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Abstract

An ability to accurately assess the long-term impact of a scientific discov-

ery has implications from science policy to individual reward. Yet, the

documented lack of predictability of citation based measures frequently

used to gauge impact, from impact factors to short-term citations, raises

a fundamental question: is there long-term predictability in citation pat-

terns? Here we derive a mechanistic model for the citation dynamics of

individual papers, allowing us to collapse the citation histories of papers

from different journals and disciplines into a single curve, indicating that

all papers follow the same universal temporal pattern. The observed pat-

terns not only help us uncover the basic mechanisms that govern scientific

impact, but also offer reliable measures of influence with potential policy

implications.
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Of the many tangible measures of scientific impact one stands out in its frequency of

use: citations [1–9]. The reliance on citation based measures, from the Hirsch index [4] to

the g-index [10], from impact factors [1] to eigenfactors [11], and on diverse ranking based

metrics [12, 13], lies in the (often debated) perception that citations offer a quantitative

proxy of a discovery’s importance or a scientist’s standing in the research community. In

this debate it is often lost the fact that our ability to foresee lasting impact based on citation

patterns has well-known limitations:

(i) The impact factor (IF) [1], conferring a journal’s historical impact to a paper, is a

poor predictor of a particular paper’s future citations [14]: papers published in the same

journal a decade later acquire widely different number of citations, from one to thousands

(Fig. 1A).

(ii) The number of citations [2] collected by a paper strongly depends on the paper’s

age, hence citation based comparisons favor older papers and established investigators. It

also lacks predictive power: a group of papers that within a five year span collect the same

number of citations are found to have widely different long-term impact (Fig. 1B).

(iii) Paradigm changing discoveries have notoriously limited early impact [3], precisely

because the more a discovery deviates from the current paradigm, the longer it takes to be

appreciated by the community [15]. Indeed, while for most papers their early and long-term

citations correlate, this correlation breaks down for discoveries with most long-term citations

(Fig. 1C). Hence, publications with exceptional long-term impact appear to be the hardest

to recognize based on their early citation patterns.

(iv) Comparison of different papers is confounded by incompatible publication/citation/a-

cknowledgement traditions of different disciplines and journals.

These limitations not only affect science policy, but also probe our understanding of com-

plex evolving systems [16–20], prompting us to ask, is there long-term predictability in such

short-term measures as early citation patterns? To be sure, long-term cumulative measures

like the Hirsch index have documented predictable components, that can be extracted via

data mining [4, 21]. Yet, given the myriad of factors involved in the recognition of a new

discovery, from the work’s intrinsic value to timing, chance and the publishing venue, finding

regularities in the citation history of individual papers, the minimal carriers of a scientific

discovery, remains an elusive task.

The difficulty in identifying reproducible patterns in citation histories is well illustrated
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by the citation patterns of papers extracted from the Physical Review corpus (Fig. 1D), con-

sisting of 463,348 papers published between 1893 and 2010 and spanning all areas of physics

[3, 22, 23]. The fat tailed nature of the citation distribution 30 years after publication in-

dicates that while most papers are hardly cited, a few do have exceptional impact (Fig. 1C

inset) [2, 3, 8, 24, 25]. This impact heterogeneity, coupled with widely different citation his-

tories (Fig. 1D), suggests a lack of order and hence lack of predictability in citation patterns.

Yet, as we show next, this lack of order in citation histories is only apparent, as citations

follow widely reproducible dynamical patterns that span research fields. Quantifying these

patterns allow us to derive from first principles more accurate impact measures than the

currently used heuristic quantities.

We start by identifying three fundamental mechanisms that drive the citation history of

individual papers:

A) Preferential attachment captures the well-documented fact that highly cited papers are

more visible and are more likely to be cited again than less-cited contributions [3, 20, 25, 26].

Accordingly a paper i’s probability to be cited again is proportional to the total number of

citations ci the paper received previously. In Fig. 1E we document the presence of preferential

attachment in our dataset as well.

B) Aging captures the fact that new ideas are integrated in subsequent work, hence each

paper’s novelty fades eventually [27–29]. The resulting long term decay is best described by

a log-normal survival probability (see Fig. 1F and SM S2.1)

Pi(t) =
1√

2πσit
exp

(
−(ln t− µi)2

2σ2
i

)
. (1)

C) Fitness, ηi, captures the inherent differences between papers, accounting for the per-

ceived novelty and importance of a discovery [19, 30, 31]. Novelty and importance depend

on so many intangible and subjective dimensions that it is impossible to objectively quantify

them all. Here we bypass the need to evaluate a paper’s intrinsic value and view fitness ηi

as a collective measure capturing the community’s response to a work. As we show below,

ηi can be extracted from a paper’s citation history.

Combining A–C, we can write the probability that paper i is cited at time t after publi-

cation as

Πi(t) ∼ ηic
t
iPi(t). (2)
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Solving the associated master equation, Eq. (2) allows us to predict the cumulative number

of citations acquired by paper i at time t after publication (SM S2.2)

cti = m

(
e
βηi
A

Φ
(

ln t−µi
σi

)
− 1

)
, (3)

where

Φ(x) ≡ (2π)−1/2

∫ x

−∞
e−y

2/2dy (4)

is the cumulative normal distribution and m, β and A are global parameters. Equation (3)

represents a minimal citation (MiC) model, that captures all known quantifiable mechanisms

that affect citation histories. It predicts that the citation history of paper i is characterized

by three fundamental parameters: the relative fitness λi ≡ ηiβ/A, capturing a paper’s

importance relative to other papers; the immediacy µi, governing the time for a paper to

reach its citation peak and the longevity σi, capturing the decay rate. Using the rescaled

variables t̃ ≡ (ln t− µi)/σi and c̃ ≡ ln(1 + cti/m)/λi, we obtain our main result,

c̃ = Φ(t̃), (5)

predicting that each paper’s citation history should follow the same universal curve Φ(t̃)

if rescaled with the paper-specific (λi, µi, σi) parameters. Given the obvious diversity of

citation histories (Fig. 1D), this prediction is somewhat unexpected.

To test the validity of (5) we first determined (λ, µ, σ) for four papers selected for their

widely different citation histories (Fig. 1G), finding that after rescaling they all collapse

into a single curve (5) (Fig. 1H). The reason is explained in Fig. 1I: by varying λ, µ and

σ, Eq. (3) can account for a wide range of empirically observed citation histories, from

jump-decay patterns to delayed impact. Yet, to test the validity of MiC, we rescaled all

papers published between 1950 and 1980 in the Physical Review corpus, finding that they

all collapse into (5) (Fig. 1J). We also tested our model on all papers published in 1990

by 12 prominent journals (Table S2), finding an excellent collapse for all (see Fig. 1J inset

for Science and SM S2.4 for the other journals). The data collapse demonstrates that the

observed differences in individual citation histories (Fig 1D,G) are rooted in variations in

three measurable parameters: fitness, immediacy and longevity. Hence the diverse citation

histories hide a remarkable degree of regularity, accurately captured by the MiC model
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(3)–(5).

The model (3)-(5) also predicts several fundamental measures of impact:

Ultimate impact (c∞) represents the total number of citations a paper acquires during its

lifetime. By taking the t→∞ limit in Eq. (3), we obtain

c∞i = m
(
eλi − 1

)
, (6)

a simple formula that predicts that the total number of citations acquired by a paper during

its lifetime is independent of immediacy (µ) or the rate of decay (σ), and depends only on a

single parameter, the paper’s relative fitness, λ.

Impact time (T ∗i ) represents the characteristic time it takes for a paper to collect the bulk

of its citations. A natural measure is the time necessary for a paper to reach the geometric

mean of its final citations, obtaining (SM S2.2)

T ∗i ≈ exp(µi). (7)

Hence impact time is mainly determined by the immediacy parameter µi and is independent

of fitness λi or decay σi.

The MiC model offers a journal free methodology to evaluate long term impact. To il-

lustrate this we selected three journals with widely different IFs: Physical Review B (PRB)

(IF = 3.26 in 1992), PNAS (10.48) and Cell (33.62), and measured for each paper pub-

lished by them the fitness λ, obtaining their distinct journal-specific P (λ) fitness distribution

(Fig. 2A). We then selected all papers with comparable fitness λ ≈ 1, and followed their

citation histories. As expected they follow different paths: Cell papers ran slightly ahead

and PRB papers stay behind, resulting in distinct P (cT ) distributions for years T = 2÷ 4.

Yet, by year 20 the cumulative number of citations acquired by these papers show a remark-

able convergence to each other (Fig. 2B), supporting our prediction that given their similar

fitness λ, eventually they will have the same ultimate impact c∞ = 51.5. This convergence

is also supported by the decreasing σc/ 〈c〉 ratio of P (cT ) (Fig. 2C), indicating that the dif-

ferences in citation counts between these papers vanish with time. In contrast, if we choose

all papers with the same number of citations at year two (i.e. the same c2, Fig. 2D), the

citations acquired by them diverge with time and σc/ 〈c〉 increases (Fig. 2E,F), supporting
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the lack of predictability in these quantities. Therefore λ and c∞ offer a journal independent

measure of a publication’s long-term impact, in contrast with the lack of predictive power

of c2 and/or the IF.

The model (3–5) also helps connect the impact factor, the traditional measure of impact

of a scientific journal, to the journal’s Λ, M , and Σ parameters (the analogs of λ, µ, σ, S4),

IF ≈ m

2

(
exp

[
ΛΦ

(
M1 −M

Σ

)]
− exp

[
ΛΦ

(
M2 −M

Σ

)])
. (8)

Knowing Λ, in analog with (6) we can calculate a journal’s ultimate impact as C∞ =

m
(
eΛ − 1

)
, representing the total number of citations a paper in the journal will receive

during its lifetime. Equation (8) helps us understand the mechanisms that influence changes

in the IF, as vividly illustrated by the evolution of Cell and NEJM : in 1998 the IFs of Cell

and NEJM were 38.7 and 28.7, respectively (Fig. 3A). Yet over the next decade there was

a remarkable reversal: NEJM became the first journal to reach IF = 50, while Cell ’s IF

decreased to around 30. This raises a puzzling question: has the impact of papers published

by the two journals changed so dramatically? To answer this we determined Λ, M , and Σ for

both journals from 1996 to 2006 (Fig. 3D–F). While Σ were indistinguishable (Fig. 3D), we

find that the fitness of NEJM increased from Λ = 2.4 (1996) to Λ = 3.33 (2005), increasing

the journal’s ultimate impact from C∞ = 300 (1996) to a remarkable C∞ = 812 (2005)

(Fig. 3B). But Cell ’s Λ also increased in this period (Fig. 3E), moving its ultimate impact

from C∞ = 366 (1996) to 573 (2005). Yet, if both journals attracted papers with increasing

long-term impact, why did Cell ’s IF drop and NEJM ’s grow? The answer lies in changes in

the impact time T ∗ = exp(M): while NEJM ’s impact time remained unchanged at T ∗ ≈ 3

years, Cell ’s T ∗ increased from T ∗ = 2.4 years to T ∗ = 4 years (Fig. 3C). Therefore, Cell

papers have gravitated from short to long-term impact: a typical Cell paper gets 50% more

citations than a decade ago, but fewer of the citations come within the first two years

(Fig. 3C, inset). In contrast, with a largely unchanged T ∗, NEJM ’s increase in Λ translated

into a higher IF. These conclusions are fully supported by the P (λ) and P (µ) distributions

for individual papers published by Cell and NEJM in 1996 and 2005: both journals show a

clear shift to higher fitness papers (Fig. 3G), but while P (µ) is largely unchanged for NEJM,

there is a clear shift to higher µ papers in Cell (Fig. 3H).

While our primary goal is to uncover the mechanisms driving a paper’s citation history,
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the accuracy of the MiC model raises a tantalizing question: can we use the developed

framework to predict the future citations of a publication? In principle we can use paper i’s

citation history up to year TTrain after publication (training period) to estimate λi, µi, σi

and then use Eq. (3) to predict its future citations cti or (6) to determine its ultimate impact

c∞i . Yet, the uncertainties in estimating λi, µi, σi from the inherently noisy citation histories

affect our predictive accuracy (see SM S2.6). Hence instead of simply interpolating Eq. (3)

into the future, we assign a citation envelope to each paper, quantifying the uncertainty

of our predictions (see S2.6). In Fig. 4A, we show the predicted most likely citation path

(red line) with the uncertainty envelope (grey area) for three papers, based on a 5 year

training period. Two of the three papers fall within the envelope, for the third, however,

the MiC model overestimates the future citations. Increasing the training period enhances

the predictive accuracy (Fig. 4B).

To quantify the model’s overall predictive accuracy we measure the fraction of papers

that fall within the envelope for all PR papers published in 1960s. That is, we measure the

z30-score for each paper, capturing the number of standard deviations z30 the real citations

c30 deviate from the most likely citation 30 years after publication. The obtained P (z30)

distribution across all papers decays fast with z30 (Fig. 4C), indicating that large z values

are extremely rare. With TTrain = 5 only 6.5% of the papers leave the prediction envelope 30

years later, hence the model correctly approximates the citation range for 93.5% of papers

25 years into the future.

The observed accuracy prompts us to ask whether MiC is unique in its ability to capture

future citation histories. We therefore identified several models that have been either used

in the past to fit citation histories, or have the potential to do so (Table 1). We fit the

predictions of these models to PR papers and use the weighted Kolmogorov-Smirnov (KS)

test to evaluate their goodness of fit (see S3.2). The lowest KS distribution (indicating

the best fit across most papers, Fig. 4D) is offered by Eq. (3). The reason is illustrated in

Fig. S11: the symmetric c(t) predicted by the Logistic Model cannot capture the asymmetric

citation curves. While the Gompertz and the Bass models predict asymmetric citation

patterns, they also predict an exponential (Bass) or double-exponential (Gompertz) decay

of citations (Table 1), much faster than observed in real data. To see how these deviations

affect the predictive power of these models, we used a 5 and a 10 year training period to fit

the parameters of each model and computed the predicted most likely citations at year 30
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(Fig. 4E,F). We find that independent of the training period the predictions of the Logistic,

Bass and Gompertz models always lay outside the 25%–75% prediction quartiles (red bars),

systematically underestimating future citations. In contrast, the prediction of Eq. (3) for

both training periods is within the 25-75% quantiles, its accuracy visibly improving for the

ten year training period (Fig. 4F). The predictive limitations of the current models is also

captured by their P (z30) distribution, indicating that for the Logistic, Bass and Gompertz

model more than half of the papers underestimate with more than two standard deviations

the true citations (z > 2) at year 30 (Fig. 4C), in contrast with 6.5% for the MiC model.

The remarkable accuracy of the MiC model, both in its ability to capture the universal

aspects of citation histories, as well as to predict future citations, indicates that scientific

impact is a collective phenomenon, governed by mechanisms that follow reproducible pat-

terns [18, 32, 33]. Therefore the proposed modeling framework is not limited to citations,

but with appropriate adjustments will likely apply to other phenomena driven by collective

processes, from patents to the popularity of twitter hash tags. Yet, the model has obvious

limitations: it cannot account for exogenous “second acts”, like the citation bump observed

for superconductivity papers following the discovery of high temperature superconductivity

in the 1980s, or delayed impact, like the explosion of citations to Erdős and Rényi’s work four

decades after their publication, following the emergence of network science [3, 16, 19, 20].

Taken together, the mechanistic understanding of citation dynamics offers a quantitative

springboard to uncover the hallmarks of future impact. These questions also have major

policy implications, as current measures of citation-based impact, from IF to Hirsch index

[4, 21], are frequently integrated in reward procedures, the assignment of research grants,

awards and even salaries and bonuses [34, 35], despite their well-known lack of predictive

power. In contrast with the IF and short-term citations that lack predictive power, we

find that c∞ offers a journal independent assessment of a paper’s long term impact, with

a meaningful interpretation: it captures the total number of citations a paper will ever

acquire, or the discovery’s ultimate impact. While additional variables combined with data

mining could further enhance the demonstrated predictive power, an ultimate understanding

of long-term impact will benefit from a mechanistic understanding of the factors that govern

the research community’s response to a discovery.
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Figure 1: Characterizing citation dynamics. (A) Distribution of the cumulative

citations ten years after publication (c10) for all papers published in Cell, PNAS, and Physical

Review B (PRB) in 1990. (B) Citation history of all papers shown in (A) that acquired 50

citations 5 years after publication, illustrating the different long-term impact despite their

equal early impact. (C) Average number of citations acquired two years after publication

(c2) for papers with the same long-term impact (c30), indicating that for high impact papers

(c30 ≥ 400, shaded area) the early citations underestimate future impact. Inset: Distribution

of citations 30 years after publication (c30) for PR papers published between 1950 and 1980.

(D) Yearly citation ci(t) for 200 randomly selected papers published between 1960 and

1970 in the Physical Review (PR) corpus. The color code corresponds to each papers’

publication year. (E) Attachment rate measures the likelihood for new papers published in

different years (color coded) to cite an old paper with ct citations. That is, for each year,

ct measures the citations of each paper before this year, and attachment rate measures the

average number of times each paper with ct citations was cited in this year. The linearity

of the curves offer evidence for preferential attachment. (F) Distribution of papers’ age

when they get cited. To separate the effect of preferential attachment, we measure the

aging function for papers with the same number of previous citations (here ct = 20, see

also S2.1). The solid line corresponds to gaussian fit of the data, indicating P (ln ∆t | ct)

follows a normal distribution. (G) Citation history of four papers published in PR in 1964,

selected for their distinct dynamics, displaying a ‘jump-decay’ pattern (blue); delayed peak

(magenta); attracting a constant number of citation over time (green), or acquiring an

increasing number of citations each year (red). (H) Data collapse for the four papers in

(G) using Eq. (5). Legend: the (λ, µ, σ) parameters used to rescale the citation history of

each paper. (I) Changes in the citation history c(t) according to (3) after varying the (λ,

µ, σ) parameters, indicating that (3) can account for a wide range of citation patterns. (J)

Data collapse for 7,775 papers with more than 30 citations within 30 years in the PR corpus

published between 1950 and 1980. Inset: data collapse for the 20 year citation histories of

all papers published by Science in 1990 (842 papers).

Figure 2: Evaluating long-term Impact. (A) Fitness distribution P (λ) for papers

published by Cell, PNAS, and Physical Review B (PRB) in 1990. Shaded area indicates

papers in the λ ≈ 1 range selected for further study. (B) Citation distributions for papers

with fitness λ ≈ 1 highlighted in (A) for years 2, 4, 10, and 20 after publication. (C) Time
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dependent relative variance of citations for papers selected in (A). (D) Citation distribution

two years after publication (P (c2)) for papers published by Cell, PNAS, and PRB. Shaded

area highlights papers with c2 ∈ [5, 9] selected for further study. (E) Citation distributions

for papers with c2 ∈ [5, 9] selected in (D) after 2, 4, 10, and 20 years. (F) Time dependent

relative variance of citations for papers selected in (D).

Figure 3: Quantifying changes in a journal’s long-term impact. (A) Impact factor

of Cell and New England Journal of Medicine (NEJM ) reported by Thomson Reuters from

1998 to 2006. (B) Ultimate impact C∞ (see Eq. (6)) of papers published by the two journals

from 1996 to 2005. (C) Impact time T ∗ (Eq. (7)) of papers published by the two journals from

1996 to 2005. Inset: fraction of citations that contribute to the IF. (D–F) The measured

time dependent longevity (Σ), fitness (Λ), and immediacy (M) for the two journals. (G)

Fitness distribution for individual papers published by Cell (left) and NEJM (right) in 1996

(black) and 2005 (red). (H) Immediacy distributions for individual papers published by Cell

(left) and NEJM (right) in 1996 (black) and 2005 (red).

Figure 4: Predicting Future Citations. (A, B) Prediction envelope for three papers

obtained using a five (A) and ten (B) years of training (shaded vertical area). The middle

curve offers an example of a paper for which the prediction envelope misses the future

evolution of the citations. The envelope illustrates the range for which z ≤ 1. Comparing

A and B illustrates how the increasing training period decreases the uncertainty of the

prediction, resulting in a narrower envelope. (C) Complementary cumulative distribution

of z30 (P>(z30)), where z30 quantifies how many standard deviations the predicted citation

history deviates from the real citation curve thirty years after publication (see also S2.6).

We selected papers published in 1960s in PR corpus that acquire at least 10 citations in 5

years (4492 in total). The red curve captures predictions for 30 years after publication for

TTrain = 10, indicating that for the MiC model 93.5% papers have z30 ≤ 2. The blue curve

relies on 5 year training. The grey curves capture the predictions of Gompertz (solid line),

Bass (dash-dot line), and Logistic (dotted line) model for 30 years after publication by using

10 years as training. (D) Goodness of fit using weighted Kolmogorov-Smirnov (KS) test (see

S3.2), indicating that Eq. (3) offers the best fit to our testing base (same as the papers in

C) (E, F) Scatter plots of predicted citations and real citations at year 30 for our test base

(same sample as in C, D), using as training data the citation history for the first 5 (E) or

10 (F) years. The error bars indicate prediction quartiles (25% and 75%) in each bin, and
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are colored green if y = x lies between the two quartiles in that bin, and red otherwise. The

black circles correspond to the average predicted citations in that bin.
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TABLES

TABLE I: Modeling citation dynamics. We identified four models that can be or have
been used to fit citation histories. The table shows the corresponding rate equation and its

analytical solution. The models and the meaning of their parameters in each model are
described in S3. In the manuscript we did not test the prediction of the BB model, as it

lacks saturation for high t, hence it is unable to fit true citation histories.

Abbr. Model Name Rate Equation Solution

MiC Minimal Citation Model, Eq. (3)
dcti
dt
≈ ctiηiP (t) cti = m

(
e
λiΦ(

ln t−µi
σi

) − 1
)

BB Bianconi-Barabási [30]
dcti
dt
≈ ηic

t
i cti ∼ exp(λit)

LOG Logistic [36]
dcti
dt

= ric
t
i (1− cti/c∞) cti = c∞

1+e−ri(t−τi)

B Bass [37]
dcti
dt

= (p+ qcti/c
∞)(c∞ − cti) cti = c∞ 1−e−(p+q)t

1+ q
p
e−(p+q)t

G Gompertz [36, 38]
dcti
dt

= qcti ln(c∞/cti) cti = c∞e−e
−(a+qt)
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