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A B S T R A C T   

The impact of environmental change on vegetation dynamics plays a key role in ecosystem evolution, with 
vegetation demonstrating heightened sensitivity to both climate fluctuations and human activities. However, 
existing studies have not fully unveiled the emergence of vegetation evolution patterns within the holistic 
complex systems framework. Based on long-term observational data of the normalized differential vegetation 
index (NDVI) and meteorological reanalysis data, this study used the mean synthesis and trend analysis methods 
to explore the spatial distribution and temporal variation of NDVI in the Heihe River Basin (HRB). The results 
show that a continuous NDVI increase in the HRB from 1982 to 2015, and the growth rate post-2000 being 1.66 
times higher than pre-2000, with distinct seasonal periodic fluctuations. Spatially, vegetation thrives predomi-
nantly in the upstream and downstream riparian zones of the HRB, displaying significant spatial heterogeneity, 
and it shows an obvious increasing trend in the middle and lower reaches, especially after 2000. We built a 
theoretical method using eigen microstates to quantify the dynamic changes in ecosystem vegetation. The first 
two microstates can account for 64% of the NDVI variations, among which the first microstate captures the 
overall uptrend and seasonal periodicity of NDVI, while the second microstate highlights the key contributions of 
soil moisture to vegetation growth. In HRB, soil moisture emerges as the most influential factor for vegetation 
improvement, surpassing other meteorological variables. Meanwhile, there’s a one-month lag in vegetation 
response to soil moisture, and deeper soil moisture exerts a more pronounced effect on vegetation coverage. This 
study not only validates the effective applicability of eigen microstates for identifying and attributing ecosystem 
changes but also provides a new perspective for comprehending the impact of soil moisture on vegetation 
dynamics.   

1. Introduction 

Vegetation comprises a pivotal constituent within terrestrial eco-
systems, serving as the fundamental substrate for the entire ecological 
framework. Extensive research has highlighted its central role in the 
complex global carbon cycle dynamics (Ciais et al., 2005; Jiang et al., 
2022; Peylin et al., 2005). Simultaneously, it functions as a discerning 
barometer of ecosystem vitality, proficiently manifesting perturbations 
induced by external environmental fluxes (Peng et al., 2011; Piao et al., 
2011; Zhao et al., 2018). Over recent decades, terrestrial ecosystems 
have undergone notable regional transformations, attributed to the 
conjoined influences of anthropogenic activities and climatic shifts, as 
substantiated in prior studies (Jiang et al., 2017; Kariyeva and Van 

Leeuwen, 2011; Peñuelas et al., 2002). Consequently, long-term sys-
tematic alterations in vegetative cover have become a forefront and 
focal area of research in contemporary ecological discourse (Chu et al., 
2019; Park and Sohn, 2010). 

The second largest inland river basin in China, the Heihe River, 
originates in the Tibetan Plateau and extends northward to arid and 
semi-arid territories, encompassing three distinct ecosystems- 
mountains, oases, and deserts-which collectively form a prototypical 
complex ecosystem. In recent years, scholarly attention has increasingly 
focused on subjects related to vegetation dynamics, water resource 
allocation, and climate fluctuations within the HRB (Ma and Frank, 
2006; Geng et al., 2014; You et al., 2018). Researchers utilized NDVI to 
analyze vegetation change patterns and their correlation with 
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meteorological variables in the upper, middle, and lower segments of 
the HRB from 1982 to 2015, with a specific focus on the period post- 
2000 (Yuan et al., 2019a). Scholars particularly highlighted the 
diverse impacts of ecological engineering endeavors on different 
geographical regions and vegetation categories within the basin (Chang 
et al., 2011). Using EVI, researchers observed noticeable variations in 
vegetation change patterns among these segments, displaying an overall 
increasing trend across years. The upper regions predominantly 
exhibited responsiveness to temperature and precipitation, while sur-
face runoff emerged as the principal influencer in the middle and lower 
regions (Xiao et al., 2015; You et al., 2018). Furthermore, someone 
devised a GPP estimation technique, providing deeper insights into the 
distinct influences of climate-driven factors across diverse river basins 
within the HRB (You et al., 2020). But there remains a lack of under-
standing regarding shifts in ecosystem stability and the fundamental 
drivers impacting the vegetation ecosystem in the HRB. Therefore, it is 
imperative to investigate the enduring transformations of regional 
ecosystems, with a specific emphasis on vegetation, through the adop-
tion of a holistic and intricate systems perspective. 

Scholars worldwide have long conducted extensive research on 
vegetation changes and ecosystems, underscoring the central role of 
ecosystem stability in ecology (Ives and Carpenter, 2007). The estab-
lishment of prolonged vegetation monitoring serves as a foundational 
underpinning for uncovering the determinants of change and delving 
into the dynamics of ecosystems (De Jong et al., 2013; Verbesselt et al., 
2010; Virtanen et al., 2010). Previous research often adopted a reduc-
tionist framework, involving the direct correlation of regional and cat-
egorical vegetation indices with meteorological variables such as 
precipitation, radiation, and temperature (Lamchin et al., 2018; Liu and 
Lei, 2015; Xu et al., 2014; Xu et al., 2017). It allows for a relatively 
expedited evaluation assessment of the impact of meteorological factors 
on vegetation changes within specific geographical regions, types, and 
temporal intervals. Nevertheless, it falls short in its ability to discern the 
presence of systematic changes within regional ecosystems or in eluci-
dating inherent global characteristics. 

Statistical physics-based research methodologies have proven to be 
instrumental in analyzing complex Earth systems, yielding valuable in-
sights into our understanding of the climate system. For example, by 
employing the critical point identification and prediction method, re-
searchers have discovered a robust negative teleconnection between the 
Amazon Rainforest Area and the TP, and it has led to the indication that 
the TP should be considered as a candidate for inclusion in the list of 
tipping elements (Lenton et al., 2019; Liu et al., 2023). Furthermore, the 
eigen microstates method, which is based on the theoretical framework 
of statistical physics, has been successfully applied to the study of non- 
equilibrium complex systems with unknown order parameters. For 
instance, in the context of Earth system climate patterns, the analysis of 
the six primary eigen microstates and their evolutions has unveiled in-
sights into the seasonal cycle, land-sea temperature contrast, tropical 
warming, semiannual oscillations, and El Niño (Sun et al., 2021). 
Additionally, when examining the ozone mass mixing ratio (OMMR) at 
varying geopotential heights, the first eigen microstate has illuminated 
changes in atmospheric structure, the overall trend of OMMR, and has 
facilitated the identification of phenomena such as the El Niño Southern 
Oscillation (ENSO) and the Quasi-Biennial Oscillation (Chen et al., 
2021). In addition, this method has also demonstrated that the strengths 
of the two major eigen microstates of temperature in the tropics vary 
significantly with the interannual variability of ENSO (Zhang et al., 
2020). 

Undoubtedly, the eigen microstate method has furnished a compre-
hensive and efficacious explanation of emerging phenomena and 
evolutionary mechanisms within non-equilibrium complex systems. 
Consequently, we are incorporating this method to explore the global 
variations in NDVI across the HRB. Our objective is to validate the 
method’s suitability in studying this complex ecological system in HRB, 
quantifying systematic alterations in both vegetation and 

meteorological components within this locale, and uncovering the key 
factors of vegetation changes from diverse microstate perspectives. This 
approach may provide a more profound avenue for attaining a 
comprehensive grasp of the perennial ecological evolution patterns. 

2. Data and methods 

2.1. Study area 

The HRB (37◦N-43◦N, 97◦E-102◦E, Fig. 1) situated within the arid 
and semi-arid regions of northwestern China, stands as the second- 
largest inland river in this geographical expanse, spanning a primary 
course of 821 km. The basin comprises a rich tapestry of ecological 
environments, including glaciers, alpine meadows, forests, irrigated 
farmlands and deserts (Cheng et al., 2014). The headwaters, nestled in 
the Qilian Mountains, draw upon glacier meltwater contributions and 
display robust vegetation coverage. The middle Hexi Corridor is char-
acterized by meager precipitation, substantial evaporation and signifi-
cant irrigation. The downstream area mainly consists of deserts and 
barren landscapes, marking a region where the river’s flow diminishes 
(Cheng et al., 2014; Fan et al., 2018). The solitary Ejina Oasis in the 
downstream area serves as both a critical natural buffer for ecological 
preservation and a vital habitat for the local population’s sustenance 
(Jiang and Liu, 2010; Zang and Liu, 2013). 

The HRB is ecologically vulnerable, characterized by annual pre-
cipitation levels below 500 mm, sparse vegetation and severe deserti-
fication (Nian et al., 2014; Chen et al., 2014). Since the 20th century, 
rapid population growth and economic development have resulted in 
changes in land use as well as ecological patterns, leading to a critical 
ecological predicament (Fan et al., 2018). Therefore, this study aims to 
quantitatively depict the holistic and general rules, commencing with an 
analysis of the vegetation ecological processes in the HRB. 

2.2. Data 

The NDVI data used in this work is sourced from the Global Inventory 
Monitoring and Modelling System (GIMMS) NDVI3g v1.0 dataset 
covering the period from 1982 to 2015 (https://ecocast.arc.nasa. 
gov/data/pub/gimms/). And it has a temporal resolution of 15 days 
and a spatial resolution of 1/12◦ × 1/12◦, resulting in 4,320 grids over 
the entire region. We employ a mean synthesis method, which involves 
averaging data from two adjacent 15-day time points, to derive monthly 
average data. 

We utilized the ERA5 reanalysis data set of the fifth-generation Eu-
ropean Center for Medium-Range Weather Forecasts (ECMWF, https 
://cds.climate.copernicus.eu/), covering variables the 2 m tempera-
ture and precipitation. The ERA5 reanalysis data incorporates expanded 
data sources, an updated weather prediction model, assimilation system, 
and enjoys extensive utilization (Rohrer et al., 2020; Guo et al., 2021; 
Fan et al., 2021; Fan et al., 2023). The spatial resolution is 0.25◦ × 0.25◦. 
Soil moisture and surface runoff data are procured from ERA5-Land, 
which has a spatial resolution of 0.1◦ × 0.1◦ and comprises four 
layers, 0–7 cm, 7–28 cm, 29–100 cm and 100–289 cm. ERA5-land pro-
vides advantageous reanalysis data with significant spatial and temporal 
continuity, as well as high spatial and temporal resolution. and it is 
widely used in the field of environmental geomorphology (Li et al., 
2020; Wu et al., 2020). 

2.3. Method 

2.3.1. Trend analysis 
The trend analysis method allows for a more comprehensive 

portrayal of the temporal dynamics within a specific area (Jiang et al., 
2015; Yuan et al., 2019b; Ma and Frank, 2006). In this study, we con-
ducted a regional-scale linear regression analysis to examine the asso-
ciation between NDVI and time, concurrently calculating 95 % 
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confidence intervals and verifying the significance of the trend through 
t-test statistics (P < 0.05). Simultaneously, it was used to estimate the 
slope of NDVI on a pixel-wise basis to obtain the spatial multi-year trend, 
facilitating both monthly and seasonal trend analyses. The slope can be 
fitted by the observation series (t,NDVIi) of each grid point: 

Slope =

∑T
j=1

(
tj − t

)(
NDVIj − NDVI

)

∑T
j=1

(
tj − t

)2 (1)  

where Slope is the trend; NDVIj is the value at time tj; when Slope > 0, it 
indicates an upward trend in NDVI over time; when Slope < 0, it in-
dicates an downward trend in NDVI over time; T is the cumulative 
number of months during the study period. 

2.3.2. Correlation analysis 
Correlation analysis can reveal the interrelationship between the two 

variables. Pearson’s correlation coefficient is commonly used in envi-
ronmental science and ecology to assess the relationship between 
climate change and ecosystem dynamics (John et al., 2016; Ichii et al., 
2002). Therefore, we chose it for correlation analysis, which was 
calculated as follows: 

r =

∑T
i=1(VNDVI − VNDVI)(VY − VY)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

i=1
(VNDVI − VNDVI)

2 ∑
T

i=1
(VY − VY)

2

√ (2)  

r falls within the range of [-1,1], signifying both the direction and 
strength of the trend between the two vectors. Y represents the other 
variables in the study except NDVI. 

2.3.3. Eigen microstate method 
The eigen microstate method has good interpretability in analyzing 

the collective behaviors of complex systems (Sun et al., 2021). We first 
construct microstates of an ecosystem from NDVI data. For the complex 
ecosystem composed of N agents, the NDVI at a grid i and time t is si(t). 
The average NDVI at i during the time period T can be calculated as si =
1
T
∑T

t=1si(t) and the fluctuations of NDVI at the grid i are δsi(t) =

si(t) − si(t). Considering the obvious difference in geographical features 
within the upper and lower reaches of the HRB, substantial disparities in 
vegetation cover are observed, resulting in significant variations in 
variance. Thus, we construct the microstate δS(t) =
[δS1(t), δS2(t), ..., δSN(t)]T at time t and characterize the fluctuations of 
NDVI, Si(t) =

δsi(t)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
〈[δsi(t)]2 〉

√ . 

Therefore, based on the microstates defined δS(t), we can get an N ×

T ensemble matrix A with Ait: 

Ait =
Si(t)
̅̅̅̅̅̅
C0

√ (3)  

where C0 =
∑T

t=1
∑N

i=1S2
i (t). 

Considering the correlation of NDVI microstates at ti, tj, C(ti, tj) =

δS(ti)T⋅δS(tj), then we can get a T × T correlation matrix of microstate 
C = C0AT⋅A with C(ti, tj) as its elements. The matrix C has T eigenvectors 
vj of j = 1, 2, ...,T and they can compose a T × T unitary matrix V =

[v1, v2, ..., vT ]. 
The correlation Kij(T) between different grids can be defined as 

Kij(T) = δSiδST
j , and we can get an N × N correlation matrix K =

C0A⋅AT. The matrix K has N eigenvalues λn and N eigenvectors. Then we 
can obtain N × N unitary matrix U = [u1,u2, ...,uN]. 

By using the singular value decomposition (SVD), it is possible to 
factorize the ensemble matrix A as A = U⋅Λ⋅VT =

∑
r=1σjuj(T)⊗ (vj)

T. 
The matrix Λ contains the singular values σj with its numbering 
following a sequential order σ1⩾σ2⩾...⩾σr, r = min(T, N). With K =

C0A⋅AT, we can get K⋅uj = C0(σj)
2uj. From TrC= TrK = C0, K

C0
= 1,we 

have the relation 
∑T

i=1(σi)
2
= 1. The uj represents the j th eigen 

microstate and (σj)
2 is the weight. The evolution of the j th eigen 

microstate can be calculated as Se
j =

∑N
i=1Siuij = σjvj. 

Then, we get vj for the evolution of the j th eigen microstate. And in 
contrast to the regression method, this approach more accurately cap-
tures the overarching dynamic physical mechanisms. 

Fig. 1. Elevation and location of the Heihe River Basin, Northwest China.  
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3 Result. 

3.1. Analysis of Spatial-Temporal characteristics of NDVI in Heihe River 
Basin 

Fig. 2 shows the spatiotemporal distribution characteristics of NDVI 
in the HRB. In terms of time (Fig. 2a), with the year 2000 as the dividing 
line, there is a significant upward trend in NDVI from 1982 to 2000 (y =
0.0003x + 0.110, R2 = 0.51, P < 0.001), while the growth rate after 
2000 is approximately 1.66 times as large as that before 2000, demon-
strating a notably increased growth rate (y = 0.0005x + 0.112, R2 =

0.50, P < 0.01). The monthly mean results in Fig. 2a show consistent 
seasonal variations before and after 2000. NDVI exhibits a progressive 
increase from May to August each year, peaking in August. It is worth 
noting that NDVI after 2000 is higher than that before 2000 mainly in 
summer and autumn, indicating that vegetation coverage increased 
faster during this period. 

In terms of space, the annual average NDVI in the study area ranges 
from 0 to 0.5. Approximately 85 % of the regions exhibits a mean value 
below 0.2, while around 14 % shows values ranging from 0.2 to 0.4, and 
merely 0.5 % register values exceeding 0.4. This fully portrays the sparse 
vegetation and low vegetation coverage in HRB. NDVI value in the upper 
reaches of the HRB is higher compared to the middle and lower reaches. 
In the lower reaches, the value reaches 0.2, notably in the desert riparian 
zone of HRB and Ejina Oasis (Fig. 2b). Accordingly, the spatial distri-
bution of NDVI standard deviation corresponds well with its mean value, 
indicating that the zones with larger standard deviation generally 
exhibit a greater NDVI mean value (Fig. 2b). Specifically, the study area 
is mainly residing in arid and semi-arid regions in the middle latitudes of 

the northern hemisphere, exhibiting distinct seasonal variations in 
vegetation. Especially, the NDVI values during the growing season and 
withering period display significant disparities (Zhu et al., 2019). 
However, the overall NDVI standard deviation in the study area remains 
small, with a mean value of only 0.04 and a maximum value of 
approximately 0.23. This suggests that the extent of vegetation fluctu-
ations across the entire area is limited. 

We conducted a detailed analysis of the spatiotemporal change 
trends of vegetation in the two different time periods (Fig. 3). Before 
2000, 81 % of the area shows an upward trend in NDVI (in 11.82 % of 
the area, NDVI increased significantly), and after 2000, 84 % of the area 
shows an upward trend in NDVI (in 51.36 % of the area, NDVI increased 
significantly). Thus, the proportion of vegetation with significant in-
crease after 2000 is much larger than that before 2000 (Fig. 3cd). Ac-
cording to the spatial trend chart (Fig. 3ab), the vegetation improvement 
after 2000 is predominantly concentrated in the middle and lower rea-
ches of the HRB. The existing studies have also identified an increasing 
trend in NDVI in the HRB, and have attributed these changes to human- 
induced vegetation enhancements (Ding et al., 2017) as well as the 
variations of temperature and precipitation (You et al., 2020; Yuan 
et al., 2019a). 

According to the above findings, NDVI in the study area displays 
distinct seasonal variations (Fig. 2a). We proceeded to conduct a 
detailed analysis of the spatial distribution patterns and seasonal trends. 
In terms of space (Fig. 4), the mean values of NDVI for spring, summer, 
autumn and winter are 0.10, 0.16, 0.11 and 0.09, respectively, and the 
corresponding maximum values are observed in spring (0.37), summer 
(0.74), autumn (0.45) and winter (0.34). The highest values of NDVI 
appear in the forest ecosystem of Qilian Mountains in the upper reaches 
of the HRB, with NDVI values exceeding 0.7. Particularly NDVI values 

Fig. 2. Time series and spatial distribution of NDVI mean and its standard deviation in Heihe River Basin. (a) Time series of annual NDVI with mean monthly NDVI 
inset. Shaded area indicate 95 % confidence interval and show the error bars indicate ± 1 SD. (b) The mean value of NDVI from 1982 to 2015. (c) The standard 
deviation of NDVI from 1982 to 2015. 
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during summer and autumn significantly surpass those in winter and 
spring, whereas values in spring and winter are closely aligned, the same 
holds true for values in summer and autumn. This indicates that there is 
a significant difference in local vegetation change between summer and 
winter half year. This phenomenon is intricately linked to the regional 
continental climate. In the HRB, spring witnesses a rapid temperature 
increase, followed by a swift drop in autumn, with precipitation pri-
marily concentrated in the summer and autumn months (Sun et al., 
2015). Upon comparison, it becomes evident that the difference among 
maximum NDVI values across the four seasons significantly exceeds that 
of the mean values. This discrepancy can be primarily attributed to the 
dominant presence of desert regions within the entire study area, 
thereby diminishing the overall average NDVI levels. 

In addition, we quantified the seasonal spatial variations in vegeta-
tion (Fig. 5). During spring, there is a relatively modest overall upward 
trend, with most regions in the upper reaches showing a slight but sta-
tistically insignificant growth, while some areas exhibit a decline. 
Downstream areas, conversely, display a more pronounced growth 
trend. In summer, the upper and middle reaches all experience a sig-
nificant increase, especially in forested and agricultural regions (Li et al., 
2009). Autumn also shows a noteworthy increase, particularly in agri-
cultural regions, though the level of significance is moderate. Winter, in 
contrast, reveals a notably weaker overall growth trend. When com-
bined with Fig. 4, it becomes evident that the vegetation increase in the 
HRB primarily concentrates during summer and autumn, mainly within 
the middle and upper reaches. At the same time, the regions with a 
significant increase in NDVI during summer exhibit the widest 

distribution, underscoring that vegetation improvement in the HRB 
basically occurs during the growing season. 

Based on the comprehensive analysis presented above, it is clear that 
the vegetation in the HRB demonstrates noteworthy spatiotemporal 
variations. Specifically, spatial and seasonal distinctions underscore the 
complexity of vegetation dynamics in the region’s ecosystem. Hence it is 
imperative to approach the alterations in regional vegetation and 
ecosystem from a complex systems perspective. Prior research has 
emphasized that NDVI fluctuations are influenced by a range of factors, 
including temperature, precipitation, and human activities (Zhu, et al., 
2020; Fang et al., 2005; Qi and Luo, 2006). These multifaceted in-
fluences emphasis the complexity interplay between the regional 
ecosystem and its environment. Therefore, by treating regional vegeta-
tion and ecosystem changes as integral components of a broader system 
and analyzing the emergence of overarching system patterns within the 
context of complex systems, we can attain a more profound under-
standing of the dynamic shifts in vegetation and environmental re-
sponses within this ecosystem. 

3.2. Decomposition of NDVI in HRB from the perspective of eigen 
microstates 

Drawing on the understanding of the fundamental spatiotemporal 
patterns of NDVI in the HRB, we sought to gain a comprehensive insight 
into the basin’s dynamics by introducing eigen microstates as a quan-
titative analytical framework. We determined the spatial distribution 
and temporal evolution patterns of the initial six eigen microstates of 

Fig. 3. Trends of NDVI in Heihe River Basin during the periods of 1982–2000 and 2001–2015. (a) The trend of 1982–2000. (b) The trend of 2001–2015. (c) NDVI 
trend probability density function across the two periods. (d) Bar graph depicting trend significance across two periods. Inc* (significant increases; P < 0.05), Inc 
(increases), St. (stable change) Dec (decreases), and Dec* (significant decreases). 
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NDVI in the HRB (Fig. S1 and S2). In aggregate, these six microstates 
collectively explain 78 % of the total variance, with the first two mi-
crostates contributing significantly, accounting for 64 %. Consequently, 
the predominant drivers of vegetation change in this region are encap-
sulated within these two principal microstates. In the subsequent sec-
tions, we delve into a detailed analysis of the spatiotemporal 
characteristics of this first two microstates and elucidate the mecha-
nisms underpinning their dynamics. 

As depicted in Fig. 6a, EM1 demonstrates a conspicuous seasonal 
cyclic pattern, contributing significantly to the total variance with a 
proportion of 42.57 %. The spatial distribution of EM1 microstate por-
trays a prevailing ascending trend, albeit with sporadic irregularities in 
the lower HRB region. A comparison with the topographic map (Fig. 1) 
highlights the distinct lower elevation of this area compared to its sur-
roundings, suggesting that these diverging trends may be linked to 
topographical disparities. Fig. 6c provides a visual representation of 
EM1′s temporal evolution. Post-2005, the evolution of EM1 reveals a 
perceptible upward trend. But post-2012 it demonstrates a descending 
pattern and the corresponding numerical values almost consistently 
exceed zero which elucidate a prominent indication of systemic change. 
Moreover, the temporal evolution in Fig. 6c captures the seasonal dy-
namics of vegetation growth in this region, characterized by distinct 
interannual patterns. Annually the results for summer closely resemble 
those for autumn, while those for winter align with spring. However, 
noticeable disparities emerge when comparing the results between 
spring and autumn, as well as emerge when comparing the results be-
tween winter and spring. These observations are further supported by 
spectral analysis findings (Fig. 7a), which unveil annual variations 
marked by distinct peaks and sub-peaks occurring biannually in 
conjunction with solar radiation fluctuations. 

Fig. 6b and Fig. 6d delineate the spatial distribution and temporal 
evolution of EM2, the second-largest NDVI microstate in the HRB, 

Fig. 4. Seasonal variation characteristics of NDVI in Heihe River Basin.  

Fig. 5. Seasonal Spatial Variation Trend of NDVI in Heihe River Basin. Red 
signifies a positive trend, while blue signifies a negative trend, with the in-
tensity of the color corresponding to the magnitude of the trend and the areas 
marked with diagonal lines indicate significance levels below 0.05. (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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contributing to 21.63 % of the variance. Similar to EM1, EM2 exhibits 
prominent interannual features, with the most notable cyclic pattern 
observed annually (Fig. 7b). Interestingly, EM2 microstate manifests 
obvious spatial variations, with positive values concentrated in the 
middle and upper reaches as well as along the primary channel of the 
lower reaches, while negative values prevail elsewhere. These dispar-
ities appear linked to water resources, although the combined influence 
of other climate variables and human activities must not be discounted 
(Qi and Luo, 2006; Li et al., 2013). In Fig. 6d, a distinct pattern emerges, 
characterized by a pronounced decline in fluctuations post-2005 and a 
notable increase post-2012. Remarkably, the values of the evolution 
during 2012–2015 consistently fall below zero, indicating a clear sys-
temic transformation. By considering the previous insights presented in 
Fig. 6c, we establish that the ecosystem of the HRB experienced a 
continuous period of growth around 2011. This upward trajectory per-
sisted until 2012, eventually resulting in a systemic shift, as depicted in 
Fig. 6c and Fig. 6d. However, a comprehensive understanding of the 
specific physical mechanisms underlying this phenomenon necessitates 
further examination using abundant data. 

The aforementioned findings affirm the reliability of eigen 

microstates in assessing NDVI with the initial six microstates collectively 
explain nearly 80 % of the total variance. Concurrently, the spatial 
distribution analysis of EM1 corroborates a consistent NDVI increase in 
specified area (Fig. 6a), while the temporal evolution results of EM1 
confirms the seasonally changing NDVI patterns and a pronounced 
growth trend post-2000 (Fig. 6c). Furthermore, the spatial distribution 
patterns of both EM1 and EM2 suggest a heightened correlation between 
the enhanced NDVI in the HRB and the complex interplay of natural 
factors and human activities that influence water resource availability. 

3.3. Attribution analysis of NDVI changes in HRB 

Climatic parameters, specifically temperature and precipitation, 
unequivocally stand out as the predominant factors influencing vege-
tation. In previous research, scholars typically employed correlation 
analysis or regression analysis to explore the connection between NDVI 
and temperature alongside precipitation within a reductionist paradigm 
(He et al., 2022; Ju and Masek, 2016). Our study introduced several 
enhancements. Firstly, we conducted a comprehensive statistical anal-
ysis encompassing the mean and standard deviation of crucial 

Fig. 6. Spatial distributions (a, b) and their evolutions (c, d) of the two largest eigen microstates of NDVI. EM1 and EM2 represent the first and second eigen 
microstate, respectively. 

Fig. 7. Fourier power spectrum density of evolution for the two largest eigen microstates of NDVI.  
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meteorological and environmental parameters (temperature, precipita-
tion and runoff) in the HRB (Fig. S3). The spatial distribution outcomes 
revealed conspicuous differences in temperature, precipitation and 
surface runoff between the upper the middle-to-lower regions of the 
HRB. Surface runoff exhibited a conspicuous rise solely in the fore 
mountain runoff collection area in the upper reaches, characterized by 
an annual average temperature below 0℃ and predominant precipita-
tion exceeding 1.5 mm. Conversely, a divergent pattern was evident in 
the middle and lower reaches (Fig. S3). In the realm of interannual 
variability, precipitation exhibits a subtle upward trend (k = 0.0017, R2 

= 0.1194), while the ascending trajectory of temperature is more pro-
nounced (k = 0.0425, R2 = 0.4527) (Fig. S4). 

In addition, through correlation and multivariate linear regression 
analyses, precipitation emerges as the most responsive element to var-
iations in vegetation coverage within the HRB and this sensitivity can be 
attributed to the vertical zonation, high altitude, and low temperatures 
prevalent in the upper reaches of the HRB (Ma et al., 2006). As pre-
cipitation and temperature increase, vegetation growth in this region 
gains a distinct advantage, with the collective impact of temperature and 
precipitation exerting a substantial influence on the upper reaches (You 
et al., 2018). Notably, in the middle and lower reaches, oasis vegetation 
exhibits a notable spatial correlation with water system distribution and 
surface runoff (Xiao et al., 2015). In contrast, non-oasis vegetation ex-
periences a more intricate interplay of temperature and precipitation 
effects. This complexity arises from the prevalence of farmland and 
protective forests in the middle reaches, primarily influenced by irri-
gation and water storage projects (Nian et al., 2014; Zhu et al., 2020). 
Downstream vegetation, concentrated along riverbanks, is directly 
impacted by surface runoff (Ding et al., 2017). Conclusively, for the 
intricately structured geography of the HRB, temperature, precipitation, 
and surface runoff emerge as the principal determinants significantly 
shaping the distribution and growth of vegetation in this region. 

Despite the consistent spatial distribution of the standard deviation 

and mean of each variable, their alignment with the spatial distribution 
of NDVI eigen microstates is not substantial (EM1 and EM2) (Fig. 6ab). 
Especially noteworthy is the substantial post-2000 upsurge in NDVI, 
which evidently cannot be solely attributed to meteorological variables 
(Fig. S4 and Fig. 2). This finding explicates the limitations of relying 
merely on a single meteorological variable to explain changes in NDVI. 

In fact, China initiated a series of ecological preservation initiatives 
in the HRB post-2000, such as ecological water transfer, strategic forest 
protection projects, and land conversion to forests and grasslands (Chen 
et al., 2014; Ding et al., 2017; Fan et al., 2018). These ecological un-
dertakings have ameliorated the ecological milieu in the basin, leading 
to an augmentation in vegetation cover (Li et al., 2017; Fan et al., 2018; 
Chang et al., 2011). Recognizing the crucial role of water resources in 
nurturing vegetation in arid regions (Xiao et al., 2015; Nian et al., 2014), 
there has been ongoing debate regarding the choice of methodology and 
variables to gauge water’s influence on vegetation. 

In our study, we calculated the mean and standard deviation of soil 
moisture content across four layers, guided by the spatial distribution 
pattern evident in the second most prominent mode of NDVI (EM2) 
(Fig. S5). Our findings indicate a relatively congruent spatial alignment 
between soil water distribution, original NDVI values, and EM2 distri-
bution. Subsequently, we performed a comprehensive examination of 
the eigen microstates within the four soil moisture layers. In terms of 
spatial distribution, the upper reaches exhibit a prominent positive trend 
in soil water content, and the second and third layers of soil moisture 
closely mirror the spatial distribution of irrigated farmland within the 
HRB. To put it simply, when considering spatial aspects, the microstate 
in soil moisture content across these four layers closely correspond with 
those observed in the NDVI (Fig. 8). We then proceeded to conduct a 
temporal analysis, independently fitting the outcomes of the second 
microstate for soil moisture within the four layers and the second 
microstate of NDVI separately (Fig. 9). Fig. 9 illustrates that, except for 
the initial soil moisture layer, the correlation between the second 

Fig. 8. Spatial distributions of eigen microstates of 4-layer-SM (a, b, c, d).  
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microstate of NDVI and the second one of soil moisture consistently 
registers 0.5 or higher, with the strength of this correlation increasing as 
soil depth increases. 

In summary, we commenced with a meticulous data analysis coupled 
with feature decomposition techniques, enabling us to elucidate the 
substantial role of soil moisture within the HRB. This contribution sur-
passes that of precipitation, humidity, and temperature as observed in 
prior research, in terms of enhancing vegetation. The underlying phys-
ical mechanism behind this phenomenon is rooted in soil moisture’s 
ability to encapsulate the amalgamation of natural precipitation and 
anthropogenic influences, such as irrigation and ecological water 
transfers. Consequently, it plays a vital role in providing a more precise 
representation of water accessibility for vegetation. 

4. Discussion 

4.1. Soil moisture dominates vegetation growth 

A recent study has also shown that soil moisture as the primary 
driver influencing vegetation growth in Eurasian drylands (Zhang et al., 
2023). During drought events, vegetation structure parameters experi-
ence water stress attributable to elevated atmospheric water demand 
and constrained water supply from soil reservoirs. Not only that, soil 
moisture emerges as a primary determinant influencing the light-use 
efficiency in dryland vegetation, alongside the vegetation factor. 
Consequently, arid zone vegetation plays a pivotal role in steering the 

global trend of increased vegetation productivity (Wang et al., 2023). 
This global perspective aligns with the findings of our study, further 
substantiating the validity of our eigen microstate analysis approach. 
Therefore, we underscore the heightened significance of deep soil 
moisture in fostering vegetation growth, attributable to two key factors. 
Firstly, the study area’s location in an arid and semi-arid region, char-
acterized by rapid surface soil moisture evaporation. Secondly, the 
presence of relatively deep root absorption zones in both desert and 
mountain forest vegetation within the region (Li et al., 2013; Ding et al., 
2017; Fan et al., 2018). Additionally, our research uncovers a time lag 
effect in vegetation enhancement due to soil moisture in the HRB region, 
with this lag period peaking at around one month (Fig. 10). 

4.2. Uncertainty analysis 

It should be noted that we utilize soil moisture data at a 0.1◦×0.1◦

resolution in our study. The eigen microstate method demonstrates 
favorable performance at this resolution and exhibits stability in 
analyzing HRB. Subsequently, we resampled the soil moisture to achieve 
a spatial resolution consistent with NDVI, set at 1/12◦×1/12◦. The re-
sults showed that the spatial distribution of soil moisture data pre- and 
post-resampling exhibited substantial consistency (Fig. S6 and S7). 
Following this, an eigen microscopic decomposition of the resampled 
data was executed. A comparison of spatial modes and temporal evo-
lutions with pre-resampling results revealed no significant feature al-
terations. Notably, the temporal evolution exhibited an almost 100 % 
consistency before and after resampling (Fig. S8, Fig. S9). 

However, it is important to note that the use of low-resolution data 
introduces the possibility of inadequate capture of intricate details and 
geographical complexities. Given the intricate topography of the HRB, 
the discernment of localized variations in vegetation cover may be 
insufficient, leading to distorted and obscured outcomes. And with 
coarser spatial resolution, surface features may be averaged, making it 
difficult to distinguish between different feature types. This can be 
problematic about the delicate relationship between soil moisture and 
vegetation cover. Future improvements will be considered based on 
specific research questions addressed in subsequent work. 

5. Conclusion 

This study utilizes remote sensing observation data and meteoro-
logical reanalysis data to establish a robust analytical framework for 
investigating ecosystem complexity and the dynamics of vegetation 
evolution. We apply eigen microstates and a range of analytical tech-
niques within this framework. The developed eigen microstate method 
effectively decomposes NDVI microstates in conjunction with pertinent 
meteorological and environmental variables, elucidating their overall 
distribution characteristics, seasonal patterns, and interrelationships. 

Upon the results of NDVI by eigen microstates, we discern that the 
ecosystem in the study area remains within a relatively stable phase of 
vegetation improvement. More importantly, the NDVI eigen microstate 
EM1 demonstrates consistency with both the overall vegetation 
improvement trend in the study area and the original data trend. 
Meanwhile, the NDVI eigen microstate EM2 reveals the main role of soil 
moisture in enhancing vegetation in arid regions. Soil moisture, being a 
multifaceted factor influenced by natural and human factors on water 
resources, displays superior explanatory power for vegetation growth in 
the study area when compared to individual meteorological variables. 
Additionally, we identify a one-month lag in the response of vegetation 
growth to soil moisture in the study area, with sensitivity increasing as 
soil moisture levels deepen. The methodologies and findings of this 
study hold the potential to advance the application of statistical physics 
within ecology and contribute to the field of ecological environment 
management. 

Fig. 9. Correlation comparison between the evolution V2 of 4-layer-SM (a, b, c, 
d) and the evolution V2 of NDVI. 
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