

Exact Solution of the Social Learning Model

Jinshan Wu

School of Systems Science, Beijing Normal University

06/01/2014

Outline

- The basic model of social learning and the motivation
- Previous results and solutions
- Problems in previous solutions of the game
- An exact solution of our own
- Omparison between our solution and the previous solutions on the basic and extended models

Warning: This talk is going to be fairly mathematical, but I promise the ideas will be emphasized.

The questions

- Question: If every individual is learning the truth about the world individually, can the population finds the true state of the world?
- Examples: Buying an iPhone or an android phone, considering to adopt or not one newly invented technology, choosing restaurants from observing number of customers.

Figure : Lineup before Apple store Shanghai, China

J. Wu (BNU)

Exact Solution of Social Learning

The basic model

- One state of the world $s_w = \pm 1$, randomly chosen with probability q^{ext} that $s_w = 1$, fixed during the game.
- *N* learners, every learner receives private signals s^j (with probability $p \ge 0.5 \ s^j = s_w$) and acts in a given sequence, actions of all previous learners are available to all later learners, $\vec{a}^{j-1} = (a^1, a^2, \cdots, a^{j-1})$.
- Payoffs are not public knowledge, $p^{j} = 1$ when $a^{j} = s_{w}$ and otherwise $p^{j} = -1$.
- The *j*th learner makes a decision according to $\lambda^{j} = P\left(s_{w} = 1 | \vec{a}^{j-1}, s^{j}\right).$

One simple calculation of λ^j

- Counted the numbers of 1 and -1 in the action history, N_{+}^{j-1} and N_{-}^{j-1} , and then choose to act according to max $\left(N_{+}^{j-1} + s^{j}, N_{-}^{j-1}\right)$.
- Using this overly simplified strategy, researcher have shown that there are information cascades and cascading towards either the true or the wrong state of the world.

Figure : Probability of right or wrong cascade depends on p, q^{ext} . $s_w = 1$.

J. Wu (BNU)

To get some intuition

- Start from the first learner, upon receiving $s^1 = -1$, then $a^1 = -1$.
- Assuming the second learner get $s^2 = 1$, then he is in a tie. Let us assume he breaks it randomly, and result happen to be $a^2 = -1$.
- The third learner receives $s^3 = 1$, but he will choose $a^3 = -1$ according to the overly simplified counting strategy.

Table : Look at only the second row for now

ŝ	-1	1	1	1
$ec{a},\lambda^{j,B}$	-1	-1	-1	-1
$\vec{a}, \lambda^{j,tB}$	-1	-1	-1	-1
$ec{a},\lambda^{j,\mathcal{A}}$	-1	-1	1	1

Other interesting open questions

- How large is the difference if I choose to act near the beginning or the end? Should I pay for that?
- If I am trying to popularize my product or my book, how much copies of the book should I secretly purchase?
- May I do better than the counting strategy? It has been shown that believing in oneself is better than the random tie break.
- Is it possible for me to take into consideration that when $\vec{a}^{3-1} = (-1, -1)$, it is possible that $\vec{s}^{3-1} = \{(-1, -1), (-1, 1)\}$? This is the key question which leads to our exact solution.

$$a^{j}\left(ec{a}^{j-1},s^{j}
ight)$$
 from counting or Bayesiar

• Maybe we can try a Bayesian analysis,

where everything except $P\left(s_{w}=1|ec{s}^{j-1}
ight)$ is known already.

e^{±βH}

Twisted Bayesian, continued

• This twisted Bayesian analysis uses

$$P(s_{w} = 1 | \vec{a}^{j-1}) = P(s_{w} = 1 | \vec{a}^{j-2}, s^{j-1})$$

= $P(s_{w} = 1 | \vec{a}^{j-2}, s^{j-1} = a^{j-1})$
= $\lambda^{j-1} (\vec{a}^{j-2}, s^{j-1} = a^{j-1})$ (2)

so that $\lambda^{j-1} \longrightarrow \lambda^j$ is a complete formula.

 But how can we effectively assume that s^{j-1} = a^{j-1} (s^{j-1} is unknown to learner j) upon observing a^{j-1} (known to learner j)?

Twisted Bayesian, continued

- There is no justification in assuming that $s^{j-1} = a^{j-1}$ at all.
- In a sense, since we assume that $s^{j-1} = a^{j-1}$ upon observing a^{j-1} , this twisted Bayesian is no better than the counting strategy, where actions are treated like signals.
- If signals are public knowledge, then indeed counting strategy is correct:

$$\vec{s}^{j-1} = \{1, -1, 1, -1, -1, -1, 1, \dots\}$$
 (3)

Another Bayesian, the idea

- The idea is to convert $\vec{a}^{j-1} \Longrightarrow (\vec{s}^{j-1}, P(\vec{s}^{j-1}))$, then calculate $\lambda^j (\vec{s}^{j-1}, s^j)$ for each $P(\vec{s}^{j-1})$ and then combine them to find λ^j .
- Upon observing $ec{a}^{3-1}=(-1,-1)$,

$$P\left(\vec{s}^{3-1} = (-1, -1) | \vec{a}^{3-1} = (-1, -1)\right) = \frac{2}{3},$$
 (4a)

$$P\left(\vec{s}^{3-1} = (-1,1) \,|\, \vec{a}^{3-1} = (-1,-1)\right) = \frac{1}{3},\tag{4b}$$

$$P\left(\vec{s}^{3-1} = (1, -1) | \vec{a}^{3-1} = (-1, -1)\right) = 0,$$

$$(4c)$$

$$P\left(\vec{s}^{3-1} = (1,1) \,|\, \vec{a}^{3-1} = (-1,-1)\right) = 0. \tag{4d}$$

• This is potentially different from considering only $\vec{s}^{3-1} = (-1, -1)$, which is the case of the counting strategy and also the twisted Bayesian

Another Bayesian, formal expressions

• The above idea becomes

$$\lambda^{j} = \frac{P\left(\vec{a}^{j-1}, s^{j} | s_{w} = 1\right) P\left(s_{w} = 1\right)}{P\left(\vec{a}^{j-1}, s^{j} | s_{w} = 1\right) P\left(s_{w} = 1\right) + P\left(\vec{a}^{j-1}, s^{j} | s_{w} = -1\right) P\left(s_{w} = -1\right)}$$
(5)

where $P\left(ec{a}^{j-1},s^{j}|s_{w}=1
ight)=P\left(ec{a}^{j-1}|s_{w}=1
ight)P\left(s^{j}|s_{w}=1
ight)$

• So only unknown is $P(\vec{a}^{j-1}|s_w = 1)$, but a^{j-1} is determined by λ^{j-1} , so in a sense we have complete formula $\lambda^{j-1} \longrightarrow \lambda^j$ without assuming anything.

,

On the original model

• Let us now compare the three.

Figure : There is no difference at all

• So our solution is just in principle better than the other two, but not practical difference. Why?

On the extended model

• Values of $\lambda^{j,A}$ is different from those of $\lambda^{j,tB}$ and $\lambda^{j,A}$, for example, when $q^{ext} = 0.5, p = 0.7$,

$$\lambda^{3,A}\left(s_{w}=1|a^{12}=-1-1,s^{3}=1\right)=0.43$$
 (6)

$$\lambda^{3,B,tB}\left(s_{w}=1|a^{12}=-1-1,s^{3}=1\right)=0.3$$
(7)

- Both less than 0.5, so $a^3 = -1$ will be chosen. No difference in actions
- 1 0.43 = 0.57 is less likely than 1 0.3 = 0.7, can we make use of this information?
- What if we decide not to act when $\left|\lambda^{j,A} 0.5\right| < \Delta$. So we extended the model by introducing a level of reservation, Δ

• We may now take another look at Table 1, which is reproduced in the following

Table : Actions due to $\lambda^{j,A}$ is different from the other two

ŝ	-1	1	1	1
$ec{a},\lambda^{j,B}$	-1	-1	-1	-1
$ec{a},\lambda^{j,tB}$	-1	-1	-1	-1
$ec{a},\lambda^{j,\mathcal{A}}$	-1	-1	1	1

On the extended model, continued

• Extended model with $\Delta \neq 0$,

Figure : There is a difference in actions when $\Delta \neq 0$

- Using $\lambda^{j,A}$, Probability of cascading when $\Delta \neq 0$ towards the true state is higher than that of $\Delta = 0$
- Using $\lambda^{j,B,tB}$, even when $\Delta \neq 0$, Probability of cascading is the same as that of $\Delta = 0$

J. Wu (BNU)

Conclusions and discussion

- $\lambda^{j,A}$ is different from $\lambda^{j,B}$ and $\lambda^{j,tB}$ both in principle and in practice when $\Delta\neq 0$
- λ^{j,A} is better than the other two in the sense that: Firstly, it is generally applicable to the social learning game even with other extra modifications; Secondly, learners using it overall achieve larger payoffs.
- Other investigations making use of the counting strategy or the twisted Bayesian analysis can be revised to be based on this new strategy evolution process

- Collaborators: Wenjie Dai, Xin Wang, Zengru Di
- Thank Xiaofan Wang, Chris Ryan for discussions, suggestions and comments
- Thank organizers of International Conference on Econophysics (2014)
- Thank you all for your time and attention
- Question time