphysical transient process due to the use of the Markov approximation.

The Redfield equation has long been a standard tool in the study of relaxation processes in
the theory of nuclear magnetic resonance [4], optical spectroscopy and chemical dynamical
systems [5]. Due to the fact that usually in those studies the central system of interest is
modeled by a Hamiltonian with a very low dimension, the lack of an efficient algorithm to
solve the Redfield equation, other than direct diagonalization, direct integration and other direct
methods based on various propagators [6], is not a serious problem. However, when the Redfield
equation is applied to transport calculations, the size of the system is usually much larger. It is
then necessary to have a more efficient way to find the NESSs, without which many physical
questions remain unanswered.

A famous example is the validity of the phenomenological law of transport. Advancement
in science and technology has made it possible to build nanoscale electronic devices [7], where
classical phenomenological laws of transport, such as Fourier’s law and Ohm’s law, may not be
valid any more [7]. In order to construct a theory of transport for mesoscopic or microscopic
systems, and also to check under what circumstances those phenomenological laws hold, one
may start from first principles, i.e. the dynamic equation of classical or quantum systems, and
add in as few extra assumptions as possible. The Landauer formula [8] makes use of scattering
waves from Schrödinger’s equation, but a biased distribution of those waves is assumed to
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calculate physical quantities. The non-equilibrium Green’s function (NEGF) method starts from
two decoupled systems each at their own thermal equilibrium states, which could be very far
from the expected NESSs, and treats coupling between the two systems perturbatively [9]. For
interacting systems, usually NEGF is used together with the density functional method [10],
from which the whole spectrum and corresponding effective wavefunctions are calculated
to construct the non-equilibrium density matrix. Both the perturbation and the effective
wavefunctions introduce further approximations to the calculation.

The Redfield equation approach to studying transport phenomena is to explicitly couple
the system of interest, HS, to reservoirs and then use the projector technique [11] to derive
an effective equation of motion for the system. One then solves this Redfield equation to
get NESSs. The Redfield equation requires validity of the Markovian approximation and
treats the coupling between the system and reservoirs within second-order perturbation. This
generalization of the Redfield equation to transport studies was first implemented by Saito
et al [12] and more or less followed by others [13]–[15]. In such cases, one quite often expects
to deal with systems with size N ≈ 100 in order to be comparable to other methods, such as the
Landauer formula and NEGF [7]. This then leads to a Hilbert space with dimension 2100, when
we, for example, consider an N -site chain of spinless fermions with N = 100, meaning a matrix
with dimension 4100 in the corresponding Redfield equation. Due to this exponential increase
of the problem size and the lack of a more efficient alternative method, currently one can only
discuss physical behaviors of very small systems with N ≈ 10 [13, 14]. Other propagator-based
direct methods [6] make it possible to analyze only slightly larger systems. Conclusions drawn
from numerical results for such small systems are not regarded as reliable enough. In this work,
we will present a new approach, using the idea of a BBGKY hierarchy to study this kinetic
equation. This allows us to develop very efficient and systematic approximate methods to find
NESSs. In fact, besides these direct methods, the stochastic wave function method [16] has been
generalized and used to solve the Redfield equation [17]. Such stochastic methods are capable
of dealing with slightly larger systems, say N of around 20. It will be an interesting topic of
future work to compare the performance of our method against the stochastic methods.

A general Redfield equation can be cast into the following form [13],

∂ρ(t)

∂t
= L HSρ(t) + LVinρ(t) + λ2LB(T, µ)ρ(t) + λ2LP(1T, 1µ)ρ(t) ≡ Lρ(t), (1)

where L HSρ = −i[H S, ρ] is the Hamiltonian of the central system. Sometimes we also use
HS = H0 + V to separate HS into a non-interacting part H0 and an interaction V . Finally,
LV inρ = −i[V in, ρ], where Vin is a possible induced potential; for example, the electric potential
due to charge distribution in the case of charge transport. LB(T, µ) comes from coupling to
baths with coupling strength λ, and LP(1T, δµ) exists when baths have different temperatures
and/or chemical potentials. This equation describes a dynamical process when λ = 0, thermal
relaxation towards equilibrium when λ 6= 0, 1T = 0, 1µ = 0 and evolution towards NESSs
when they are all non-zero.

If we are interested in the long-time steady-state solution ρ∞, then

Lρ∞ = 0, (2)

which is sometimes called a stationary Redfield equation. Here, L is a matrix with dimension d2,
where d is the dimension of the system’s Hilbert space; for example, d = 2N for the N -site chain
of spinless fermions mentioned above. Solving this equation is very costly computationally.
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It involves solving a linear system [13] or an eigenvalue system [15] with dimension 4N plus
an eigenvalue system with dimension 2N . Currently, for interacting central systems, one can
usually only solve the Redfield equation numerically up to N = 10 [13]–[15], whereas for
non-interacting systems, the equation with Nequal to about 100 can be solved in terms of
single-particle Green’s functions (GFs) [12]. For example, for non-interacting systems, in [12],
a closed equation of single-particle GFs, G1(k†, k ′) ≡ 〈c†

kck′〉 = tr(c†
kck′ρ∞), was derived from

the stationary Redfield equation (2) and solved.
Our idea is basically to extend this GF-based solution of the Redfield equation for

non-interacting systems to interacting systems. We consider G1(m†, m ′), GFs in the lattice
basis, and derive an equation for these GFs. In the presence of interaction, the single-
particle GFs G1(m†, m ′), generally denoted as G1, will be coupled to the two-particle GFs
G2(m†, n†, m ′, n′) ≡ 〈c†

mc†
ncm′cn′〉, also generally denoted as G2, which are then coupled to

three-particle GFs, G3(l†, m†, n†, l ′, m ′, n′) ≡ 〈c†
l c†

mc†
ncl ′cm′cn′〉, also generally denoted as G3

and so on. We arrive at a BBGKY-like equation hierarchy [2].
In principle, solving the whole hierarchy is as hard as solving the Redfield equation

directly. The hierarchy has to be truncated first and then solved. In the rest of this paper, after
deriving the hierarchy from the Redfield equation, we will then present two such methods. In the
example calculations, we will only truncate the hierarchy at the first equation of the hierarchy.
The first method substitutes the value of G2 at equilibrium for the unknown G2 appearing in the
first equation, whereas the second expresses G2 as combinations of G1 via cluster expansion.
After either method, the equation is closed and then solved. We will see in the following that
both methods are significantly more efficient than the direct methods. The first is capable of
dealing with relatively small systems but with large interaction strength, whereas the second
can deal with much larger systems but with relatively small interaction strength.

2. Derivation of a Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)-like hierarchy

For concreteness in presenting our general formulation, let us start with a Redfield equation
describing an N -site chain of spinless fermions coupled with two fermionic baths. Our system
of interest is defined by HS,

HS = −t
N−1∑
l=1

(c†
l cl+1 + c†

l+1cl) + V0

N−1∑
l=1

c†
l+1cl+1c†

l cl = H0 + Vs. (3)

The two heat baths are collections of fermionic modes,

HB =

∑
k,α

ωk,αb†
k,αbk,α, (4)

where α = L, R indexes the left- and right-side baths and we set h̄ = 1, kB = 1, the lattice
constant a = 1 and the hopping constant t = 1. The system–baths coupling is chosen as

V = λ
∑
k,α

V α
k (c†

αbk,α + cαb†
k,α), (5)

where the left (right) bath is coupled to the first (last) site: cL = c1 and cR = cN and so on.
Bath parameters, including temperature and chemical potential, are chosen to be (TL, µ) and
(TR, µ) with TL/R = T ±

1T
2 . In the present work, the induced LV in term in equation (1) is

neglected.
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The corresponding Redfield equation reads [11, 13]

∂ρ(t)

∂t
= −i[HS, ρ(t)] − λ2

∑
α=L,R

{[c†
α, m̂αρ(t)] + [cα, ˆ̄mαρ(t)] + h.c.}, (6)

where m̂L(m̂R) is related to c1(cN ) and ˆ̄mL( ˆ̄mR) is related to c†
1(c†

N ) [11],

m̂α =

∑
k

|V α
k |

2

∫
∞

0
dτcα(−τ)e−iωk,ατ

〈1 − n(ωk,α)〉, (7a)

ˆ̄mα =

∑
k

|V α
k |

2

∫
∞

0
dτc†

α(−τ)eiωk,ατ
〈n(ωk,α)〉. (7b)

Here, n(ωk,α) = (eβα(ωk,α−µα) + 1)−1 is the Fermi–Dirac distribution with the bath temperature
Tα = 1/βα and chemical potential µα. If U (t) = e−iHSt is known, then so is cα(t) = U †(t)cαU (t)
and therefore the operators m̂. This requires a full diagonalization of HS. Using eigenvectors of
HS, one can perform the above integrals to get the operator m̂s. More details are included in
appendix A. There we will also see that a change of variable between summation over k and
integration over energy in equation (7) involves the density of states of the baths Dα(ω). We
combine this density of states together with the coupling constant V α

k , and set Dα(�mn)|V α
kmn

|
2

as an overall constant, which is included in λ2 (see appendix A for more details).
When only a long-time steady-state solution ρ∞ is of interest, we may derive a stationary

form, equation (2), from the kinetic Redfield equation. Furthermore, from equation (2), for a
physical quantity of the central system with operator A, we generally have

0 = i〈[A, H0]〉 + i〈[A, V ]〉 + λ2
∑

α

{〈[A, c†
α]m̂α〉 + 〈[A, cα] ˆ̄mα〉 − 〈m̂†

α[A, cα]〉 − 〈 ˆ̄m
†

α[A, c†
α]〉},

(8)

where m̂†
α( ˆ̄m

†

α) is the Hermitian conjugate of m̂α( ˆ̄mα). All equations of GFs in the rest of this
paper will be derived from this equation. For example, the first and second equation of the
hierarchy can be derived by using A = c†

mcn and A = c†
mc†

ncm′cn′ in equation (8),

0 = it
〈
c†

m−1cn

〉
+ it

〈
c†

m+1cn

〉
− it

〈
c†

mcn+1

〉
− it

〈
c†

mcn−1

〉
(9a)

−iV0

〈
c†

mc†
n−1cncn−1

〉
+ iV0

〈
c†

m+1c†
mcm+1cn

〉
− iV0

〈
c†

n+1c†
mcn+1cn

〉
+ iV0

〈
c†

mc†
m−1cncm−1

〉
(9b)

−λ2
∑

α

〈
δmαcn ˆ̄mα + δnα

ˆ̄m
†

αc†
m − δnαc†

mm̂α − δmαm̂†
αcn

〉
(9c)

and

0 = it
〈
c†

mc†
ncm′cn′+1

〉
+ it

〈
c†

mc†
ncm′cn′−1

〉
+ it

〈
c†

mc†
ncm′+1cn′

〉
+ it

〈
c†

mc†
ncm′−1cn′

〉
−it

〈
c†

mc†
n−1cm′cn′

〉
− it

〈
c†

mc†
n+1cm′cn′

〉
− it

〈
c†

m−1c†
ncm′cn′

〉
− it

〈
c†

m+1c†
ncm′cn′

〉
+iV0

〈
c†

mc†
ncm′cn′

〉 (
δm′+1,n′ + δm′−1,n′ − δm+1,n − δm−1,n

)
(10a)

−iV0

∑
l=m±1,n±1

〈
c†

l c†
mc†

nclcm′cn′

〉
+ iV0

∑
l=m′±1,n′±1

〈
c†

l c†
mc†

nclcm′cn′

〉
(10b)
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−λ2
∑

α

〈
δm′αc†

mc†
ncn′m̂α − δn′αc†

mc†
ncm′m̂α + δmαc†

ncm′cn′ ˆ̄mα − δnαc†
mcm′cn′ ˆ̄mα

〉
−λ2

∑
α

〈
δn′α

ˆ̄m
†

αc†
mc†

ncm′ − δm′α
ˆ̄m

†

αc†
mc†

ncn′ + δnαm̂†
αc†

mcm′cn′ − δmαm̂†
αc†

ncm′cn′

〉
.

(10c)

Note that since the set of all polynomials of {cl, c†
l } form a complete basis of the operator

space, operators m̂ are certain functions of polynomials of {cl, c†
l }. Therefore, as expected, G1

is coupled to G2 from equation (9b), and possibly also G3 or higher GFs from equation (9c),
and G2 is coupled to G3 from equation (10b), and possibly also G4 or higher GFs from
equation (10c). Solving such an equation hierarchy is not easier than directly solving the
Redfield equation, unless V0 = 0, so that the above equation of G1 is closed and is not coupled
to G2.

We may, however, solve these equations by truncating the hierarchy at a certain order
with some further approximations, such as the molecular-chaos assumption in the classical
Boltzmann equation [11], or replacing high-order GFs by cluster expansion of lower-order
ones [18, 19]. In this work, we suggest the following two approximate methods: (i) substitution
of certain high-order GFs by their values at equilibrium; and (ii) expression of high-order GFs as
combinations of lower-order ones plus a correlation part via cluster expansion and then ignoring
the correlation part at a certain order. Specifically in the following example calculation, the
first-order form of both approximations (i.e. only the first equation of the hierarchy) is used
and substitution or cluster expansion is performed on G2. One can do such a substitution or
cluster expansion of GFs at further-order GFs and make use of further equations in the hierarchy.
A general discussion of the accuracy of such substitutions at different orders will be presented
elsewhere. In this work, we focus on the potential of this BBGKY-like formulation and discuss
briefly the topic of performance of the two approximations in their first-order forms.

3. Solving the hierarchy

In order to solve equation (9) explicitly, we will first have to find explicit forms of operators m̂ in
terms of operator {cl, c†

l }. In the following, we will present one exact numerical calculation and
one perturbative calculation of those operators. Correspondingly, based on these two methods
of finding operators m̂, we will discuss in this section two ways of making equation (9) a closed
equation by dealing with G2 terms in the equation differently.

We will first discuss a more accurate method, even for a large V0, but computationally
costly: perturbation based on two-particle GFs at equilibrium. Next we will discuss a relatively
less accurate but computationally much cheaper method, the non-equilibrium cluster expansion.
The latter works only for relatively small V0, but it can be applied to much larger systems. The
unknown G1(m†, n) solved from both methods will be compared against GEx

1 (m†, n), the exact
solution of equation (2). A measure of the relative distance between two matrices A and B,

d A
B =

√∑
i j |Ai j − Bi j |

2√∑
i j |Bi j |

2
, (11)

is used to describe the accuracy of our approximations.
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3.1. Method 1: starting from equilibrium states

As explicitly worked out in equation (A.2) in appendix A, operators m̂ can be written in
eigenmodes of HS, which can be solved from an exact diagonalization of HS, a 2N -dimension
eigenvalue problem. Then in the language of super-operator space [15], where operators are
treated like vectors (so-called super-vectors), super-vectors m̂ can be expanded on the basis of
polynomials of {cl, c†

l },

m̂α =

∑
l

dα;lcl + V0 Dα, (12a)

ˆ̄mα =

∑
l

d̄α;lc
†
l + V0 D̄α. (12b)

Here we keep only the linear polynomial in the present work, although further expansion is
possible. Using the definition of the inner product between super-vectors 〈〈A|B〉〉 = tr(A† B),
we have

dα;l =
1

2(N−1)
tr(c†

l m̂α), (13a)

d̄α;l =
1

2(N−1)
tr(cl ˆ̄mα), (13b)

and operators V0 D and V0 D̄ are just the remaining part of operators m̂ and ˆ̄m, respectively.
Here, 2N−1 is a normalization constant to make dα,l = 1 when m̂α = cl .

With the above expressions for operators m̂, equation (9) becomes

0 = it〈c†
m−1cn〉 + it〈c†

m+1cn〉 − it〈c†
mcn+1〉 − it〈c†

mcn−1〉

+λ2
∑
l,α

〈δnα(dα;l + d̄
∗

α;l)c
†
mcl + δmα(d̄α;l + d∗

α;l)c
†
l cn〉 (14a)

−λ2
∑

α

[δmαd̄α;n + δnαd̄
∗

α;m] (14b)

−iV0

〈
c†

mc†
n−1cncn−1

〉
+ iV0

〈
c†

m+1c†
mcm+1cn

〉
− iV0

〈
c†

n+1c†
mcn+1cn

〉
+ iV0

〈
c†

mc†
m−1cncm−1

〉
(14c)

−λ2V0

∑
α

〈δmαcn D̄α + δnα D̄†
αc†

m − δnαc†
m Dα − δmα D†

αcn〉. (14d)

Note that every c0, c†
0, cN+1 and c†

N+1 that appears in the equation should be recognized as 0.
First, let us replace all G2s in equation (14c) by their values at equilibrium, denoted here
as G E,(0)

2 where the superscripts indicate the usage of thermal equilibrium (denoted by
superscript E) as the zeroth-order approximation (denoted by (0)) of the non-equilibrium G2.
Using the first term as an example,

G E,(0)

2 (m†, n) = tr (c†
mc†

n−1cncn−1ρeq (HS)), (15)

where ρeq(HS) =
1
Z e−HS/T . This requires eigenstates of HS. Similarly, one can define G E,(0)

D from
equation (14d), using the first term as an example,

G E,(0)

D (m†, n) = δmαtr(cn D̄αρeq(HS)). (16)
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Next, let us calculate G E,(1)

1 from equation (14), where the superscript (1) means that the
approximate calculation takes care of the first equation of the hierarchy, equation (14). We
organize all G E,(1)

1 (m†, n) as a vector,

gE,(1)

1 = [G1(1
†, 1), G1(1

†, 2), · · · , G1(N †, N )]T, (17)

then equation (14) for given values of m, n is the equation occupying the (m N + n)th row
and totally there are N 2 such equations. After substituting G E,(0)

2 and G E,(0)

D for the exact but
unknown G2 and G D, the whole set of equation (14) for all m, n then becomes a linear system
on gE,(1)

1 with dimension N 2,

0(1)gE,(1)

1 = iV0gE,(0)

2 + λ2ν + λ2V0gE,(0)

D , (18)

where the vector ν comes from ordering equation (14b) in the same way as gE,(1)

1 . The same
holds for gE,(0)

2 and gE,(0)

D correspondingly from ordering equations (14c) and (14d), and from
equation (14a) one gets the matrix 0(1). For example, assuming m and n are not at boundaries,
one may write from equation (14)

νm N+n =

∑
α

[δmαd̄α;n + δnαd̄
∗

α;m], (19a)

0
(1)

(m N+n),((m−1)N+n) = it. (19b)

Next, we calculate single-particle equilibrium GFs, G E,(0)

1 , and organize it in the same way
into a vector denoted as gE,(0)

1 . In order to set a reference of the accuracy, we compare
d E,(0), the difference between the exact solution gEx

1 and the zeroth order gE,(0)

1 , and d E,(1),
the difference between the exact solution gEx

1 and the first order solution above, gE,(1)

1 . Here,
GEx(m†, n) = tr(c†

mcnρ∞), where ρ∞ is the exact solution from equation (2).

3.1.1. Results. Firstly, we set V0 = 0.2 as a constant, and check the accuracy of gE,(1)

1 with
different values of 1T . From figure 1(a), we can see that the worst case is about d (1)

= 1%.
Secondly, we set 1T = 0.4T as a constant, and check the accuracy of gE,(1)

1 with different
values of V0. The worst case is d (1)

= 0.3%, as shown in figure 1(b). Overall, d E,(1) is always
much smaller than d E,(0). J E,(0), J E,(1) and J Ex are calculated, respectively, from gE,(0)

1 , gE,(1)

1
and gEx

1 . From figure 1(c) and (d) we see that in both cases, J E,(1) is very close to the exact,
J Ex, while J E,(0), the current in the equilibrium state, is always zero. Very high accuracy is
found, especially for small 1T . This indicates that the approximation captures the essential
part of the NESSs. It is also worth mentioning that this method generates reasonable results
for very large V0. Furthermore, it is likely that the approximation could be improved: from
further expansions in terms of higher-order polynomials of cl, c†

l and substitution of their values
at equilibrium for the higher-order unknown GFs in higher-order equations of the hierarchy.
Stopping the expansion of operators m̂ at linear order of V0 is compatible with solving only the
first equation of the hierarchy. If further equations of the hierarchy are used, then one should
also expand operators m̂ in further orders of V0.

In order to estimate the accuracy of the first-order form of this approximation, and also
to get an overview of the accuracy of possibly the next order, let us study the leading order
of residues in terms of λ2 and 1T

T , which are assumed to be small in the following. Hence
λ2V0 � V0; therefore we know that gD is relatively smaller than the other g2 term, so we drop
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Figure 1. gE,(1)

1 is compared with gEx
1 for interacting systems at non-equilibrium.

(a) V = 0.2, d E,(1)is compared with the reference d E,(0) for different values of
1T . With larger 1T , d (1) becomes larger but is still much smaller than d E,(0).
(b) 1T = 0.4T ; accuracy was checked for different values of V0. In the worst
cases shown in the plot, d (1) is about 0.3%, where V0 = 2t is a relatively large
strength of interaction. Electrical currents J E,(0), J E,(1) are compared against J Ex

in (c) and (d). We see that J E,(0) is zero while J E,(1) is close to J Ex for
even relatively large V0. In all these example calculations, t = 1.0, λ = 0.1 and
µ = −1.0.

it. This in fact requires λ2V0 � T , which we assume to be true. Similarly, for the same reason,
since λ21T � 1T , we drop the λ21T term in λ2ν in equation (18),

λ2ν = λ2ν0 (T ) + λ21T ν,T , (20)
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and keep only the major term, λ2ν0(T ), which is independent of 1T . Here, ν,T denotes formally
a derivative of T on ν. The general idea is then to write down, respectively, equations for gEx

1

and gE,(1)

1 , and then compare the two equations to estimate 1
E,(1)

1 = gE,(1)

1 − gEx
1 . In order to get

some information about how such an approximation at the next order improves the accuracy, we
also want to compare 1

E,(1)

1 to 1
E,(0)

1 = gE,(0)

1 − gEx
1 , which is estimated in the same way from

the difference between the equations, respectively, for gEx
1 and gE,(0)

1 . See appendix C for further
details of those equations and the estimation. Here we summarize the results that

1
E,(0)

1 = 1T (0
(1)

0 )−10
(1)

,T gEx
1 + iV0(0

(1)

0 )−11
E,(0)

2 (21)

and

1
E,(1)

1 = (0
(1)

0 )−1[−V 2
0 (0

(2)

0 )−11
E,(0)

3 + iV01T (0
(2)

0 )−10
(2)

,T gEx
2 + iV0λ

2(0
(2)

0 )−11
E,(0)

1 ].

(22)

Here, 1E,(0)
n = gE,(0)

n − gEx
n and 1E,(1)

n = gE,(1)
n − gEx

n . We refer the readers to appendix C for
definitions of all 0 matrices. Most importantly, here we see that 1

E,(0)

1 is multiplied by a small
number λ2V0 and then becomes a part of 1

E,(1)

1 . Furthermore, this relation holds generally for
higher-order forms of this approximation. Judging from this term, as long as λ2V0 is a small
number compared with t , the method under consideration is very reasonable. As for the other
two additional terms, they can be regarded as (V 2

0 gEx
3 + V0gEx

2 )1T . Therefore, the limit of V0
t

where this method is still applicable goes as |gEx
2 |

−1 or |gEx
3 |

−1/2, which could be much larger
than 1 since roughly |gEx

n | = |gEx
|
n—smaller for larger n. This explains why, as we see from

figure 1, this method is applicable even for V0 larger than t . We have also tested several systems
with larger N (up to N = 8) and no qualitative difference in accuracy has been found. More
details and a more systematic analysis will be presented elsewhere.

3.2. Method 2: non-equilibrium cluster expansion

Another way to make equation (9) a closed equation is to use cluster expansion. In the case of
equilibrium GFs, it proposes, for example, at the level of two-particle GFs,

G2(m
†, n†, m ′, n′) = −G1(m

†, m ′)G1(n
†, n′) + G1(m

†, n′)G1(n
†, m ′) +G2(m

†, n†, m ′, n′),

(23a)

and then sets

G2 = 0. (24)

It can be applied to higher-order GFs, for example, by a similar expansion on G3 and setting
G3 = 0. The fact that the equilibrium Wick’s theorem shows that indeed G2 = 0 when V0 = 0
makes this expansion plausible for equilibrium GFs. Here, in the case of NEGFs, we are
going to propose the same expansion, and this requires a non-equilibrium Wick’s theorem
to be true so that G2 = 0 when V0 = 0 holds for NEGFs. Fortunately, this can be proved
(see appendix B for complete details). Setting G2 = 0 with V0 6= 0 is similar to using the
Hartree–Fock approximation, so that, depending on the system and the physical problem under
investigation, one may quite often need to go beyond that to the next level of approximation,
i.e. keeping G2 but ignoring G3, and truncating the equation hierarchy at the second equation
instead of the first equation. In this work, we will use the first-level approximation, i.e.
ignoring G2.
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However, with operators D defined in the previous section, cluster expansion cannot be
applied; instead we have to expand operators m̂ in higher-order polynomials of {cl, c†

l }. This
can be done as follows. Other than the exact direct diagonalization, operators m̂ can also be
found perturbatively analytically (see appendix A for full details). The basic idea is to start by
assuming

cl(t) = c(0)

l (t) + V0c(1)

l (t) + O(V 2
0 ), (25)

and then to derive and solve the equations of motion of c(0)

l , c(1)

l from Heisenberg’s equation. In
this way, one avoids the direct diagonalization of HS so that it simplifies the calculation, but its
accuracy depends on the order of V0 at which the expansion stops. Stopping at the linear order
of V0 is compatible with the cluster expansion at G2. If cluster expansion at higher-order GFs is
applied, then operators m̂ should also be expanded in higher orders of V0. Keeping only the first
order, operators m̂ become

m̂α =

∑
m

Dα;mcm + V0

∑
m1m2m3

Dα;m1m2m3cm1c
†
m2

cm3 + O(V 2
0 ), (26a)

ˆ̄mα =

∑
m

D̄α;mc†
m − V0

∑
m1m2m3

Dα;m1m2m3c
†
m3

cm2c
†
m1

+ O(V 2
0 ), (26b)

where definitions of Dα;m and Dα;m1m2m3 are given in appendix A.
With the first-order cluster expansion and the above expansion of operators m̂ plugged into

equation (9), we have

0 = itG1(m − 1; n) + itG1(m + 1; n) − itG1(m; n + 1) − itG1(m; n − 1)

+λ2
∑
l,α

[δnα(Dα;l + D̄∗

α;l)G1(m; l) + δmα(D̄α;l +D∗

α;l)G1(l; n)] (27a)

+λ2V0

∑
α,m1,m2

(Dα;nm2m1 −Dα;m1m2n)G1(m1, m2)δmα

+λ2V0

∑
α,m1,m2

(Dα;mm2m1 −Dα;m1m2m)G1(m2, m1)δnα (27b)

−λ2
∑

α

(δmαD̄α;n + δnαD̄
∗

α;m) (27c)

+λ2V0

∑
α,m1

(Dα;m1m1nδmα +Dα;m1m1mδnα) (27d)

−iV0G1(m; n − 1)G1(n − 1; n) + iV0G1(m; n)G1(n − 1; n − 1)

−iV0G1(m + 1; m + 1)G1(m; n) + iV0G1(m + 1; n)G1(m; m + 1)

−iV0G1(n + 1; n)G1(m; n + 1) + iV0G1(n + 1; n + 1)G1(m; n)

−iV0G1(m; n)G1(m − 1; m − 1) + iV0G1(m; m − 1)G1(m − 1; n). (27e)

Next we define a vector gC,(1)

1 , where superscript C means cluster expansion and (1) symbolizes
keeping only the first equation in the hierarchy, similarly to gE,(1)

1 . For simplicity of expressions,
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let us order equation (27e) in the same way and denote it as gC,(1)

2 = 5(gC,(1)

1 ), where 5 refers
to the nonlinear function—summation of product—of gC,(1)

1 in equation (27e). Then the above
equation can be denoted as

(0
(1)

0 + λ2V00
(1)

D )gC,(1)

1 = λ2ν0 + λ2V0ν1 + iV0gC,(1)

2 , (28)

where the five terms are, respectively, the five subequations in equation (27); for example,

(ν0)m N+n =

∑
α

(δmαD̄α;n + δnαD̄
∗

α;m). (29)

This equation can be solved iteratively,

g(n+1)

1 = (0
(1)

0 + λ2V00
(1)

D )−1(λ2ν0 + λ2V0ν1 + iV05(g(n)

1 )), g(0)

1 = (0
(1)

0 )−1λ2ν0, (30)

where we start from g(0)

1 = gC,(0)

1 , which is the exact solution of equation (28) when V0 = 0.
Through the iteration defined above, we get the solution gC,(1)

1 = limn→∞g(n)

1 , which in practice
stops at large enough n such that g(n)

1 − g(n−1)

1 is small enough.

3.2.1. Results. In a similar manner, we define 1
C,(0)

1 (dC,(0)) as the absolute (relative) distance
between gC,(0)

1 and gEx
1 , and 1

C,(1)

1 (dC,(1)) as the absolute (relative) distance between gC,(1)

1

and gEx
1 . Firstly, we set V0 = 0.2 as a constant, and check the accuracy of gC,(1)

1 with different
values of 1T . From figure 2(a) we can see that the worst case is around d (1)

= 1%. Secondly,
we set 1T = 0.4T as a constant, and check the accuracy of gC,(1)

1 with different values of V0.
The worst case is around d (1)

= 2%, as shown in figure 2(b). Overall, dC,(1) is always much
smaller than dC,(0). From figure 2(c), we see that for a small V0, J C,(0) already provides a
major contribution. However, in figure 2(d) when V0 becomes larger, the difference between
J C,(1) and J C,(0) becomes more important. We should also note that for larger V0, J C,(1) starts
to deviate from J Ex. This indicates that the approximation captures the essential part of the
interaction, but it is more accurate for small V0. Furthermore, it is likely that the approximation
could be improved: by keepingG2 but ignoring correlations in higher-order GFs and calculating
perturbatively further terms in V0 in operators m̂.

In order to estimate the accuracy of this approximation, let us assume that λ2 and V0 are
small. Define similarly 1C,(0)

n = gC,(0)
n − gEx

n and 1C,(1)
n = gC,(1)

n − gEx
n . Again, we start from the

equations of the three, gC,(0)

1 , gC,(1)

1 and gEx
1 , and then compare the three equations while ignoring

certain higher-order terms, such as terms that are proportional to λ2V0. See appendix C for more
details of those equations and the estimation. We arrive at

1
C,(0)

1 = −iV0(0
(1)

0 )−1gEx
2 ∼ V0|g

Ex
1 |

2 (31)

and

1
C,(1)

1 = (0
(1)

0 )−1[iV 2
0 (0

(2)

0 )−1gEx
3 + λ2V0(0

(2)

0 )−11
C,(0)

1 ] ∼ V 2
0 |gEx

1 |
3 + λ2V 2

0 |gEx
1 |

2. (32)

This agrees with the numerical tests that 1
C,(0)

1 is proportional to V0, while 1
C,(1)

1 is proportional
to V 2

0 . We refer the readers to appendix C for definitions of all 0 matrices. Most importantly,
we see again that 1

C,(0)

1 is multiplied by a small number λ2V0 and then becomes a part of
1

C,(1)

1 . The other term, V 2
0 gEx

3 ∼ V 2
0 |gEx

1 |
3, since roughly |gEx

n | = |gEx
|
n, is also much smaller

than 1
C,(0)

1 ∼ V0|gEx
1 |

2. However, for large enough V0, the other approximation used in this
method, the perturbation expansion of operators m̂, will be invalid. Therefore, as long as V0 is a
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Figure 2. gC,(1)

1 is compared with gEx
1 for non-equilibrium interacting systems.

(a) V = 0.2, accuracy was checked with different values of 1T . (b) 1T = 0.4T ,
accuracy was checked with different values of V0. In both cases, dC,(1) is always
much smaller than dC,(0). J C,(0) and J C,(1) are compared against J Ex in (c)
and (d). From (c) we see that for a given value of V0, as long as V0 is not too
large, J C,(0) already provides a major contribution. From (d) we find that for
a relatively larger V0, the difference between J C,(1) and J C,(0) becomes more
important. At the same time, the difference between J C,(1) and J Ex also becomes
larger for larger V0.

small number compared with t , the method under consideration is very reasonable. It should be
noted that this method is capable of dealing with large systems since it does not involve a direct
diagonalization of a 2N-dimension matrix.
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4. Conclusion and discussion

To conclude, a BBGKY-like equation hierarchy is derived from the Redfield equation and two
systematic approximations are suggested to solve the hierarchy. Using the first-order form of the
two methods, NESSs of interacting systems are calculated. It is found that they are consistent
with results made available by other direct methods. We also estimate the accuracy of the two
approximations. The difference between the two is also discussed, showing that the first method
is applicable for large V0 whereas the second method is more efficient, so it can be applied to
larger systems. We have not tested the performance of further orders of both methods, although
it seems quite straightforward. Our method can also be applied to the local-operator Lindblad
equation [15, 20]. Also, it may be worth pursuing a comparison between results from the
Lindblad equation and from the Redfield equation. Besides their applicability to NESSs, these
methods may also be valuable for perturbation theory on equilibrium states. There, using the
second method, the equilibrium interacting gC,(1)

1 can be calculated starting from the equilibrium
non-interacting gC,(0)

1 by setting TL = TR and µL = µR. The computational cost, being a
sequence of linear systems with dimension N 2, is obviously cheaper than direct diagonalization.
It will be interesting to see a further comparison of accuracy and efficiency between these
methods and other perturbative methods on equilibrium states. The non-equilibrium equal-time
GFs calculated by the proposed methods are also objects of the NEGF method. Investigating
the relation between these methods and the NEGF method may also be interesting.
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Appendix A. Perturbation decomposition of m̂

From its definition in equation (7), in the representation of eigenvalues {Em} and eigenstates
{|m〉} of HS, operator m̂ can be written as

(m̂α)mn = (cα)mn

∑
k

|V α
k |

2

∫
∞

0
dτ ei(En−Em−ωk,α)τ

〈1 − nα

(
ωk,α

)
〉

= (cα)mn π

∫
dωDα(ω)|V α(ω)|2〈1 − nα(ω)〉δ(�mn − ω)

= (cα)mn π Dα(En − Em)|V α(En − Em)|2〈1 − nα(En − Em)〉, (A.1)

where we have used
∫

∞

0 dτ eiωτ
= πδ(ω) + iP( 1

ω
) and neglected the principal value part. We

have also assumed that it is possible to perform a change of variable on V α
k such that it becomes

V α(knm), where kmn is defined by ωkmn,α = �mn, i.e. a bath mode resonant with this transition.
This limits the possible forms of V α

k and ωk,α. For example, for a given energy �mn, there should
be a unique value of V α

knm
. In this work, we take V α

k as a constant so this condition is satisfied.
Dα(ω) is the bath’s density of states. We arrived at

m̂α = π
∑
m,n

|m〉〈n|〈m|cα|n〉 (1 − nα(�nm)) Dα(�nm)|V α
knm

|
2, (A.2a)
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ˆ̄mα = π
∑
m,n

|m〉〈n|〈m|c†
α|n〉nα(�mn)Dα(�mn)|V

α
kmn

|
2, (A.2b)

where �mn = Em − En = −�nm . We furthermore set V α
knm

Dα(ω) as a constant and absorb it
into λ2. This procedure involves a direct diagonalization of the isolated system HS. One can
avoid this by finding such operators m̂ perturbatively.

Next, assuming V0 is small, we want to express operator m̂α in terms of {cm} and V0. When
V0 = 0, the system is a tight-binding open chain, the following basis transformation

ck =
1

√
N

N∑
l=1

sin
klπ

N + 1
cl (A.3)

diagonalizes H0,

H0 =

N∑
k=1

εkc†
kck, (A.4)

where

εk = −2t cos
πk

N + 1
. (A.5)

Therefore, cα(t) is a linear function of all cm ,

c(0)

l (t) =
2

N + 1

∑
km

sin
πkl

N + 1
sin

πkm

N + 1
e−iεk tcm. (A.6)

Hence, m̂α is also a linear combination of all cms. One can imagine that for small V0, m̂L should
not be too far from a linear combination. Denote cl(t) when V0 = 0 as c(0)

l (t). Starting from
treating this as the zeroth order to the full dynamical cl(t), and expanding

cl(t) =

∑
n

V n
0 c(n)

l (t), (A.7)

we may derive a perturbative equation of c(n)

l (t),

ċ(n)

l = it (c(n)

l−1 + c(n)

l+1) − id (n−1)

l , (A.8)

where the shorthand notation, for non-negative integers n, n1, n2 and n3,

d (n)

l =

∑
n1,n2,n3∑

i ni

{c(n1)

l c†,(n2)

l−1 c(n3)

l−1 + c(n1)

l c†,(n2)

l+1 c(n3)

l+1 }. (A.9)

Then the solution of the above equation can be written as

c(n)

l (t) = −i
∫ t

0
dτ

2

N + 1

∑
km

sin
πkl

N + 1
sin

πkm

N + 1
e−iεk(t−τ)d (n−1)

m (τ ). (A.10)

Here the initial condition that c(n)(0) = 0 (∀n > 1) is used. Plugging this general solution into
equation (7), and after straightforward but tedious algebra, we arrive at the decomposition of
m̂α and ˆ̄mα in equation (26) with expansion coefficients defined as

Dα;m = π
2

N + 1

∑
k

sin
πklα
N + 1

sin
πkm

N + 1
[1 − n(εk, Tα)], (A.11a)
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D̄α;m = π
2

N + 1

∑
k

sin
πklα
N + 1

sin
πkm

N + 1
n(εk, Tα), (A.11b)

Dα;m1m2m3 = π
∑

k,m,k1,k2,k2

(
2

N + 1

)4 n(Tα, ε(k)) − n(Tα, ε(k1) + ε(k3) − ε(k2))

ε(k1) + ε(k3) − ε(k2) − ε(k)

× sin
kπlα
N + 1

sin
k1πm1

N + 1
sin

k2πm2

N + 1
sin

k3πm3

N + 1
sin

kπm

N + 1
sin

k1πm

N + 1

×

(
sin

k2π(m + 1)

N + 1
sin

k3π(m + 1)

N + 1
+ sin

k2π(m − 1)

N + 1
sin

k3π(m − 1)

N + 1

)
.

(A.11c)

Appendix B. Proof of non-equilibrium Wick’s theorem

In this section, we will prove that when V0 = 0,1

G2(k
†
1, k†

2, k3, k4) = G1(k
†
1, k4)G1(k

†
2, k3) − G1(k

†
1, k3)G1(k

†
2, k4). (B.1)

Here, working in the momentum representation, defined in equations (A.3)–(A.5), is more
convenient than the position representation. Starting from equation (8) with H0 in momentum
space defined in equation (A.4) and using A = c†

k1
ck2 and A = c†

k1
c†

k2
ck3ck4 , we have the equations

of, respectively, G1(k
†
1, k2) and G2(k

†
1, k†

2, k3, k4) as follows,

0 = i(εk2 − εk1)G1(k
†
1, k2) − λ2 2π

N + 1

∑
α

sin
k1πlα
N + 1

sin
k2πlα
N + 1

(n(k1) + n(k2))

+λ2 2π

N + 1

∑
α,k

[
sin

k2πlα
N + 1

sin
kπlα
N + 1

G1(k
†
1, k) + sin

k1πlα
N + 1

sin
kπlα
N + 1

G1(k
†, k2)

]
(B.2a)

0 = i(εk4 + εk3 − εk2 − εk1)G2(k
†
1, k†

2, k3, k4)

+λ2 2π

N + 1

∑
α,k

sin
k1πlα
N + 1

sin
kπlα
N + 1

G2(k
†, k†

2, k3, k4)

+λ2 2π

N + 1

∑
α,k

sin
k2πlα
N + 1

sin
kπlα
N + 1

G2(k
†
1, k†, k3, k4)

+λ2 2π

N + 1

∑
α,k

sin
k3πlα
N + 1

sin
kπlα
N + 1

G2(k
†
1, k†

2, k, k4)

+λ2 2π

N + 1

∑
α,k

sin
k4πlα
N + 1

sin
kπlα
N + 1

G2(k
†
1, k†

2, k3, k)

1 In a general non-equilibrium state, one may have 〈Ck3 Ck4〉 6= 0. In that case, the above Wick’s theorem should
have a more general form and thus the cluster expansion will also have a more general form. In this work, our
choice of coupling makes such GFs be equal to zero.
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+λ2 2π

N + 1

∑
α

sin
k2πlα
N + 1

sin
k4πlα
N + 1

G1(k
†
1, k3)(n(k2) + n(k4))

−λ2 2π

N + 1

∑
α

sin
k2πlα
N + 1

sin
k3πlα
N + 1

G1(k
†
1, k4)(n(k2) + n(k3))

−λ2 2π

N + 1

∑
α

sin
k1πlα
N + 1

sin
k4πlα
N + 1

G1(k
†
2, k3)(n(k1) + n(k4))

+λ2 2π

N + 1

∑
α

sin
k1πlα
N + 1

sin
k3πlα
N + 1

G1(k
†
2, k4)(n(k1) + n(k3)). (B.2b)

The combination of the two is a closed linear equation and has a unique solution. Therefore,
we only need to find one solution. We first apply equations (B.1) to (B.2b) to expand G2

into products of G1. It is then easy to prove that the resulting equation is equivalent to
equation (B.2a), meaning that a solution of equation (B.2a) is also a solution of equation (B.2b).
For example, if we collect terms with G1(k

†
2, k4) together, we will have

G1(k
†
2, k4)

{
i(ε(k3) − ε(k1))G1(k

†
1, k3) − λ2 2π

N + 1

∑
α

sin
k1πlα
N + 1

sin
k3πlα
N + 1

(n(k1) + n(k3))

+λ2 2π

N + 1

∑
α,k

[
sin

k3πlα
N + 1

sin
kπlα
N + 1

G1(k
†
1, k) + sin

k1πlα
N + 1

sin
kπlα
N + 1

G1(k
†, k3)

]}
,

(B.3)

where the term in curly brackets is zero according to equation (B.2a). Therefore, solutions from
equation (B.2a) also satisfy equation (B.2b), as long as equation (B.1), the non-equilibrium
Wick’s theorem, holds. Because of the uniqueness, the above solution is the only solution and
thus equation (B.1) has to be satisfied.

Appendix C. Estimation of convergence

In this section, we present our estimation of the leading order of G1, such as 1
E,(1)

1 and 1
C,(1)

1 .
We will see that 1

E,(1)

1 in fact involves 1
E,(0)

2 , which in turn needs the equation of G2, the
second equation of the hierarchy, derived using A = c†

mc†
ncm′cn′ . A similar equation is needed

for estimation of 1
C,(1)

1 .

C.1. On 1
E,(1)

1 from method 1

After dropping the gD term and the term that is proportional to λ21T , and keeping only up to
the linear order of 1T , gEx

1 , gE,(0)

1 and gE,(1)

1 respectively satisfy

(0
(1)

0 + 0
(1)

,T 1T )gEx
1 = iV0gEx

2 + λ2ν0, (C.1a)

0
(1)

0 gE,(0)

1 = iV0gE,(0)

2 + λ2ν0, (C.1b)

(0
(1)

0 + 0
(1)

,T 1T )gE,(1)

1 = iV0gE,(0)

2 + λ2ν0, (C.1c)
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where 0
(1)

0 + 0
(1)

,T 1T is the zeroth and first order in 1T from 0(1) of equation (18). 0
(1)

,T denotes
formally a derivative of T on 0(1). To consider 1

E,(0)

1 , one may use equation (C.1a) and
equation (C.1b),

1
E,(0)

1 = 1T (0
(1)

0 )−10
(1)

,T gEx
1 + iV0(0

(1)

0 )−11
E,(0)

2 . (C.2)

1
E,(1)

1 can be estimated from equation (C.1a) and (C.1c),

1
E,(1)

1 = iV0(0
(1)

0 + 0
(1)

,T 1T )−11
E,(0)

2 , (C.3)

where 1
E,(0)

2 is required. We find that, roughly speaking, 1
E,(1)

1 takes the second term of 1
E,(0)

1

but drops the first term. Therefore, next we only need to show that the second, iV0(0
(1)

0 )−11
E,(0)

2 ,
is much smaller than the first, or equivalently, smaller than the whole 1

E,(0)

1 .
Estimation of 1

E,(0)

2 involves the second equation of the hierarchy, i.e. the equation of
G2, which can be derived from substituting equation (12), the expression of operators m̂, into
equation (10),

0 = it
〈
c†

mc†
ncm′cn′+1

〉
+ it

〈
c†

mc†
ncm′cn′−1

〉
+ it

〈
c†

mc†
ncm′+1cn′

〉
+ it

〈
c†

mc†
ncm′−1cn′

〉
−it

〈
c†

mc†
n−1cm′cn′

〉
− it

〈
c†

mc†
n+1cm′cn′

〉
− it

〈
c†

m−1c†
ncm′cn′

〉
− it

〈
c†

m+1c†
ncm′cn′

〉
+λ2

∑
l,α

〈
δn′αdα;lc

†
mc†

ncm′cl + δm′αdα;lc
†
mc†

nclcn′ + δnαd̄α;lc
†
mc†

l cm′cn′ + δmαd̄α;lc
†
l c†

ncm′cn′

〉
+λ2

∑
l,α

〈
δnαd∗

α;lc
†
mc†

l cm′cn′ + δmαd∗

α;lc
†
l c†

ncm′cn′ + δn′αd̄
∗

α;lc
†
mc†

ncm′cl + δm′αd̄
∗

α;lc
†
mc†

nclcn′

〉
+iV0

〈
c†

mc†
ncm′cn′

〉 (
δm′+1,n′ + δm′−1,n′ − δm+1,n − δm−1,n

)
(C.4a)

−iV0

∑
l=m±1,n±1

〈
c†

l c†
mc†

nclcm′cn′

〉
+ iV0

∑
l=m′±1,n′±1

〈
c†

l c†
mc†

nclcm′cn′

〉
(C.4b)

−λ2
∑

α

[δnαd̄α;m′

〈
c†

mcn′

〉
+ δmαd̄α;n′

〈
c†

ncm′

〉
+ δm′αd̄

∗

α;n

〈
c†

mcn′

〉
+ δn′αd̄

∗

α;m

〈
c†

ncm′

〉
]

+λ2
∑

α

[δnαd̄α;n′

〈
c†

mcm′

〉
+ δmαd̄α;m′

〈
c†

ncn′

〉
+ δn′αd̄

∗

α;n

〈
c†

mcm′

〉
+ δm′αd̄

∗

α;m

〈
c†

ncn′

〉
] (C.4c)

−λ2V0

∑
α

〈
δm′αc†

mc†
ncn′ Dα − δn′αc†

mc†
ncm′ Dα + δmαc†

ncm′cn′ D̄α − δnαc†
mcm′cn′ D̄α

〉
−λ2V0

∑
α

〈
δn′α D̄

†
αc†

mc†
ncm′ − δm′α D̄

†
αc†

mc†
ncn′ + δnα D†

αc†
mcm′cn′ − δmα D†

αc†
ncm′cn′

〉
, (C.4d)

which will be denoted in the following compactly as

0(2)gEx
2 = iV0gEx

3 + λ2gEx
1 + λ2V0gEx

D3, (C.5)

where the vector gEx
2 is defined similarly to gEx

1 as follows,

gEx
2 = [G2(1

†, 1†, 1, 1), G2(1
†, 1†, 1, 2), . . . , G2(N †, N †, N , N )]T. (C.6)
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Note that some of the elements of gEx
2 are naturally zero, but we still include them in this vector.

gEx
3 , gEx

1 and gEx
D3 come from ordering, respectively, equation (C.4b), (C.4c) and (C.4d) in the

same way as gEx
2 . The matrix 0(2) can be read off from equation (C.4a). For example, assuming

that m, n, m ′ and n′ are all different and not equal to 1 or N , for simplicity, we have

0
(2)

m N 3+nN 2+m′ N+n′,m N 3+nN 2+m′ N+n′+1 = it. (C.7)

Since λ2V0 � V0, we drop the last gEx
D3 term in the following estimation of the accuracy.

Therefore, the exact solution and the equilibrium solution satisfy, respectively,

(0
(2)

0 + 0
(2)

,T 1T )gEx
2 = iV0gEx

3 + λ2gEx
1 , (C.8a)

0
(2)

0 gE,(0)

2 = iV0gE,(0)

3 + λ2gE,(0)

1 , (C.8b)

where 0
(2)

0 and 0
(2)

,T 1T stand for the zeroth and first order in 1T in 0(2). Now 1
E,(0)

2 can be
analyzed,

1
E,(0)

2 = iV0(0
(2)

0 )−11
E,(0)

3 + (0
(2)

0 )−10
(2)

,T 1T gEx
2 + (0

(2)

0 )−1λ21
E,(0)

1 . (C.9)

Here in fact 0(1) and 0(2) have different dimensions. However, in this estimation of the order of
magnitudes, we ignore this difference and, furthermore, the matrices are regarded as constants
with order 1. For the moment, let us focus on the last term of 1

E,(0)

2 . Recall that we want to
compare iV0(0

(1)

0 )−11
E,(0)

2 against 1
E,(0)

1 . Focusing only on the last term, we have

iV01
E,(0)

2 ≈ iV0λ
21

E,(0)

1 , (C.10)

which is much smaller than 1
E,(0)

1 as long as V0λ
2
� 1. The effect of the other two terms has

been discussed in the main text in section 3.1.1.

C.2. On 1
C,(1)

1 from method 2

In this case, after dropping the 0
(1)

D term and terms that are proportional to λ2V0, gEx
1 , gC,0

1 and
gC,(1)

1 , respectively, satisfy the following equations,

0
(1)

0 gEx
1 = iV0gEx

2 + λ2ν0, (C.11a)

0
(1)

0 gC,(0)

1 = λ2ν0, (C.11b)

0
(1)

0 gC,(1)

1 = iV0gC,(1)

2 + λ2ν0. (C.11c)

From equation (C.11b) and (C.11a), one may find

1
C,(0)

1 = −iV0(0
(1)

0 )−1gEx
2 . (C.12)

Comparing equation (C.11c) and equation (C.11a), one obtains

1
C,(1)

1 = iV0(0
(1)

0 )−1(gC,(1)

2 − gEx
2 ). (C.13)

New Journal of Physics 12 (2010) 083042 (http://www.njp.org/)

http://www.njp.org/


20

Note that the magnitude of 1
C,(1)

2 = (gC,(1)

2 − gEx
2 ) is in fact smaller than the magnitude of

1
C,(0)

2 = (gC,(0)

2 − gEx
2 ), which involves the second equation of the hierarchy, i.e. the equation

of G2. So we may analyze the latter to get an upper bound of the former. In this case, one
needs to substitute equation (26) into equation (10). The resulting equation will have the same
structure as equation (C.4) but every dα;l and d̄α;l is replaced, respectively, by Dα;m and Dα;m ,
and a similar substitution on Dα and D̄α. Ignoring terms that are proportional to λ2V0, gEx

2 and
gC,(0)

2 are, respectively, the solutions of

0
(2)

0 gEx
2 = iV0gEx

3 + λ2gEx
1 , (C.14a)

0
(2)

0 gC,(0)

2 = λ2gC,(0)

1 . (C.14b)

Comparing these two equations, we find that

1
C,(0)

2 = −iV0(0
(2)

0 )−1gEx
3 − λ2(0

(2)

0 )−11
C,(0)

1 . (C.15)

Focusing only on the last term, we have

iV01
C,(0)

2 ≈ −iV0λ
21

C,(0)

1 , (C.16)

which is much smaller than 1
C,(0)

1 as long as V0λ
2
� 1. The effect of the first term has been

discussed in the main text in section 3.2.1.
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