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Evolutionary tinkering enriches the hierarchical and nested structures in amino acid sequences
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Genetic information often exhibits hierarchical and nested relationships, achieved through the reuse of repet-
itive subsequences such as duplicons and transposable elements, a concept termed “evolutionary tinkering” by
François Jacob. Current bioinformatics tools often struggle to capture these, particularly the nested, relationships.
To address this, we utilized ladderpath, an approach within the broader category of algorithmic information
theory, introducing two key measures: order rate η for characterizing sequence pattern repetitions and regular-
ities, and ladderpath-complexity κ for assessing hierarchical and nested richness. Our analysis of amino acid
sequences revealed that humans have more sequences with higher κ values, and proteins with many intrinsically
disordered regions exhibit increased η values. Additionally, it was found that extremely long sequences with
low η are rare. We hypothesize that this arises from varied duplication and mutation frequencies across different
evolutionary stages, which in turn suggests a zigzag pattern for the evolution of protein complexity. This is
supported by simulations and studies of protein families such as ubiquitin and NBPF, implying species-specific
or environment-influenced protein elongation strategies. The ladderpath approach offers a quantitative lens to
understand evolutionary tinkering and reuse, shedding light on the generative aspects of biological structures.
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I. INTRODUCTION

Bioinformatics approaches based on sequencing data have
effectively demonstrated that DNA and amino acid sequences
are encodable. This encodability has been illuminated by
employing a range of potent mathematical and statistical tech-
niques, revealing their biological significance. Various studies
have suggested strong correlations between the structural fea-
tures in sequences (such as regularity and nestedness) and
the functional properties of proteins [1–3]. One commonly
used approach to characterize the sequential features is the
Shannon entropy (defined as H = −∑

pi log2 pi, where pi is
the probability of observing letter i) and its variants [4,5]. It
was originally proposed to describe the uncertainty of a ran-
dom variable, but later adopted to characterize the sequential
randomness, behind the idea that a sequence can be thought of
as a realization of a sequential array of this random variable.
It represents a statistical notion of information and is insen-
sitive to the internal structure and pattern of an individual
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sequence, but it can also be pushed forward to analyze the
frequency distribution of short subsequences—namely, the
k-mer method—instead of individual letters, and to inves-
tigate simple and nonoverlapping repetitions [5,6]. Shannon
entropy has found extensive applications in biology and bio-
chemistry, such as identifying genetic motifs [7], analyzing
the evolution of genes [8], and describing the complexity of
chemical molecules [9]. Nevertheless, this type of approach
overlooks the internal hierarchical and nested relationships in
a sequence that are found to be very important at the protein
domain level [2,10,11] or even in language [12].

On the other hand, algorithmic information theory (AIT),
established by Kolmogorov and Chaitin [13,14], serves as
another powerful tool for characterizing structural features
and complexity. It aims to provide the shortest description
(on a universal computer) for a specific sequence or object,
known as algorithmic complexity. Several effective meth-
ods have been developed to approach algorithmic complexity
[15], and these have been applied to a wide range of ques-
tions, including characterizing the topological properties of
real-world networks [16], investigating whether biological
mutations are uniformly randomly distributed [17], and repro-
gramming the system by steering its algorithmic information
content through controlled interventions [18]. Built upon AIT,
compression algorithms that utilize repetitive subsequences
have been widely used not only for practical applications like
compressing sequences and images [19], but also for defining
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FIG. 1. Laddergraphs and a distribution for human proteins. (a) The laddergraph for the protein SPR2B_MOUSE, where the string at the
bottom represents this target protein and shorter strings above are ladderons. The most basic building blocks, namely, individual amino acid,
are omitted for better visualization. S = 98, λ = 50, and ω = 48. (b) The laddergraph for the protein ATX8_HUMAN, with S = 80, λ = 12,
and ω = 68. (c) The laddergraph for the protein A0A075B674_MOUSE, with S = 98, λ = 94, and ω = 4. (d) The distribution of order-index
ω vs size-index S, for human proteins with lengths below 500 AA.

the normalized compression distance, used for clustering in
various scenarios, including phylogenetics, languages, and
even music [20]. A conceptually analogous measure has also
been applied to characterize the structural complexity of
two-dimensional (2D) and three-dimensional (3D) structures,
defined within a specific set of building blocks and rules,
by identifying symmetry and modularity [21]; and more re-
cently, a study based on this measure analyzed the evolution
of protein complexes, leading to the conclusion that symmet-
ric structures are likely to appear preferentially because they
require less information to encode, making them easier to
emerge [22]. All these works highlight the significant value
of AIT in evolutionary research.

The amino acid sequence of a protein not only embodies
information about its thermodynamics, folding, and other
properties (Anfinsen’s principle) but also encapsulates details
related to its evolutionary trajectory and history, which could
be extracted. In 1977, François Jacob posited the abstract
idea that evolution is akin to “tinkering” [23], or more
specifically, innovations arise from the opportunistic reuse or
recombination of existing elements [24]. This process will
result in the information accumulated exhibiting hierarchical
and nested relationships. Much of this tinkering occurs
during replication errors, for example, through point mutation
and DNA duplications. The latter is associated with various
replication events, such as duplicons and transposable element
expansion [25–27], leading to increased complexity in both
protein families and genomes [28,29]. Various examples that
reflect this tinkering process exist: the length of bacteriophage
tails determined by tape measure protein (TMP) [30], the
needle length of bacterial injectisome by Yop secretion
protein P (YscP) [31], antifreeze glycoprotein in codfish [32],
the widespread presence of zinc finger proteins [33], and
extensive core duplications in primates [34]. Many of these
proteins have undergone significant expansion and mutation,

either actively or passively. Yet, the challenge of quantifying
such a tinkering process and nested relationships remains.

A recently proposed approach named “ladderpath,” within
the broader category of AIT, can be used to quantitatively de-
scribe the structural information of objects such as sequences,
molecules, proteins, and images [35]. It considers the shortest
path to generate the target object as the way to characterize
it, with the key assumption that the building blocks, once
generated, can be reused in any amount in subsequent steps.
These reused building blocks are called ladderons, which can
also be viewed as modules, as defined in Ref. [35]. This aligns
with the “tinkering” process proposed by François Jacob [23].
The number of steps required for ab initio generation of a
target object indicates its generation difficulty, defined as the
ladderpath-index λ. Hence, when considering a set of amino
acid sequences with the same length, one can discern which
sequence is more straightforward or easier to generate. Addi-
tionally, to characterize the degree of order in sequences of
varying lengths, another useful index, called the order-index,
is defined as ω := S − λ, where S is the size-index (namely,
the length) of the amino acid sequence. By deconstructing the
target object into a partially ordered multiset—or equivalently,
the laddergraph [as shown in Figs. 1(a)–1(c)]—the ladderpath
approach characterizes the structural intricacies rooted in the
hierarchical and nested relationships formed by the target
object’s repetitive substructures.

The concept of ladderpath also aligns with several other
theories, such as addition chain, assembly theory, and the
“adjacent possible” [24,36–39]. While these theories have
their own measures of complexity, the ladderpath approach
posits that “complexity” should be assessed using both the
ladderpath-index and the order-index [35]. A sequence is not
necessarily complex if it only has a high ladderpath-index
with a low order-index [Fig. 1(c)], or vice versa [Fig. 1(b)].
A sequence can be deemed complex if both indices are
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simultaneously high. Of the three real proteins examined,
the one with both a high ladderpath-index and order-index
[Fig. 1(a)] exhibits the most intricate and complex hierar-
chies. For a more encompassing view, Fig. 1(d) shows the
distribution of human proteins with lengths below 500 amino
acids (AA). The ladderpath approach underscores nature’s
propensity to innovate through tinkering and reusing existing
structures, a trend exemplified in processes like the evolution-
ary creation of new proteins.

This paper is organized as follows. In Sec. II A, we
provide a rigorous definition of the order rate and ladderpath-
complexity, and present a systematic comparison with a
commonly used k-mer related method. Sections II B and
II C present two statistical observations. The former reveals
that human protein sequences exhibit higher ladderpath-
complexity. The latter notes that proteins containing a
significant portion of intrinsically disordered regions, on av-
erage, possess a higher order rate. Both observations are
statistically significant. In Sec. II D, we begin by detailing
a statistical observation that there are almost no superlong
sequences with low order-rate values. We speculate that this
might be due to the different frequencies of duplication and
mutation across different evolutionary stages. This, in turn,
suggests that the evolution of protein complexity follows a
zigzag pattern. We offer several examples of protein families
to support this speculation. The paper concludes with a dis-
cussion and a methods section that describes the algorithm for
computing ladderpath-associated information. Open-source
code is also available.

II. RESULTS

A. Two indicators that characterize amino acid sequences

Firstly, we have developed an efficient algorithm to com-
pute the ladderpath-associated information of sequences,
details of which can be found in Sec. IV, with codes available
on GitHub for immediate use. This algorithm can effectively
handle sequences of around or below 10 000 AA. For se-
quences extending beyond this but below 40 000 AA, longer
running times are required but remain tolerable, and all se-
quences discussed in this paper fall within this range. In
contrast, the previous algorithm (see Ref. [35]) was limited
to handling sequences of approximately 20 AA. The statistics
displayed in Fig. 1(d) were derived using this new algorithm.

Moving on to Fig. 1(d), we noted a distinct lower boundary
for the order-index ω as the sequence length S increases.
This lower boundary stems from the finite number of ba-
sic building block types (which in this context are the 20
amino acid types), because as the length of amino acid se-
quences increases, repetitive subsequences become inevitable,
resulting in a nonzero value for ω. This is purely a mathe-
matical property, for which we need to compensate. Hence,
we introduce two new indicators—the order rate η and
ladderpath-complexity κ—to better characterize the system
with a finite number of basic building block types.

1. Order rate η

We define the order rate η of a sequence x as

η(x) := ω(x) − ω0(S)

ωmax(S) − ω0(S)
, (1)

where ω(x) is the order-index of sequence x, S is the size-
index of x (namely, the length of x), ωmax(S) is the maximum
order-index among all the sequences with length S, and ω0(S)
is the average order-index of all possible sequences with
length S, roughly corresponding to the average level of the
least ordered sequences; refer to Supplemental Material (SM)
[40] Sec. 1 for the calculations of ω0 and ωmax.

The order rate η characterizes the hierarchical and nested
relationships among the subsequences of a sequence, de-
scribing the pattern regularities and repetition in the target
sequence. Values of η close to zero mean that the degree of
order of the sequence is close to the average level of random
sequences, indicating that the sequence does not exhibit any
significant pattern. As η gets larger and larger, the repetitive
parts become more dominant and the sequence exhibits more
hierarchical structures [see Fig. 1(a)]. η reaches 1 only when
the sequence exhibits exponential elongation of a single letter,
e.g., T → TT → TTTT → TTTTTTTT.

2. ladderpath-complexity κ

Another indicator we put forward to characterize the in-
ternal structure of sequences is the ladderpath-complexity κ ,
defined as

κ (x) := [λ(x)][η(x)], (2)

where λ(x) is the ladderpath-index of sequence x, and η(x) is
the order rate of x. As mentioned, the order rate η is a relative
indicator of the regularities (compared with the average level
of totally random sequences and the most ordered sequence),
so its relevance might diminish across sequences of disparate
lengths. This indicator ladderpath-complexity κ instead takes
into account the minimum number of steps required for the
generation of the sequence that is characterized by λ, thereby
including the length effect. As demonstrated in the ladderpath
approach, the “complexity” of a sequence should incorporate
two aspects, that is, one is the difficulty in generating the
target, and the other aspect focuses on the hierarchical and
nested relationships within the internal sequential structure
[35]; the definition of κ integrates these two aspects, hence
its name: ladderpath-complexity.

For a given length (namely, size-index S), the maximum
value of the ladderpath-complexity κ can be anticipated
(see SM [40] Sec. 2 for the mathematical properties of
κ). That is, when ω = (S + ω0)/2 and λ = (S − ω0)/2, the
ladderpath-complexity κ (S) reaches its maximum value (S −
ω0)2/[4(ωmax − ω0)]. In the special case where ω0 = 0, κ

reaches its maximum when ω = λ = S/2 (note that ω0 ap-
pears in the general case because of the baseline effect
mentioned above). It indicates that when both ω and λ are
large, the ladderpath-complexity κ could be large (if only
one of ω or λ is large, κ cannot reach its maximum). This
is consistent with the notion that complexity incorporate two
aspects.

3. Examples and comparative analysis

Next, we take a few protein sequences as examples (with
diverse η and κ values) to more clearly and intuitively il-
lustrate what η and κ characterize (Table I and Fig. 2). We
can observe that (1) PO5F1_MOUSE has an order rate η

023215-3



ZECHENG ZHANG et al. PHYSICAL REVIEW RESEARCH 6, 023215 (2024)

TABLE I. Indicators characterizing protein sequences.

Examples of proteins sequences (entry name)

Indicator PO5F1_MOUSE SRY_MOUSE UBC_HUMAN SDK2_MOUSE

size-index (S) 352 392 685 2176
ladderpath-index (λ) 279 210 73 1379
order-index (ω) 73 182 612 797
order rate (η) 0.0442 0.3581 0.8870 0.0545
ladderpath-complexity (κ) 12.3181 75.1944 64.7484 75.1940

close to 0, meaning that the characteristic features of its
internal structure are indistinguishable from those of random
sequences [from Fig. 2(a) we can see its few hierarchical
structures]; (2) as the order rate η increases, the sequence
starts to exhibit richer hierarchical and nested structures, with
diverse and overlapping ladderons [Fig. 2(b)], while, as η

approaches 1, the hierarchy becomes more like a simple layer-
by-layer structure [Fig. 2(c)]; (3) although PO5F1_MOUSE
and SDK2_MOUSE have similar small order rate η, the latter
has a much higher ladderpath-complexity κ , just because the
latter is much longer. Meanwhile, although SRY_MOUSE is
much shorter than SDK2_MOUSE, its ladderpath-complexity
κ is even slightly higher because of its greater order rate η

[from Fig. 2(b) we can see its much richer hierarchical and
nested structures]. This indicates that length affects complex-
ity but is not the sole determinant.

Now, we will compare the indicators proposed in this
study with another commonly used method. As mentioned,
a commonly used tool to describe the sequential feature is the

Shannon entropy, which is, however, based on the statistical
notion of the frequency and the uncertainty of single letters,
rather than the internal structure of a sequence. Nevertheless,
the k-mer method has been employed to extend the notion for
single letters to substrings of a certain length. Chen et al. intro-
duced a normalized indicator named informational complexity
(C) to characterize the relative uncertainty of substrings [5].
Ck is calculated based on a sliding window of a fixed length
k, and thus, the internal sequential structure has been taken
into account, at least within the range of k. In fact, C1 is the
Shannon entropy of the sequence (because 1-mer is just the
single letter), normalized to the maximum Shannon entropy
of the same length. To draw a linguistic analogy, the Shannon
entropy functions at the alphabet level, while the k-mer ver-
sion Ck constructs a dictionary comprising words of a certain
length k, quantifying the Shannon information conveyed by
these fixed-length words. Consequently, the quantity (1 − Ck ),
denoted as Rk , represents the degree of regularity, partially
aligning with what the order rate η describes.

PO5F1_MOUSE

SRY_MOUSE

UBC_HUMAN

(a)

(b)

(c)

(d)

SDK2_MOUSE

FIG. 2. Laddergraphs of the four example protein sequences presented in Table I. Unlike in Fig. 1, space constraints prevent the explicit
display of ladderons in this figure. Instead, ellipses are used to symbolize ladderons, with the size of each ellipse corresponding to the length of
the ladderon. (a)–(c) are scaled identically, as evidenced by the corresponding size of the largest ellipse that represents the target sequence in
each. In (d), due to the excessive length of the protein SDK2_MOUSE, only a zoomed-out version of its laddergraph is displayed. A detailed
version can be found in SM [40] Sec. 3.
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FIG. 3. Systematic comparison between Rk and the order rate η. (a) Spearman correlation between η and Rk , as k increases, for six distinct
species. (b) Scatter plots of η vs Rk for k = 1, 2, 3, 4, 5, and 6. Each row corresponds to a different species. Individual dots within the plots
represent individual proteins. (c) Several representative proteins are chosen (denoted in red, green, and yellow colors) to show how Rk changes
as k increases up to 50. Note that the red curves in this subfigure correspond to the red dots in (b), and similar associations are made for the
green and yellow curves; each row represents a species, corresponding to (b).

Then, we systematically compare the order rate η with Rk

(Fig. 3). We observe a correlation between η and R1, and the
correlation increases as k increases to 2 and 3; After k > 3, the
correlation begins to drop sharply [Fig. 3(a)]. The correlation
exists when k = 1, 2, 3 because both indicators, η and Rk ,
correctly describe certain aspects of the sequence’s regularity.
Note that the order rate η quantitatively describes the hierar-
chical and nested relationships among the substructures of a
sequence. Therefore, it has a higher correlation with R3 and
R2, while the correlation with R1 is lower. This is because
3-mer and 2-mer take substructures into account, while R1

merely focuses on single letters, neglecting the internal struc-
ture. Further, the correlation decreases after k > 3 because the
whole set of all possible k-mers expands exponentially with
k, and thus the Shannon information contained in k-mers be-
comes submerged in the whole set, resulting in Rk becoming
less and less informative.

Another observation is that while a general correlation
exists, different proteins exhibit varying tendencies as k in-
creases. For instance, the proteins represented by the red
points in Fig. 3(b), which have large η values, tend to retain
their position along the x axis as k increases from 2 to 6;
in contrast, proteins represented by the blue points descend
rapidly along the x axis. This suggests that these different
protein sequences have distinct internal structures. To further
probe the influence of these internal structures, we chose
several representative proteins to analyze how Rk changes
as k increases up to 50. Figure 3(c) illustrates this, where
red curves correspond to the proteins represented by the red
points in Fig. 3(b), and similar associations are made for
the green and yellow curves (refer to SM Sec. 4 for the
ladderpath-associated indicators of these representative pro-
teins). We observe the following: (1) The red proteins are
actually those that have large repetitive segments, but lack
rich hierarchical and nested relationships (e.g., ubiquitins),
and thus have a relatively high η but low κ . For them, we
observe that Rk remains virtually unchanged as k increases.

(2) The green proteins have very “chaotic” sequences (i.e.,
almost no repetitive subsequences), resulting in a low η. For
these proteins, Rk approaches zero after k > 3. (3) The yellow
points fall between these two categories, exhibiting a distinct
feature: they decrease slowly with k, hinting at intriguing
internal structures.

To summarize, for proteins with distinct internal structures
(such as the three exemplified categories), the characterizing
capability of different Rk varies. As a species likely contains at
least these three categories of proteins, it remains largely arbi-
trary to determine which k should be used to characterize the
sequential features of the species as a whole. Our approach,
instead, effectively characterizes the internal structure and
provides a global indicator without predefining a character-
izing range. Intuitively, the ladderpath-associated indicators
liberate “confined-length words” (k-mers) to “variable-length
words” (the so-called ladderons, as defined in Ref. [35]),
adeptly capturing the hierarchical and nested structures within
sequences.

B. Statistical observation: Human protein sequences
have higher ladderpath-complexity κ

Here, we present the density distribution of ladderpath-
complexity κ for sequences with lengths below 2500 AA
across six typical species [Fig. 4(a)]. The statistical differ-
ences between distributions reflect species-specific features.
We observe that the distribution for human is the flattest, i.e.,
having the highest proportion of proteins with large κ . In
contrast, the distribution for E. coli appears to be more con-
centrated, i.e., having the highest proportion of proteins with
small κ . To put it another way (referring to Table II), in terms
of the density of proteins with large κ (e.g., κ = 80, 60, 40),
human and mouse rank at the top, forming the first group,
followed by the second group (yeast, mouse-ear cress, and
C. elegans), and finally, E. coli. However, for proteins with
small κ (e.g., κ = 5, 10), the first group consists of E. coli,
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FIG. 4. Overview of the ladderpath-complexity of protein sequences across six typical species. (a) Density distribution of protein sequences
with lengths below 2500 AA, with respect to ladderpath-complexity κ . (b) The average κ and the change in κ after shuffling.

C. elegans, and mouse-ear cress, followed by yeast, and finally
the third group of mouse and human. This implies that the
more complex a species is, the more likely it is to have a
higher proportion of proteins with large κ .

Considering that ω0 comes from the average ω of numer-
ous random sequences with homogenous amino acid content,
could the large difference primarily result from the species-
specific and inhomogeneous content rather than the internal
sequence structure? To test this speculation, we randomly
shuffled all sequences—aiming to preserve the amino acid
composition but disrupt the internal structures—then recalcu-
lated their ladderpath-complexity, and compared the changes
before and after, denoted as �κ [Fig. 4(b)]. The results indi-
cate that human sequences, followed by those of the mouse,
exhibit the most significant reduction, suggesting that these
sequences possess the richest hierarchical and nested struc-
tures overall. Next are multicellular organisms A. thaliana
and C. elegans, forming the second group, with unicellular
organisms yeast and E. coli at the base. This correlation is
consistent with many literature sources on species complexity,
particularly those based on the “total number of interacting
proteins” [41]. So, we confirmed that the statistical differences
in ladderpath-complexity κ stem from the internal sequence
structure rather than the inhomogeneous content; the findings

suggest that more complex species, such as human and mice,
tend to have a higher proportion of proteins with large κ .

Nevertheless, it is important to mention that there is cur-
rently no consensus about the definition of species complexity
in the literature. Various metrics, such as proteome size, the
number of cell types [42,43], and the total number of inter-
acting proteins [41], have been proposed to gauge species
complexity (for more methods mentioned in the literature, see
[40] SM Sec. 5). Therefore, our indicator is meant to propose
an alternative method from the perspective of sequence anal-
ysis, emphasizing the internal structure of sequences, which
correlates with species complexity in certain aspects.

1. Showcase: Top list of large-κ proteins

Let us now examine the list of proteins with the highest κ

values, considering only those sequences with lengths below
2500 AA (Table III). Interestingly, despite this length limita-
tion, our κ-selection results show a similarity to the findings
of the repeat finder: human proteins dominate [44]. Adjusting
this length limit to 2000, 1500, or even 10 000 AA does not
change this observation (see SM [40] Sec. 6 for more data).

Another notable observation is the length range that
spans from 1457 to 2496, indicating that length is not the

TABLE II. Data from the density distribution in Fig. 4, for particular κ values.

Density (%), for specific κ value

Organism κ = 5 κ = 10 κ = 20 κ = 40 κ = 60 κ = 80

H. sapiens (human) 3.04 3.46 2.15 0.66 0.21 0.10
M. musculus (mouse) 3.32 3.77 2.11 0.57 0.19 0.08
A. thaliana (mouse-ear cress) 4.24 4.34 2.19 0.33 0.08 0.02
C. elegans 4.82 4.62 1.65 0.30 0.08 0.03
S. cerevisiae (yeast) 3.67 3.88 2.16 0.60 0.10 0.04
E. coli 5.42 4.43 1.82 0.13 0.02 0.00
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TABLE III. Top 25 large-κ protein sequences with length limit below 2500 AA.

Protein (entry name) Organism S λ ω η κ

DMBT1_HUMANa H. sapiens (human) 2413 779 1634 0.518 403.40
FILA2_HUMAN H. sapiens (human) 2391 931 1460 0.417 388.04
Q20007_CAEEL C. elegans 2311 889 1422 0.426 378.69
FILA2_MOUSE M. musculus (mouse) 2362 949 1413 0.399 378.23
DMBT1_MOUSEa M. musculus (mouse) 2085 752 1333 0.470 353.09
APOA_HUMAN H. sapiens (human) 2040 632 1408 0.548 346.64
HORN_MOUSE M. musculus (mouse) 2496 481 2015 0.714 343.44
CR1_HUMAN H. sapiens (human) 2039 824 1215 0.408 335.89
TRHY_HUMAN H. sapiens (human) 1943 811 1132 0.391 317.06
Q6DIC6_MOUSE M. musculus (mouse) 2087 969 1118 0.314 304.41
F186A_MOUSE M. musculus (mouse) 1790 716 1074 0.424 303.47
MUC22_HUMANb H. sapiens (human) 1773 700 1073 0.432 302.34
Q9LH98_ARATH A. thaliana (mouse-ear cress) 2081 1032 1049 0.267 275.09
A0A0B4J1F9_MOUSE M. musculus (mouse) 1599 665 934 0.409 272.18
PWWP4_HUMAN H. sapiens (human) 2061 1031 1030 0.261 269.30
FLO1_YEASTc S. cerevisiae (yeast) 1537 596 941 0.451 268.92
NACAM_HUMAN H. sapiens (human) 2078 1049 1029 0.254 266.16
CO4A2_CAEEL C. elegans 1758 828 930 0.320 265.13
F7C950_MOUSE M. musculus (mouse) 1606 410 1196 0.642 263.12
Q9LIE8_ARATH A. thaliana (mouse-ear cress) 1480 477 1003 0.549 261.97
NBPFC_HUMAN H. sapiens (human) 1457 532 925 0.489 260.13
TARA_HUMAN H. sapiens (human) 2365 1249 1116 0.206 257.28
SON_HUMAN H. sapiens (human) 2426 1289 1137 0.199 255.93
Q63ZW6_MOUSE M. musculus (mouse) 1691 805 886 0.316 254.43
CO4A5_HUMAN H. sapiens (human) 1685 801 884 0.317 254.01

aBelongs to the DMBT1 family.
bMucin protein.
cBelongs to the flocculin family.

determining factor for κ; instead, repetition in the sequence
plays a significant role. For example, DMBT1, flocculin, and
mucin in Table III are protein classes that are famous for
tandem repeats [45–47].

C. Statistical observation: Proteins containing intrinsically
disordered regions have higher order rate η

Now, let us consider the relationship between the amino
acid sequence and its corresponding 3D structure. Intuitively,
duplicated sequences could be expected to adopt identical
structures. Therefore, a long sequence with many duplicated
subsequences (thereby tending to have higher order rate η)
may be considered to have a consistent structure comprising
explicit identical substructures [48]. For instance, the protein
depicted in Fig. 5(a) exhibits a consistent and regular struc-
ture [49]; another notable example is the much larger protein
DMBT1_HUMAN, shown in Fig. 5(b), which also has a high
η value, as shown in Table III. Nevertheless, there are proteins
with high η values but are structurally disordered, as the exam-
ple depicted in Fig. 5(c), which exhibits regions predicted by
AlphaFold2 with low confidence, implying structural disorder.

To uncover statistical patterns, we utilized data from the
DisProt database [50] to calculate the average order rate
η for proteins with a significant proportion of intrinsically
disordered regions (IDRs), and compared it with other pro-
teins without a significant proportion of IDRs. The results
are shown in Fig. 5(d) (the right part with darker colors). It

is evident that, generally, proteins with IDRs have higher η

values than those without such regions, which is statistically
significant for four out of six species analyzed. Yet, due to
the limited data available in DisProt, we also employed the
METAPREDICT software [51] to predict the presence of IDRs
in all proteins of their proteomes for these species, and then
matched them with their respective η values. The outcomes
of this analysis are presented in Fig. 5(e). The pattern re-
mains consistent, with clear statistical significance observed
for five out of these six species. As we know, the order rate
η is associated with the presence of repetitive substructures
in the sequence; therefore, a higher η implies the presence
of more repetitive substructures. Indeed, quite a few studies
have found that intrinsically disordered proteins (IDPs) or
IDRs contain more repeats, such as tandem repeats [52–54]
and segmental duplications [55]. For example, Simon et al.
reported that tandem and cryptic amino acid repeats often
accumulate in disordered regions of proteins [53]. Similarly,
Jorda et al. found that perfect or nearly perfect tandem repeats
exhibit a strong tendency to be unstructured in various species
[52].

Nevertheless, previous studies show that proteins contain-
ing IDRs have a greater amino acid abundance bias [56,57].
It is thus possible that the high η value arises from this bias
rather than from the orderliness of the internal sequential
structure. To investigate this, we compared the η value before
and after shuffling, denoted as �η, as shown in Fig. 5(d) (the
left part with lighter colors). We observed that, statistically
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FIG. 5. Statistics related to the order rate η of proteins containing a significant proportion of IDRs. (a) Structure of an artificial
protein DeNovoTIM15, from the Protein Data Bank (PDB:6wvs). (b) Predicted structure of the protein DMBT1_HUMAN by AlphaFold2.
(c) Predicted structure of HORN_MOUSE by AlphaFold2. (d) The right part with darker colors shows the average η for proteins containing
a significant proportion of IDRs compared to proteins without a significant proportion of IDRs. The left part shows the changes in η after
shuffling the sequences. The corresponding data size n from the DisProt database is indicated. (e) This is similar to (d), but the data are from
calculations using the disorder predictor software METAPREDICT for the six proteomes. Note that ∗∗∗∗ means p < 0.0001, ∗∗∗ means p < 0.001,
∗∗ means p < 0.01, and ns means “no significance.”

speaking, �η is larger for proteins containing IDRs. From this
observation, we can suggest that the internal sequential struc-
ture plays a role in the high η values. Therefore, the degree
of orderliness may serve as a different feature of disordered
regions at the sequence level.

D. Evolution of the complexity of protein sequences
follows a zigzag pattern

We now present statistics that encompass all sequences
(Fig. 6), not just those shorter than 2500 AA. Generally,
most of these sequences have η values confined below 0.1
[Fig. 6(a)]. However, a closer examination of the η distribution
[Fig. 6(c)] reveals that the proteins of human, mouse, and
C. elegans exhibit a significant tendency: as the length of
the sequence increases, there tend to be a higher number of
sequences with larger η, indicating more ordered sequences.
This trend is also observable in Fig. 6(a), where, for extremely
long lengths, sequences with low η values are even absent.

An immediate question is why there are almost no su-
perlong but low-η sequences. Later, we shall see that this
question strongly relates to how protein sequences elongate.
Now, imagine there is initially a short sequence or segment,
and consider how this sequence elongates and how the order
rate η evolves, via specific biological processes:

(i) Duplication: This refers to the process where a segment
of a sequence, either short or long, is copied onto itself. This

creates a repetitive subsequence, corresponding to a ladderon
as defined in ladderpath. As a result, η of this sequence
increases. The longer the segment, the greater the increase
in η.

(ii) Substitution: This refers to the replacement of a base.
This does not alter the sequence’s length, but it may disrupt a
ladderon, thereby slightly decreasing the value of η.

(iii) Insertion: This could be thought of as either the ad-
dition of a foreign segment or a single amino acid, or as a
duplication of a segment immediately followed by substitu-
tions occurring at every base.

Note that for simplicity, we only consider the processes that
do not shorten the sequence, thus neglecting deletion.

We now simulate the process of elongation in three cases:
(1) completely driven by duplication, (2) completely driven
by insertion, or (3) driven by a combination of duplication and
substitution. The simulation results are displayed in Fig. 6(d)
(refer to SM [40] Sec. 7 for details on how the simulation
was conducted). Although the simulation focuses solely on
the elongation of protein sequences, it provides insight into
the question of why there are virtually no extremely long
sequences with low η values. The red trajectories in Fig. 6(d)
represent case (1), where η increases the most rapidly during
elongation. The green trajectory represents case (2), where
the order rate η remains consistently low. The yellow tra-
jectories, representing case (3), lie in between and closely
resemble real-world scenarios where infrequent duplications

023215-8



EVOLUTIONARY TINKERING ENRICHES THE … PHYSICAL REVIEW RESEARCH 6, 023215 (2024)

FIG. 6. Observations and simulation experiments related to protein elongation. (a) Scatter plot of protein lengths S vs order rate η, for all
proteins across the six species. See the legend of (c) for the six species. (b) Similarly, a scatter plot of S vs ladderpath-complexity κ . (c) The
average η values of proteins vs protein length S for the six species. Each dot (S, average η) is calculated using proteins within a sliding window
centered at a specific length S. (d) Results of simulation experiments showing how η evolves as the protein sequence elongates, for the three
different cases elaborated in the main text. (e) Similarly, simulation experiments showing how κ evolves.

of relatively large segments heavily increase η, while frequent
substitutions consistently reduce η, forming a zigzag pattern.
We also see from Fig. 6(e) that κ increases the most in case
(3), namely, the yellow trajectories.

In summary, the evolution of protein sequences follows
a zigzag pattern. Specifically, the duplication of segments
increases the order rate of the sequence as it elongates, while
this increment in order rate is gradually counteracted by vari-
ous mutations, either partially or completely, depending on the
relative frequencies of duplications and mutations. Now, we
could consider the emergence of a new gene or pseudogene:
(1) Occasionally, a replication error leads to the duplication of
a segment at a different location within the sequence, resulting
in higher η and κ values and contributing richer raw mate-
rials for further evolution. (2) Subsequently, this elongated

sequence undergoes various “tinkering” processes across gen-
erations, reducing η and κ . Over time, this sequence gradually
diverges from its ancestor and may eventually become a new
gene or a pseudogene.

1. Examples: ubiquitin, titin, and NBPF family

Now we can return to the observation mentioned at the be-
ginning of Sec. II D and ask why there are almost no extremely
long but low-η proteins. Here, we provide three representative
examples to address this question.

The first example is ubiquitin, which is used to emphasize
the effect of duplication. Ubiquitin is a highly conserved,
small regulatory protein widely found in eukaryotes, which
functions as a post-translational modifier, mainly in protein
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TABLE IV. Ladderpath-associated indicators of titin proteins.

Protein (entry name) Organism S λ ω η κ

TITIN_DROME D. melanogaster (fruit fly) 18 141 7843 10 298 0.188 1472.60
TTN1_CAEEL C. elegans 18 562 7545 11 017 0.234 1768.37
A0A7M7N314_STRPU S. purpuratus (sea urchin) 24 046 8692 15 354 0.303 2635.61
A0A8M9QKG2_DANRE D. rerio (zebrafish) 31 468 14 202 17 266 0.108 1532.84
TITIN_HUMAN H. sapiens (human) 34 350 15 001 19 349 0.130 1946.69
TITIN_MOUSE M. musculus (mouse) 35 213 15 295 19 918 0.133 2034.22

degradation. Polyubiquitin (UBB and UBC) has an extremely
high η value because it contains almost no mutations and has
several tandem head-to-tail repeats of ubiquitin, each being
76 AA long [58] [refer to Fig. 2(c) for the laddergraph of
UBC_HUMAN]. The distribution of η and κ values for this
protein family is shown in Figs. 6(a) and 6(b). We can see
that while some members of this family have an extremely
high η value approaching 1, their corresponding ladderpath-
complexity κ is not particularly high. This observation can be
attributed to the nearly error-free duplication events, aligning
with case (1) discussed earlier, and the lengths of these pro-
teins, which are not particularly long.

The second example is another extreme, the ancient protein
titin, which is used to emphasize the effects of mutations along
protein elongation. Titin serves as a structural support in mus-
cles and is of immense length (e.g., TITIN_HUMAN contains
364 exons) [59]. This gigantic protein consists of numerous
domains, some of which belong to the PEVK region, which is
rich in highly repetitive sequences (this PEVK region forms
a distinct structure in the center of the protein, functioning as
an entropic spring [60]). Nevertheless, the η values of titin are
not very high and exhibit variations among different species
[61,62], as shown in Table IV. This suggests that the effects
of duplications, which can increase the hierarchical and nested
structures of sequences, have been largely counteracted by
long-term and consistent mutations.

The third example is an emerging family at the evolution-
ary scale, neuroblastoma breakpoint family (NBPF), which
lies in between the two extremes mentioned above. NBPF is
known for its members having varying numbers of Olduvai
repeats, with approximately 20 members in humans, playing
a certain role in human brain development and cognition
[63,64]. These young proteins seem to be predominantly
found in proteomes of primates, whereas in nonprimate mam-
mals, their counterparts exist as single-copy Olduvai. As an
amplicon, Olduvai has undergone a significant gene ampli-
fication within a relatively short time span [63,65]. Thus,
η and κ increased significantly, and mutations had not had
enough time to largely lower η and κ to counteract the effect
of duplication (Table V). Therefore, from Fig. 6(a), we can
observe that the NBPF family members form a clear pattern,
exhibiting their evolutionary trajectory.

The aforementioned classes of proteins illustrate the
elongation seen in ancient proteins and the emergent core
duplication found in longer proteins, which can be metaphor-
ically described as an Odyssey-like journey. These examples
suggest that, over a long duration, there is a certain degree of
synchronization between size expansion and increased com-
plexity, while between expansion events, complexity tends to
decrease. Thus, the evolution of sequence complexity appears
to follow a zigzag pattern. Most long proteins do not exhibit
the same level of extremity as ubiquitin and titin, but instead

TABLE V. Ladderpath-associated indicators of the gene family NBPF.

Protein (entry name) Organism S λ ω η κ

NBPF5_HUMAN H. sapiens (human) 351 268 83 0.082 22.07
NBPF7_HUMAN H. sapiens (human) 421 321 100 0.065 20.84
NBPF3_HUMAN H. sapiens (human) 633 438 195 0.114 49.93
NBPF4_HUMAN H. sapiens (human) 638 464 174 0.066 30.82
NBPF6_HUMAN H. sapiens (human) 638 466 172 0.062 29.01
NBPFF_HUMAN H. sapiens (human) 670 445 225 0.145 64.48
NBPFB_HUMAN H. sapiens (human) 865 479 386 0.268 128.20
NBPF8_HUMAN H. sapiens (human) 869 492 377 0.251 123.33
NBPFP_HUMAN H. sapiens (human) 902 419 483 0.386 161.61
NBPFE_HUMAN H. sapiens (human) 921 420 501 0.396 166.41
NBPF9_HUMAN H. sapiens (human) 1111 522 589 0.362 188.89
NBPF1_HUMAN H. sapiens (human) 1214 523 691 0.410 214.31
NBPFC_HUMAN H. sapiens (human) 1457 532 925 0.489 260.13
NBPFA_HUMAN H. sapiens (human) 3795 584 3211 0.760 444.00
NBPFJ_HUMAN H. sapiens (human) 3843 491 3352 0.801 393.28
NBPFK_HUMAN H. sapiens (human) 5207 248 4959 0.927 229.84
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fall somewhere in between, e.g., NBPF. For more examples of
such proteins, refer to SM [40] Sec. 8.

III. DISCUSSION

A. On definitions

The ladderpath approach aims to decode the information
concealed within the hierarchical and nested relationships
among the recurring subsequences found in a specified set
of target sequences. It achieves this by iteratively identifying
recurring subsequences (termed the ladderons) and rearrang-
ing them into a tree-like hierarchical structure (termed the
laddergraph), which distills and encodes the evolutionary
information. In the context of biological sequences, these
recurring subsequences, or ladderons, could represent motifs,
domains, or signify transposable elements, satellite DNA, mi-
croduplications within genome scale, and the like. To better
encapsulate the tree-like hierarchical structure, two indices
were derived. The first is the order-rate η, which, in a nor-
malized manner, quantitatively measures the orderliness of a
sequence, ranging from close to 0 [completely disordered, as
illustrated in Fig. 2(a)] to 1 [fully ordered, as illustrated in
Fig. 2(c)]. When η sits centrally, the structure exhibits signif-
icant order while the ladderons display intricate overlaps and
nested relationships [as illustrated in Fig. 2(b)]. At this point
the other derived index, κ , reaches its maximum, signifying
the utmost complexity. The ladderpath-complexity κ gauges
complexity by factoring in both orderliness and the length.
While sequence length does contribute to complexity, longer
does not necessarily equate to more complex.

Ladderpath differs from Shannon entropy in that the lat-
ter primarily focuses on the statistics of individual letters,
although extensions, such as the k-mer method [4,5], can
be adapted to consider substructures. These approaches did
not factor in the intricate hierarchical relationships among
these substructures. Thus, our order rate η shows a correlation
with Rk , an index derived from the k-mer method, but this
correlation varies with different internal sequential patterns.
Further, Shannon entropy and its variants operate under a
strong assumption that the sequence in question represents a
realization of a random variable, implying that the sequence
should be infinitely long. However, in reality, amino acid
sequences invariably have finite lengths. On the other hand,
finite lengths mean that methods like the Lempel-Ziv lossless
compression (a compression method also under the umbrella
of AIT) cannot achieve their optimal or shortest description
[19]. This introduces significant variability when trying to
deduce genuine evolutionary histories. In contrast, ladderpath
does not rely on assumptions of infinite length.

B. Statistical observations on sequential
orderliness and complexity

The first statistical observation, based on our examination
of the ladderpath-complexity of proteomes, reveals differ-
ing complexity distributions among species. Among the six
species analyzed, humans, followed by mice, possess rela-
tively more sequences of high complexity that exhibit richer
hierarchical and nested structures. We also confirmed us-
ing shuffling methods that this complexity does not stem

from content differences but arises from internal sequential
patterns. From the perspective of protein structure, studies
have shown that species with higher complexity possess more
proteins with larger radii of gyration (signifying increased
flexibility) and a higher degree of modularity [66]. On the
other hand, our analysis from the sequential perspective im-
plies that the more complex a species is, the higher the
tendency for sequence complexity.

Nevertheless, as we mentioned, there is currently no con-
sensus on the definition of species complexity. Initially, using
genome size as a measure led to the well-known C-value
enigma [67], as some plants and protozoa have larger genomes
than humans. The discovery of noncoding DNA in the early
1970s addressed many of these questions, and now genome
size is no longer directly linked to species complexity. Sub-
sequently, using proteome size as a measure introduced the
G-value paradox [68], where, for example, C. elegans and
humans have nearly identical proteome sizes. Additionally,
researchers also use other metrics such as the total number of
cell types [42,43] or the total number of interacting proteins
[41] to gauge species complexity. Indeed, it is conceivable that
there may never be a single standard or definitive truth for
species complexity. Therefore, our indicator is meant to pro-
pose an alternative method from the perspective of sequence
analysis, emphasizing the internal structure of sequences.
Further research involving more data and comprehensive anal-
ysis is likely necessary to explore the relationship between
species complexity and sequence complexity.

Another statistical observation is that proteins with a sig-
nificant proportion of IDRs tend to exhibit higher order rate
η with statistical significance. It is crucial to note that these
elevated η values usually do not exceed 0.1 [as shown in
Fig. 5(e)]. Within this range, a higher η invariably indicates
richer hierarchical and nested structures, akin to transitioning
from proteins exemplified in Fig. 2(a) to Fig. 2(b) [not possi-
ble to Fig. 2(c) since such an extreme hierarchical relationship
requires an η of approximately 0.8 or higher]. Thus, our find-
ings suggest that, at the sequence level, proteins with IDRs
tend to have richer hierarchical and nested structures com-
pared to typical proteins. This correlation between sequence
orderliness and structural uncertainty aligns with previous
studies, particularly regarding tandem repeats [52–54] and
segmental duplications [55]. However, the underlying mech-
anism for this structural tendency remains unclear, which
warrants further study.

On the other hand, understanding that a higher η often orig-
inates from segment duplication, another intriguing question
arises: Does the evolution of IDPs involve more duplication
events? Lastly, building upon the earlier point that more com-
plex species have more proteins with higher modularity, a
bold idea might be developed: Could IDPs be an essential
stage in the evolutionary journey toward increasing protein
modularity? Specifically, an amino acid sequence “core,”
through occasional duplication events, generates repetitive
subsequences along elongation (which naturally leads to
an increase in η), resulting in structures becoming more
disordered and flexible, facilitating the exploration of var-
ious interactions, and ultimately leading to the fixation of
structural modules. Although there is no direct evidence sug-
gesting such evolutionary processes, there are some hints.
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For instance, Ref. [54] states that internal repeat regions
(such as microsatellites and minisatellites) always retain basic
functions and exhibit interspecies variation and polymor-
phism, providing a foundation for their further evolution
into new genetic materials. Similarly, Ref. [53] expresses a
compatible view, noting that amino acid repeats tend to evolve
very rapidly compared to other parts, which are crucial for the
rapid adaptation of species.

C. On evolution

Our results suggest that as the protein elongates, its com-
plexity follows a zigzag pattern, originating from the interplay
of duplication and mutation (the latter refers to processes such
as substitution and insertion). Duplication results in a sharp
increase in sequence orderliness and length, while mutation
leads to a decline in orderliness, with the length remaining
more or less unchanged, together leading to a significant
diversity in the internal patterns of sequences. Owing to the
interplay of these mechanisms and their varying occurrence
rates, the internal structure of the sequence can become highly
hierarchical and interlaced. This might result in proteins hav-
ing distinct values of κ , η, and S (e.g., leading to different
distributions between long and short proteins), potentially
promoting a range of structures and functions. Statistically
speaking, we did observe that η distributions diverge when
protein length exceeds 2000 AA [Fig. 6(c)]. This hints that
various species, or those in varied environments, might adopt
different elongation strategies or, in other words, different
“tinkering” processes. For instance, the trend of evolving
into multidomains is more pronounced in eukaryotic proteins
than in prokaryotes [69], suggesting that distinct biologi-
cal elongation dynamics might be at play. The evolution
of human-specific segmental duplications (HSDs) seems to
exhibit varied patterns across different periods. During the
human-chimpanzee divergence, there was a period of rela-
tive quiescence, succeeded by a spike in HSD occurrences
and the emergence of new genes [70–72]. The previously
mentioned NBPF experienced rapid, widespread duplications.
The Olduvai domain, in particular, stands out as one of the
most extreme and fastest copy number expansions in the hu-
man genome (with humans having about 300 copies, great
apes 90–120, monkeys 30–40, and single or a few copies in
nonprimate mammals, while being absent in nonmammals),
which has been strongly linked to human brain evolution and
cognitive function [73]. Variations in elongation mechanisms,
especially under diverse or rapidly changing environmental
stresses, might be advantageous for quick adaptation [27,74],
potentially accelerating the emergence of new structures or
inducing dose-dependent effects [75,76], among other out-
comes.

In Fig. 6(c), more detailed analysis and intriguing insights
can be observed. The length of the E. coli proteome is in-
terrupted around 2000 AA. Beyond this length, yeast and
mouse-ear cress (as species with cell walls) show no increase
in order rate. Meanwhile, for the mouse and C. elegans, both
multicellular species without cell walls, there is an evident rise
in order rate, with their trends aligning closely. At lengths
greater than 3000 AA, the order rate of human proteome
experiences a sudden and significant surge. Based on these

observations, we make the following speculations: (1) The
juncture at which the E. coli length halts could be a pivotal
point in the shift from prokaryotes to eukaryotes. Eukaryotes
might have developed additional tools for sequence expansion
and tools that augment the hierarchical and nested structure of
sequences, especially those facilitating intragenomic duplica-
tion. This transition could be a landmark event differentiating
eukaryotes from prokaryotes. (2) The patterns observed in
yeast and mouse-ear cress indicate that being unicellular or
multicellular may not be a key factor affecting proteome or-
derliness, while having a cell wall might pose an obstruction
to increasing the order rate. We speculate that the cell wall
might hinder horizontal gene transfer between species, pre-
venting elements with capabilities such as translocation and
duplication from integrating and emerging as evolutionary
tools. (3) The spike in order rate seen in humans, relative
to other eukaryotic species, raises the question: have humans
undergone certain critical events or acquired novel genetic
tools? If a stark contrast remains when comparing humans at
this point with other nonhuman primates (taking the example
of NBPF, as previously discussed), it might explain the pro-
found impact of social development within human evolution.
Collectively, these findings suggest a deeper exploration of
evolutionary data using this approach or similar methodolo-
gies. It also underscores that the ladderpath approach could
harbor significant potential for more in-depth applications in
evolutionary biology.

On the other hand, the simulated evolutionary process ob-
tained through alternating segmental duplication and mutation
provides a better fit to actual evolutionary data than consid-
ering mutations alone. This phenomenon poses a significant
challenge to the neutral theory [77] and constructive neutral
evolution [78]. At the very least, it suggests that from the time
of Darwin to current evolutionary biology theories [79], there
has been an overemphasis on the role of mutations, neglecting
the effects of gene duplication and transfer. As inferred from
the sudden shifts shown above, gene duplication and transfer
are likely the main ingredients for significant evolutionary
leaps. This resonates with the endosymbiotic theory [80] and
horizontal gene transfer [81] applied to explain genome ex-
pansion. Such observations hint at two important applications
of the ladderpath approach: (1) One application is identifying
critical shifts and branching points in the entire evolutionary
tree, examining whether new gene modules have been added,
and pinpointing which of these modules have undergone ex-
tensive duplication and transfer in subsequent evolutionary
bursts. The ladderpath approach may address the problem of
phylogenetic lineages that are obscured by chimeric, sym-
biotic, or reticulate evolutionary events, which may provide
crucial insights into phenomena like the Cambrian explosion
[82]. (2) In fields such as synthetic biology and enzyme en-
gineering [83], as well as pharmaceutical engineering [84],
the practice of directed evolution is mainly based on point
mutations and mutation libraries. There is limited application
of strategies involving extensive gene segmental duplication.
Yet, by using the laddergraph (in this case, we are not lim-
ited to indicators such as the order rate but the laddergraph
that has more comprehensive information), we can identify
duplicated ladderons merged within these hierarchical and
nested relationships, hinting at which ladderons are important
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FIG. 7. The algorithm for computing ladderpath-associated information. (a) Flowchart illustrating the algorithm with a specific example.
(b) The laddergraph of the exemplified target sequence, calculated by this algorithm.

and possibly meaningful modules; and then we can use these
information to perform mutations, e.g., replacing point muta-
tions with modular mutations in directed evolution, potentially
accelerating the evolutionary process significantly. Further-
more, while gene duplication has found many applications
in plant and animal breeding, issues such as the adaptability
of inserted duplicate fragments and their loss in subsequent
generations have consistently hampered successful breeding
rates [85]. Using the ladderpath approach to determine the
optimal ratio and strategy for duplication and mutation might
offer improved tools for targeted breeding [86] and related
biotechnological endeavors.

The ladderpath approach provides a useful tool and a
specific computational method to quantitatively describe the
complexity of target objects, such as sequences. It focuses on
“how objects are generated” rather than on emphasizing un-
certainty, as in the case of Shannon entropy, or the efficiency
of compression, as seen in lossless compression algorithms
like Lempel-Ziv. This approach embodies the evolutionary
tinkering process, highlighting the importance of “reuse” and
“modularity.” While this paper demonstrates the usefulness
of derived indicators such as order rate and ladderpath-
complexity, it is even more crucial to note that comprehensive
information is stored in the laddergraph, which depicts the
hierarchical and nested relationships among recurring subse-
quences, resulting from the evolutionary tinkering process.
In practice, we can learn from the tinkering mechanisms of

innovation that nature employs (along with sophisticated and
powerful reductionist-like innovation) to help us construct
complex targets or systems from simpler ones, e.g., peptide
drug design (to be discussed in an upcoming paper) and
synthetic biology. Using the ladderpath approach as a tool to
reverse engineer species evolution might also offer valuable
insights, facilitating the design of more effective directed evo-
lution strategies, which could then be applied to fields such as
crop breeding and even the design of bioprocesses.

IV. METHODS

A. Algorithm for computing ladderpath-associated information

Here, we show how the algorithm works by taking a tar-
get sequence CUCGACGACUAUCUCGACAAUGACU as
an example [Fig. 7(a)]. Firstly, we search for the longest repet-
itive subsequence in the target sequence and find CUCGAC,
marked in blue. Secondly, we cut the target sequence into
pieces so that the repetitive subsequences are isolated. As
a result, we obtain a set of shorter sequences: [CUCGAC,
GACUAU, CUCGAC, AAUGACU]. In the third step, we
place one CUCGAC into a separate bag, which will then be
used to construct the ladderpath. After this step, we have
a set of sequences [GACUAU, CUCGAC, AAUGACU] re-
maining. These three steps constitute the module which we
call “SEARCH, CUT, and REMOVE”, marked in green in
Fig. 7(a).
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Next, we treat the remaining set of sequences [GACUAU,
CUCGAC, AAUGACU] as a “target” sequence and apply
the “SEARCH, CUT, and REMOVE” module to this target.
From this, we obtain another longest repetitive subsequence,
GACU, which we place into the separate bag. We continue
to apply the module until the original target sequence is com-
pletely segmented into its most basic building blocks. Finally,
based on the order of removal, we construct the ladderpath
as {G, A(3), C(3), U(3) // AU, GAC // CUCGAC, GACU }.
It characterizes the hierarchical and interlaced relationships
within the original target sequence, and has a one-to-one cor-
respondence with a laddergraph shown in Fig. 7(b).

The source code for this algorithm is available on GitHub
[87]. Note that for sequences below 10 000 AA, the code
can handle everything efficiently (all sequences mentioned in
this paper fall within this range, except for the six sequences
listed in Table IV). For sequences extending beyond this but
below 40 000 AA (in the entire dataset, only six sequences
in Table IV have lengths between 10 000 and 40 000 AA),
the running times in all aspects are still tolerable, except for
determining the order rate η, as computing the accurate value
of ω0(S) for S > 10 000 AA requires significant computa-
tional power. Nonetheless, we have developed a technique to
compute ω0(S) effectively for large S. The idea is that highly
disordered long sequences can be segmented and collectively
processed to calculate ω (with further details available in SM
[40] Sec. 9).

B. Identifying IDRs

For Fig. 5(d), if for a protein sequence the ratio of the
consensus region to the total length is over 25%, we say
that this protein contains a significant proportion of IDRs.
For Fig. 5(e), we applied the disorder predictor software
METAPREDICTOR on the proteomes of the six species H. sapi-
ens (human), M. musculus (mouse), A. thaliana (mouse-ear
cress), C. elegans, S. cerevisiae (yeast), and E. coli. For
each protein sequence, we used the command-line tools of
METAPREDICTOR and obtained the disorder scores for each
amino acid. Those amino acids were labeled as “disordered”

if the score was over 0.5 (the default value from the software).
Then, if the ratio of disordered amino acids is over 25%, we
say that this protein contains a significant proportion of IDRs.

The codes and datasets generated and analyzed during
the current study are available on GitHub [87]. All
protein sequence data were obtained from the UniProt
database. The six proteomes (release 2023_04) used in this
paper were indexed by the following proteome IDs and
taxonomy IDs: UP000000589_10090, UP000000625_83333,
UP000001940_6239, UP000002311_559292,
UP000005640_9606, UP000006548_3702. The data
associated with the IDR analysis were obtained from the
DisProt database version 9.4 (release 2023_06).
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