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ABSTRACT: A fluid (a gas or a liquid) adsorbed in a porous
material can behave very differently from its bulk counterpart.
The advent of various synthesized materials with nanopores and
their wide applications have provided strong impetus for studying
fluids in confinement because our current understanding is still
incomplete. From a large number of Monte Carlo simulations,
we found a scaling relation that allows for connecting some
thermodynamic properties (chemical potential, free energy per
particle, and grand potential per particle) of a confined fluid to
the bulk ones. Upon rescaling the adsorbed fluid density, the
adsorption isotherms for many different confining environments
collapse to the corresponding bulk curve. We also reveal the
intimate connection of the reported scaling relation to Gibbs
theory of inhomogeneous fluids and morphological thermodynamics. The advance in our understanding of confined fluids,
gained from this study, also opens attractive perspectives for circumventing experimental difficulty for directly measuring some
fluid thermodynamic properties in nanoporous materials.

1. INTRODUCTION

Porous materials have many important applications.1−4 For
example, absorbing hydrogen in a porous material has been
proposed as a possible strategy for developing a H2-based clean
new energy source.3 Since long time, various zeolites have been
used as molecular sieves and catalysts. Because of the specific
pore size and topology, high selectivity is imparted to the
zeolite-based catalysts. Such selectivity is extensively exploited
in various chemical processes, for example, catalytic cracking in
oil industry.4 Nowadays, it is widely recognized that the
properties of fluids confined in porous media can be
dramatically different from those of the bulk ones.5−26

Understanding the behavior of confined fluids is important
not only from a fundamental point of view but also for
conceiving innovative industrial processes.
Accompanying the elaboration of high-performance func-

tionalized nanoporous materials, a large number of exper-
imental and theoretical investigations have been carried out
during the last decades. Nevertheless, our understanding of
confined fluids is still incomplete. Currently, we do not really
know to which extent thermodynamics can be still applied at
the scale of nanopores. Different aspects of confined fluids are
being studied in a case-by-case way. It can be readily admitted
that the fluid−solid interface and the fluid inhomogeneity near
it have to be taken into account. For fluid adsorption in real
porous materials, the fluid−solid interfaces are generally
curved ones. It might appear surprising that the thermody-

namics for dealing with curved interfaces is not so well
established, although early investigations go back to Tolman.27

Mecke and co-workers have made efforts to develop a general
framework, named morphological thermodynamics, to account
for a more complex surface morphology.28−32 The foundation
of morphological thermodynamics has been questioned
recently.33−36 To our best knowledge, no experimental
measurement has ever been made to determine the bending
rigidity coefficients needed in morphological thermodynamics
method for any fluid−solid interface.
A large literature exists on the study of confined fluids by

theoretical and simulation methods5−26,37−64 (references given
here are just for illustration but far from being exhaustive).
Models with simple pore geometry (e.g., slit or cylinder) are
widely studied. In such models, pore size distribution and
connectivity among pores are neglected. Fluid adsorption and
diffusion in an ordered porous material, for example, zeolites,
have been studied by simulations. To account for the
quenched disorder, models for random porous media have
been proposed also, for example, Madden−Glandt model and
various variants.37−42 Despite these considerable efforts, it is
unfortunate to note that no unifying picture of various
confined fluids has emerged. Today, we do not yet have a
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precise idea about the respective roles played by pore
connectivity, pore size distribution, pore morphology, or
quenched disorder. In a bulk fluid, a molecule is surrounded
by other fluid molecules while in a fluid adsorbed in a porous
solid, a large number of fluid molecules are located near a
fluid−solid interface. These molecules feel the interaction with
both fluid and solid molecules. The nature of the fluid−solid
interaction can vary significantly, from repulsive to attractive
ones. This additional interaction can make the confined fluid
behave very differently from the corresponding bulk one.
Although a confined fluid appears complicated because of the
complex confining environment of the adsorbent, one can
wonder if there is any connection between confined and bulk
fluids. Currently, we know quite few about this. Acquiring such
knowledge does not only advance our understanding about
these complex systems but also can have important
applications. In this article, we report several relations that
allow for connecting some properties of a confined fluid to
those of a bulk one. By rescaling the density of a confined fluid,
the adsorption isotherms (also free energy or grand potential
per particle) of fluids in a large variety of confining
environments can collapse to the corresponding bulk ones.

2. MODEL AND METHOD
We investigated the thermodynamic properties (chemical
potential, Helmholtz free energy, and grand potential) of
confined fluids by considering a large variety of models [hard
sphere (HS) or Lennard-Jones (LJ) fluids in slit pores, ordered
or disordered porous matrices]. Simulations were carried out
with the help of Monte Carlo methods (in grand canonical or
canonical ensembles). The details about the models and
computational conditions are given in Appendix.

3. RESULTS AND DISCUSSION
Inspired by the exact and analytical results for some models
(ideal gas in a variety of confining environments) and
scrutinizing our simulation results for many more complex-
confined fluids with interatomic interactions, we found the
following scaling relation:

T T( , ) ( , )bulkβμ χρ βμ ρ= (1)

f T f T( , ) ( , )bulkβ χρ β ρ= (2)

T Z T( , ) ( , )bulkβω χρ ρ− = (3)

where β = 1/(kBT) (kB: Boltzmann constant, T temperature),
μ and μbulk are the chemical potentials of confined and bulk
fluids, respectively, ρ is the number density of the bulk fluid in
equilibrium with the confined one (ρ = N/V, V: volume), f and
f bulk are free energy per particle of confined and bulk fluids,
respectively, that is, f = F/Nconf, and f bulk = Fbulk/N (Nconf:
particle number of confined fluid), ω is the grand potential per
particle of a confined fluid, Zbulk is the compressibility factor in
the bulk, that is, Zbulk = βPbulk/ρ, (Pbulk: bulk fluid pressure,
note that the compressibility factor is simply the negative of
grand potential per particle). The scaling factor is given by

A P V/( )0
bulkχ ϕ β= + Γ (4)

where ϕ0 is the geometric porosity of the porous adsorbent
under consideration (see ref 49 for definition), Γ is the excess
adsorption amount per unit surface area, and A is the area of

the fluid−solid interface of the confined fluid. ΓA can be
calculated simply from

A V( )conf
0ρ ϕ ρΓ = − (5)

where ρconf = Nconf/V. It is to note that only ΓA is needed but
not Γ and A separately and ΓA can be measured
experimentally. When the second term on the right-hand
side (rhs) of eq 4 is dropped out, we have immediately

T T( , ) ( , )0
bulkβμ ϕ ρ βμ ρ= (6)

f T f T( , ) ( , )0
bulkβ ϕ ρ β ρ= (7)

T Z T( , ) ( , )0
bulkβω ϕ ρ ρ− = (8)

We name this as pure confinement scaling, which holds
rigorously for an ideal gas in hard matrices, for example, a HS,
an overlapping HS (OHS), or a hard sponge matrix. From a
scaled particle theory,46−51 we can show that the pure
confinement scaling also holds for HS fluids confined in HS
and OHS matrices when the size ratio of matrix to fluid
particle is large.51 Although one can readily see the physical
meaning of the first term in the scaling factor, the significance
of the second term appears less trivial. In fact, it is a measure
for the ratio of the volume of the inhomogeneous region near
the fluid−solid interface with respect to the total volume of the
porous solid sample.
The simulation results presented below demonstrate the

validity of the scaling relation given in eqs 1−4, named as
confinement-adsorption scaling, for a large variety of confined
fluids under broad conditions. To show the general and robust
character of this scaling relation, we considered virtually all
types of confined fluids, that is, in various porous environments
like isolated slit pores, connected ordered or random porous
matrices including spongelike ones, and different types of
fluid−fluid and fluid−solid interactions (see Appendix for
detailed information about the considered systems and
simulation conditions).
Figure 1a shows the collapse of adsorption isotherms of a

HS fluid confined in 19 different environments to the bulk μ ∼
ρ isotherm after scaling according to eq 1 while Figure 1b
presents the results before scaling. The robustness of the

Figure 1.Monte Carlo simulation results for a HS fluid confined in 19
different confining environments (see Appendix for details about
considered systems and the corresponding symbols): (a) chemical
potential, βμ, as a function of scaled density ρc*/χ (ρc* = ρconfσ3, σ: HS
diameter); (b) chemical potential, βμ, as a function of nonscaled
density ρc*. The full line is the bulk βμbulk ∼ ρb* isotherm from the
Carnahan−Starling equation of state. Subscripts b and c denote the
bulk and confined fluids, respectively.
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scaling relation is demonstrated by the large diversity of the
considered confining environments, from isolated slit pores to
random porous matrices with pure repulsive or repulsive plus
attractive fluid−solid interactions. To establish the general
validity of the scaling relation, we also carried out simulations
with a LJ fluid (see results in Figure 2). These results show the
general character of the scaling relation, which also holds for
fluids with an attractive interaction.

The scaling relation holds not only for the adsorption
isotherms but also for some other thermodynamic quantities,
for example, free energy per particle and grand potential per
particle. Figure 3 shows the collapse of βf and −βω for

different confined HS fluids to the corresponding bulk curves.
The same scaling relation holding for chemical potential, free
energy per particle, and grand potential per particle implies
immediately that βf and −βω collapse to the corresponding
bulk curves if they are expressed as a function of chemical
potential, that is,

f T f T( , ) ( , )bulkβ μ β μ= (9)

T Z T( , ) ( , )bulkβω μ μ− = (10)

This invariance is remarkably illustrated by Figure 4. One
obvious importance of such invariance relations is that they

allow for determining some thermodynamic functions of a
confined fluid from the corresponding bulk ones. It is well-
known that the experimental measurement of thermodynamic
properties of confined fluids is much more difficult or
impossible currently. To our best knowledge, no direct
experimental determination of pressure and free energy has
ever been made for fluids confined in nanoporous materials.
Although the simulation results presented above establish

the validity of the confinement-adsorption scaling and the
invariance described by eqs 9 and 10, a derivation of these
relations from first principles is currently lacking. Nevertheless,
the confinement-adsorption scaling has some intimate
connection with Gibbs theory for interfacial systems66,67 and
the morphological thermodynamics advocated by Mecke et
al.28−32 In fact, Gibbs theory can be derived from the scaling
relation given in eq 1. We start from the following equivalent
form of eq 1:

i
k
jjjjj

y
{
zzzzzT T( , ) ,conf bulk

conf

βμ ρ βμ ρ
χ

=
(11)

Expanding the rhs of this equation to the first order around
ρconf/ϕ0, we obtain

i

k
jjjjj

y

{
zzzzz

i

k
jjjjj

y

{
zzzzz

i

k
jjjjj

y

{
zzzzz

i

k
jjjjj

y

{
zzzzz

i

k
jjjjj

y

{
zzzzz

T T

T

T
T

T
A
V

T

( , ) ,

( / , )

( / )

,
( / , )

( / )

,
( / , )

( / )

conf bulk
conf

0

conf conf

0
bulk conf

0
conf

0

bulk
conf

0

conf

0

bulk conf
0

conf
0

bulk
conf

0 0

bulk conf
0

conf
0

βμ ρ βμ ρ
ϕ

ρ
χ

ρ
ϕ

βμ ρ ϕ

ρ ϕ

βμ ρ
ϕ

ρ ρ
ϕ

βμ ρ ϕ

ρ ϕ

βμ ρ
ϕ ϕ

βμ ρ ϕ

ρ ϕ

= + −

∂[ ]

∂

= + −
∂[ ]

∂

= − Γ ∂[ ]

∂
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Figure 2. Monte Carlo simulation results for an LJ fluid confined at
T* = 3.5 in nine different confining environments (see Appendix for
details about considered systems and the corresponding symbols):
chemical potential, βμ, as a function of scaled density ρc*/χ (ρc* =
ρconfσ3, σ: LJ size parameter). The full line is the bulk βμbulk ∼ ρb*
isotherm from the equation of state given in ref 65.

Figure 3.Monte Carlo simulation results for a HS fluid confined in 19
different confining environments (see Appendix for details about
considered systems and the corresponding symbols): (a) free energy
per particle, βf, as a function of scaled density ρc*/χ (ρc* = ρconfσ3, σ:
HS diameter); (b) minus grand potential per particle, −βω, as a
function of scaled density ρc*/χ. Full lines are, respectively, the
corresponding bulk βf bulk ∼ ρb* and Zbulk ∼ ρb* curves from the
Carnahan−Starling equation of state.

Figure 4.Monte Carlo simulation results for a HS fluid confined in 19
different confining environments (see Appendix for details about
considered systems and the corresponding symbols): (a) free energy
per particle, βf, as a function of chemical potential, βμ; (b) minus
grand potential per particle, −βω, as a function of chemical potential,
βμ. Full lines are, respectively, corresponding bulk βf bulk ∼ βμ and
Zbulk ∼ βμ curves from the Carnahan−Starling equation of state.
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Equation 5 was used when going to the last equality of eq
12. Integrating both sides of the above equation with respect to
ρconf leads to

F N V T
V

T

F N V T

V
A

V

T

F N V T

V
A

V

( , , )
( , ) d

( , , )

( / , )

( / )
d( / )

( , , )

conf
conf conf

0

bulk conf
0

0
bulk conf

0
conf

0

conf
0

0

bulk conf
0

0

∫

∫

β βμ ρ ρ

ϕ
β ϕ

ϕ
βμ ρ ϕ

ρ ϕ
ρ ϕ

ϕ
β ϕ

ϕ
βγ

=

=

− Γ ∂[ ]

∂

= +

(13)

where γ is the surface tension at the fluid−solid interface and A
the surface area of the pore space boundary used for calculating
the porosity, ϕ0. Gibbs adsorption equation was used when
going to the last equality in the above equation. Equation 13 is
nothing else but the free energy of the inhomogeneous system
expressed as the bulk contribution plus the surface term
following Gibbs theory, that is,

F N V T F N V T A( , , ) ( , , )conf bulk conf
0ϕ γ= + (14)

Subtracting μNconf from both sides of the above equation, we
also obtain

V T V T A( , , ) ( , , )bulk
0μ μ ϕ γΩ = Ω + (15)

where Ω and Ωbulk denote the grand potential of the confined
or bulk fluid, respectively. According to morphological
thermodynamics, the grand potential of an inhomogeneous
fluid is written as the sum of a bulk term and a surface term
with the surface tension including three contributions (a flat
surface term plus two curvature terms).28−32 Although not
appearing explicitly in our scaling relation, the surface tension
is embodied in it. The above demonstration reveals this
unambiguously and thus evidences an intimate connection
between our scaling relation and the general theoretical
frameworks like Gibbs theory and morphological thermody-
namics. At first sight, it may appear surprising that rescaling
fluid density alone can account for various fluid−solid
interactions. In fact, this interaction is taken into account
through the adsorption term, that is, ΓA [see eq 4]. The
discussion just given above shows further and explicitly that
the interface contribution to the free energy is indeed included
in our scaling relation.
Scaling relations have been found previously for some

dynamic properties, for example, entropy scaling for the
diffusion coefficient of a HS fluid confined in slit pores68−70 or
an LJ fluid in a zeolite,71 or for the relaxation time of a glass-
making liquid in slit pores.72 Mittal, Errington, and Truskett
found that the D ∼ sex (D: diffusion coefficient; sex: excess
entropy per particle) curves of a HS fluid confined in various
slit pores collapse to the bulk curve when the fluid density is
calculated with the total volume instead of that accessible to
the particle centers.68 This way to obtain curve collapse is in
fact a particular case of the general scaling reported in the
present work. First, the situation considered by these authors
corresponds to what we called a pure confinement regime, that

is, without the second term of the scaling factor given in eq 4.
Our investigations show that the general scaling relation holds
under wider conditions. Second, applying eq 4 to the particular
case of slit pores under the pure confinement regime consists
simply in calculating the fluid density by using the total volume
as did Mittal, Errington, and Truskett.68 In a later study, Mittal
showed that data collapse to the bulk curve can also be
obtained if the diffusion coefficient is plotted as a function of
compressibility factor.72 Our finding reported here provides
the thermodynamics foundation for this. It is to note that in
the case of a HS fluid, the reduced free energy per particle, βf,
is equal to the reduced entropy per particle, s/kB. Therefore,
our results are perfectly consistent with those of Mittal et
al.68−70 Moreover, in light of our finding, we can make an
immediate prediction that the D ∼ μ curves for confined fluids
also collapse to the corresponding bulk one.

4. CONCLUSIONS

Our simulation results establish the validity of a scaling relation
for several thermodynamic functions, which connects confined
and bulk fluids. The invariance with respect to confining
environments is discovered for Helmholtz free energy and
grand potential per particle if they are expressed as a function
of chemical potential. This confers a particular significance to
the use of chemical potential as an independent variable in the
study of confined fluids or inhomogeneous fluids. The
invariance described by eqs 9 and 10 holds rigorously for an
ideal gas confined in various pores under all the allowed
thermodynamic conditions. It is really surprising that such
invariance also holds when a fluid−fluid interaction is present.
Figure 4b shows a pretty good data collapse in the density
region where the compressibility factor deviates largely from its
value for an ideal gas. It is very intriguing that confined fluids
can bear perfectly a hallmark of an ideal gas far beyond the
low-density region. Although a derivation of the scaling
relation from first principles is currently unavailable, we have
revealed its intimate connection with general theoretical
frameworks like Gibbs theory or morphological thermody-
namics for inhomogeneous fluids. We believe this is why the
scaling relation works so well under wide conditions and for a
large variety of confining environments. The most significant
message conveyed by our results is that the apparently
disconnected behaviors of confined fluids are not so disparate
but can be nicely organized via scaling. The scaling relation
shows clearly that the porosity (space accessibility) and fluid−
solid interaction (through the adsorption term) is of primary
importance for determining the thermodynamics of confined
fluids. The other characteristics, such as pore connectivity,
pore shape, pore size distribution, and so forth, play a less
significant role. As an immediate and interesting application,
our finding allows for circumventing some experimental
difficulty for direct determination of some thermodynamic
properties of confined fluids. A challenge in perspective is to
see if the scaling relation also holds for the fluid adsorption in
flexible porous materials, for example, metal−organic frame-
works, or to find the modifications needed if necessary.

■ APPENDIX

In this appendix, we provide the technique details about the
models considered in this work and simulation method as well
as calculation conditions.
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5. Models
5.1. HS Fluid Confined in Various Porous Environments.

In the present work, we consider only a one-component fluid
(denoted as species 1). The fluid−fluid interaction between
HS particles of radius, R1, is given by

l
m
ooo
n
ooo

u
R

R
r r

r r

r r
( )

2

0 2i j
i j

i j
11

1

1
| − | =

∞ | − | <

| − | ≥ (16)

where ri and rj are the position vectors of the ith and jth fluid
particles, respectively. Various confining environments are
considered. For the Madden−Glandt model of random porous
matrices (denoted as species 0),37 the following fluid−matrix
interaction is considered:

l

m

ooooooo

n

ooooooo
u

R R

R R R R d

R R d

r q

r q

r q

r q

( )

0
j

j

j

j

10

0 1

0 0 1 0 1

0 1

ε| − | =

∞ | − | < +

+ ≤ | − | < + +

| − | ≥ + +

(17)

where R0 is the matrix particle radius, qj the position vector of
the jth matrix particle, and ε0 and d are the potential well depth
and width, respectively. In the case of ε0 = 0 and d = 0, we have
a HS matrix. The configurations of a HS matrix are generated
from an equilibrium system with the following interaction:

l
m
oooo
n
ooo

u
R

R
q q

q q

q q
( )

2

0 2i j

i j

i j
00

0

0
| − | =

∞ | − | <

| − | ≥
(18)

For an OHS matrix, the matrix particles are placed totally
randomly, that is, u00(|qi − qj|) = 0. We also considered a slit
pore with the width of L and the interaction between fluid and
the pore wall is given by

l

m
oooooo

n
oooooo

w z

z L

L d z L

z L d

( )

( )/2

( )/2 ( )/2

0 ( )/2

i

i

i

i

1

10 1 1

1

σ

ε σ σ

σ

=

∞ | | ≥ −

− − ≤ | | < −

| | < − −
(19)

where σ1 = 2R1 and zi is the coordinate along the coordinate
axis perpendicular to the slit walls (note that the origin of the
coordinate system is placed at the middle of the slit pore). In
the case of ε10 = 0 and d = 0, we have the simple case of a slit
pore with two hard walls. For slit pores, we calculate the fluid
density by using the physical volume, that is, V = AL (A:
surface area), but not the volume accessible to the centers of
fluid particles [A(L − σ1)].
5.2. LJ Fluid Confined in Various Porous Environments.

To demonstrate the validity of the scaling relation when an
attractive fluid−fluid interaction is also present, an LJ fluid
with the following interaction is considered as well:

l
m
ooo
n
ooo

u
u u r r

r
r r

r r r r

r r
( )

( ) ( )

0
i j

i j i j

i j
11

LJ LJ 11
c

11
c

11
c

| − | =
| − | − | − | ≤

| − | >
(20)

u r r r( ) 4 ( / ) ( / )LJ 1 1
12

1
6ε σ σ= [ − ] (21)

where r11
c = 10R1, σ1 = 2R1, and ε1 is the potential well depth.

When this LJ fluid is confined in an LJ matrix, the fluid−matrix
and matrix−matrix interactions are given, respectively, by

l
m
oooo

n
oooo

u
u u r r

r
r q

r q r q

r q
( )

( ) ( )

0
i j

i j i j

i j
10

LJ LJ 10
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10
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10
c

| − | =
| − | − | − | ≤

| − | >

(22)

u r r r( ) 4 ( / ) ( / )LJ 10 10
12

10
6ε σ σ= [ − ] (23)

and

l
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oooo

n
oooo

u
u u r r

r
q q

q q q q

q q
( )

( ) ( )

0i j

i j i j

i j
00

LJ LJ 00
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00
c

00
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(24)

u r r r( ) 4 ( / ) ( / )LJ 0 0
12

0
6ε σ σ= [ − ] (25)

where r00
c = 10R0, σ0 = 2R0, r10

c = 5(R1 + R0), and ε0 is the
potential well depth for the matrix−matrix interaction. We
considered the cases that ε0/ε1 = 0.70, 1.00, 1.75, 3.50, 5.25,
and 7.00. σ10 and ε10 are obtained from the Lorentz−Berthelot
mixing rule

10 0 1ε ε ε= (26)

210
1 0σ

σ σ
=

+
(27)

Calculations have also been performed for an LJ fluid
confined in a slit pore with hard walls. For an LJ matrix, we
calculate the geometric porosity by ϕ0 = 1 − πρ0σ0

3/6 (ρ0 =
N0/V, N0: number of matrix particles).
6. Method
Canonical ensemble Monte Carlo (CEMC) simulations are
carried out for generating matrix configurations and those of a
fluid confined in a particular matrix configuration. A cubic
simulation box of volume V is used with a periodic boundary
condition in three space directions when a fluid confined in a
matrix is considered. For slit pores, the simulation box is made
with two square walls separated by a distance equal to L and
the periodic boundary condition is applied only in the two
space directions parallel to the walls. For each simulation,
about 2 × 105 to 1 × 106 trial moves for each fluid particle are
performed. As finite size matrices are used, any observable
quantity fluctuates with matrix realizations and an average
made typically with about 10 matrix realizations leads to
converged results. The excess chemical potential of the fluid,
μ1
ex, is calculated for different densities, ρ1 (ρ1 = N1/V, N1:

number of fluid particles), by using Widom’s test particle
method.73 Then, Helmholtz free energy is determined by a
thermodynamic integration, that is,

F
N

ln( ) 1
1

( ) d
1

1 1
3

1 0

ex1∫β ρ
ρ

βμ ρ ρ= Λ − +
ρ

(28)

where Λ1 is the thermal wavelength of fluid particles and in this
work, we set Λ1 = σ1. Finally, we obtain readily the
compressibility factor from the following thermodynamic
relation:

N
F

N1 1

β βμ βΩ = − +
(29)
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7. Conditions of Considered Systems
The computational conditions of all the considered systems are
summarized in Table 1. The confining environments

considered in this work can be classified into two big
categories: (i) porous matrices and (ii) slit pores. According
to their different morphologies of pore space, we can divide
porous matrices into four different types. Disordered porous
matrices are generated by quenching an equilibrium system
according to the procedure proposed by Madden and Glandt37

and denoted, in Table 1, as HSM_d if the matrix−matrix
interaction is HS one or LJM_d when the matrix−matrix
interaction is LJ one. In contrast, ordered porous matrices can
be generated by arranging a matrix particle into an ordered
structure. In this work, we only studied the case that matrix
particles are placed on a simple cubic lattice and the acronyms
used for such matrices are HSM_o (HS for fluid−matrix

interaction) and LJM_o (LJ for fluid−matrix interaction). The
third type of matrices we considered is a templated matrix.
According to the procedure proposed by Van Tassel and
Zhang,38,39 a templated matrix is obtained by quenching an
equilibrium binary system and removing one of its components
after quenching. We considered only a templated HS matrix,
denoted by THSM in Table 1, with the same number of
templates and matrix particles, and moreover, they have the
same size. The fourth type of matrices is the hard sponge
one,41,49 denoted as HSG in Table 1.
The meaning of the title labels in Table 1 is the following:
f−s: fluid−solid interaction (here, the word “solid” is used to

denote either a hard wall or matrix particles);
f−f: fluid−fluid interaction;
τ: fluid matrix particle size ratio, σ1/σ0;
T*: temperature, T* = kBT/εref (εref: reference energy unit,

all the well depth parameters for square well or LJ potentials,
for example, ε0, ε1, are defined with respect to this reference
unit);
Symbol: symbols used for curves plotted in different figures

of the paper.
The definitions of all the other reduced parameters given in

Table 1 are given below as well.
Slit width: L* = L/σ1;
SW(d*,ε10* ): square well potential with width, d* = d/σ1, and

depth, ε10* = ε10/εref;
LJ(ε*): LJ potential with depth, ε* = ε1/εref (for fluid−fluid

interaction) or ε* = ε10/εref (for fluid−matrix interaction);
ρ0*: matrix density, ρ0* = ρ0σ0

3 (ρ0 = N0/V, N0: number of
matrix particles).
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