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ABSTRACT: Geometrical confinement has a large impact on gas solubilities in nanoscale pores. This phenomenon is closely
associated with heterogeneous catalysis, shale gas extraction, phase separation, etc. Whereas several experimental and theoretical
studies have been conducted that provide meaningful insights into the over-solubility and under-solubility of different gases in
confined solvents, the microscopic mechanism for regulating the gas solubility remains unclear. Here, we report a hybrid theoretical
study for unraveling the regulation mechanism by combining classical density functional theory (CDFT) with machine learning
(ML). Specifically, CDFT is employed to predict the solubility of argon in various solvents confined in nanopores of different types
and pore widths, and these case studies then supply a valid training set to ML for further investigation. Finally, the dominant
parameters that affect the gas solubility are identified, and a criterion is obtained to determine whether a confined gas−solvent
system is enhance-beneficial or reduce-beneficial. Our findings provide theoretical guidance for predicting and regulating gas
solubilities in nanopores. In addition, the hybrid method proposed in this work sets up a feasible platform for investigating complex
interfacial systems with multiple controlling parameters.

1. INTRODUCTION

Solubility enhancement or suppression of gases in different
solvents under confinement is receiving increasing interest,
owing to its close association with molecular diffusion in
porous materials,1−3 mass transfer through membranes,4 and
surface catalytic reaction.5−7 In recent decades, several
experimental and theoretical works have been conducted to
investigate gas solubilities in different confined solvents, and it
has been reported that, in some cases, the gas solubility can be
much enhanced in nanoconfinement; this phenomenon is
often referred as to “over-solubility”.2,4,8−21 As a pioneering
illustration, Peureux et al.14 observed zero-order kinetics for
the hydrogenation of nitrobenzene to aniline when molecular
hydrogen gas and liquid nitrobenzene were confined in a γ-
alumina membrane contactor, while first-order kinetics was
observed in a conventional bulk slurry reactor. This difference
in the reaction kinetics was interpreted to be due to an over-
solubility of hydrogen gas in the confined nitrobenzene. Pera-

Titus et al.21 studied the solubility of hydrogen gas in confined
CHCl3, CCl4, n-hexane, and ethanol, and they observed that
the solubility of hydrogen gas could be enhanced by up to 15
times of its counterpart in the corresponding bulk solvents
when the pore size was less than 15 nm. Budhathoki et al.2

performed molecular dynamics simulations and observed an
enhancement of CO2 solubility in ionic liquids in carbon slit
nanopores. This enhanced solubility led to increased perm-
selectivities of CO2 from a binary mixture of CO2/CH4.
Furthermore, the enhanced solubilities of CO2 in various
confined solvents, including water,15 propylene carbonate,17
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and octamethycyclotetrasiloxane (OMCTS),18 have also been
reported. Despite these reports on over-solubility, a suppressed
solubility known as under-solubility in confinement has also
been observed. For example, under-solubility of ethanol8 and
sodium chloride11 in confined water has been reported. These
differences were attributed to the competition between two
mechanisms:13,22 the pore size effect and competitive
adsorption mechanism. Also, we note that different studies
have defined “solubility” differently, making comparisons of the
solubility results from different studies less straightforward.22

However, a clear understanding of the factors that lead to
under-solubility or over-solubility for a specified system
remains to be resolved. In general, the gas solubility in
confinement is related to system temperature, bulk pressure,
pore width, wall−adsorbate interactions, and adsorbate−
adsorbate interactions. It has been reported that the variation
of adsorbate−wall interaction can greatly alter the physico-
chemical properties of a confined system.23−27 For example, in
our previous work,23 we found that a decrease in adsorbate−
wall interaction could enhance the contribution of adsorption
pressure in nanopores and hence reduce the set pressure in
pressure relief valves. Tao et al.25 found that water permeability
in a nanotube is reduced by decreasing the water−wall
interaction. Furthermore, it has been reported that variation of
the adsorbate−wall interaction affects the gas solubility.9,28

Although the abovementioned experimental and theoretical
studies provide important insights into the gas solubility in
nanopores, the microscopic mechanism for manipulating the
gas solubility remains unclear. The difficulty originates from
the complex relation among the solubility and the multiple
associated parameters.
To investigate this problem, in this work, we introduce a

hybrid theoretical method by combining classical density
functional theory (CDFT) and machine learning (ML). CDFT
has been recognized as an efficient and accurate statistical
mechanics method,29 and it has been widely applied for
investigating different interfacial systems, including gas
adsorption in porous materials.30,31 As demonstrated in our
previous work.22 CDFT can predict the gas solubility in
confined solvents quantitatively. Moreover, the influence of the
individual parameters such as pore width, system temperature,
bulk pressure, and intermolecular potential parameters on gas
solubility can be examined efficiently by means of CDFT.
Nevertheless, CDFT calculations are often limited to case
studies, and the system size that can be treated is typically on
the nanoscale. As a result, it is difficult to give a comprehensive
contour map of solubility over a wide range of multiple
controlling parameters using CDFT alone. On the other hand,
with the help of high-performance computing, ML has been
accepted as a robust assistive tool in many research areas,32−35

including different physicochemical systems.34,36 Compared
with CDFT calculations, ML has a generalization ability
through which general criteria can be obtained based on a
reliable training set. The training set is usually composed of the
results from a few representative case studies, which can be
conducted by using molecular simulations or CDFT. The
combination of CDFT and ML can provide a feasible platform
for unraveling the microscopic mechanisms of various complex
systems with multiple controlling parameters. We expect that
this combined study can give a universal phase diagram of the
gas solubility in confined solvents on an experimentally
achievable scale and thus guide the regulation of gas solubility
in nanopores.

2. MODELING AND THEORY
2.1. Solubility in Confined Systems. Following our

previous work, the solubility of the solute gas, S2, can be
defined as22

=
+

×S
N

N N
100%2

2

1 2 (1)

where N1 and N2 represent the numbers of solvent and solute
molecules, respectively. In a nanopore, Ni can be obtained by
counting the molecular number in simulation realizations or by
integrating the local density profile of the ith adsorbate, ρi(r),
over the entire confined space, i.e., Ni = ∫ ρi(r)dr. To obtain
the density profiles of the solvent and solute in the nanopores,
we consider a model system consisting of a mixture of two
species (the adsorbates). We use the Lennard-Jones (12-6)
model for the intermolecular adsorbate−adsorbate interactions
and the Steele (10-4-3) potential37 to describe the adsorbate−
solid interaction. The Lennard-Jones potential gives a
satisfactory description of the short-range repulsive inter-
actions and the long-range attractive dispersion interactions
and has been proven to give a good account of adsorption in
many studies for molecules and substrates of the type
considered here.38−41 The Steele (10-4-3) potential is derived
by summing the intermolecular pair potentials between a single
adsorbate molecule and all atoms in the solid substrate.
Comparisons of molecular simulations of adsorption using the
Steele potential with those using a fully atomistic model of the
solid show quantitative agreement, provided that the temper-
ature is not very low.42,43 For methane adsorbed in carbon
pores, for example, the Steele potential gives very good results
above about 80 K.42
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where the subscripts a and w stand for the molecules of the
absorbate and the wall, respectively. In eq 2, εaw and σaw are the
energy and size parameters for the adsorbate−wall LJ
interaction, respectively, and ρw is the atomic density of the
wall. Here, different types of pore walls are considered with ρw
= 114 nm−3 for graphite, ρw = 44.2 nm−3 for silica, and ρw =
25.4 nm−3 for mica. In eq 2, Δw is the interlayer spacing
between layers of solid atoms, with Δw = 0.335 nm for
graphite, Δw = 0.220 nm for silica, and Δw = 0.287 nm for
mica.44 The normal distance z in the above equation is defined
as the separation between the mass center of an adsorbate
molecule and the substrate surface, and the latter is specified as
the plane through the centers of the substrate atoms in the
outmost layer. While eq 2 gives the interaction energy of an
adsorbate molecule with one wall, the total potential energy
due to both walls is calculated by ua, pore(z) = uaw(z) + uaw(H −
z), where H is the pore width, defined as the separation
between the planes through the surface atoms of the substrate
on opposing walls of the slit pore (see Figure 1). Since argon is
an inert gas and not subject to chemical reaction, argon is
selected as the representative solute gas. All interaction
parameters used in the present work are listed in Table 1.
The interaction for unlike pairs is calculated using the
Lorentz−Berthelot (LB) combination rules, i.e., ε ε ε=ij ii jj
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and σij = (σii + σjj)/2. As shown in our previous work,45 the
porosity (pore size) and the fluid−solid interaction are of
primary importance for determining the thermodynamics of
confined fluids; the other characteristics, such as pore
connectivity, pore size distribution, etc., play a less significant
role. Hence, in this work, the porous material has been
simplified as a simple slit pore model. The solvent and solution
have been taken to be Lennard-Jones particles, and the Steele
potential is used to describe the interaction between the
solvent/solution and the solid. Based on these assumptions, we
can significantly reduce the complexity of this system while
maintaining crucial information.
2.2. Solubility Calculation by Classical Density Func-

tional Theory. Classical density functional theory is
formulated in the grand canonical ensemble (independent
variables μ, V, T, where μ is chemical potential), for which the
thermodynamic potential is the grand free energy, Ω. CDFT
rests on a uniqueness theorem that states that it is possible to
define a grand free energy functional, Ω[ρ(r)], that is a
functional of the local density profile, ρ(r), and that takes its
minimum value, Ω, when the system reaches thermodynamic
equilibrium. Given an expression for the grand free energy
functional, it is possible to determine the density profile at
equilibrium by using variational methods to minimize the free
energy functional and from this the other equilibrium
properties of the system.29,50 Within the framework of
CDFT, in the grand canonical ensemble, the grand potential
functional of the adsorbate system is

∫∑
ρ ρ ρ

ρ μ

Ω[ ] = [ ] + [ ]

+ [ − ]

F F

V

r r r

r r r

( ) ( ) ( )

( ) ( ) d

i i i

i
i i i

id ex

ext

(3)

Here Fid and Fex are the ideal gas and excess parts of the
Helmholtz free energy, respectively. The term Vi

ext represents
the external potential for the ith adsorbate component, which
originates from the wall−adsorbate interaction, and μi is the
bulk chemical potential, which is associated with the bulk

density ρi
b. The ideal part of the Helmholtz free energy can be

formulated analytically

∫∑ρ ρ ρ[ ] = [ Λ − ]F k Tr r r r( ) ( ) ln ( ) 1 di
i

i i i
id

B
3

(4)

Here, Λi is the de Broglie wavelength of the ith component,
kB is the Boltzmann constant, and T is the absolute
temperature. In the present work, we adopt the first-order
mean spherical approximation (FMSA) developed for LJ
systems by Tang51 to deal with the excess part of the
Helmholtz free energy, Fex[ρi(r)], in eq 3. In FMSA, Fex

consists of a repulsive part, Frep
ex [ρi(r)], and an attractive part,

Fatt
ex [ρi(r)]. The repulsive part accounts for the hard-sphere

(HS) exclusion, while the effective HS diameter of each
component can be estimated with the help of the Barker−
Henderson formula.52 The repulsive contribution is calculated
by using the modified fundamental measure theory
(MFMT).53

The attractive part, Fatt
ex , is related to the bulk fluid at

equilibrium and is given by a perturbation expansion truncated
at the second order term

∫
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where Δρi(r) = ρi(r) − ρi
b. Here, βμi

att and cij
att(r) are the first-

and the second-order differentials of βFatt
ex [ρi(r)] with respect

to the local density ρi(r) at equilibrium, respectively, β = 1/
kBT, and the analytical expression of cij

att(r) can be found in the
original work by Tang.51

In slab geometry, we have ρi(r) = ρi(z), with z being the
direction perpendicular to the wall, and the external potential
for the ith adsorbate, Vi

ext(z), is equivalent to ua, pore(z). The
minimization of the grand potential functional gives rise to the
Euler−Lagrange equation, which finally reads

∫∑ρ ρ β ρ
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Here, μi
HS(z) is the local repulsive excess chemical potential

and is calculated by using MFMT53 with the help of the local
density, ρi(z); μi

b, HS is the counterpart of μi
HS(z) in the

corresponding bulk system and is calculated from the
Mansoori et al. equation of state (EOS).54 The density profile
in eq 6 can be obtained by using the steepest descent
algorithm.29

For the CDFT calculation, the bulk densities of both solute
and solvent are required. They can be determined by using the
modified Benedict−Webb−Rubin (MBWR) EOS55 at the
given values of temperature and pressure. The calculation
details of bulk density and bulk solubility at a given set of
system temperatures and pressures are provided in the
Supporting Information. The efficiency and accuracy of the
above version of CDFT when applied to confined systems in

Figure 1. Schematic of the CDFT calculation system in this work.

Table 1. Lennard-Jones Pairwise Parameters of the
Adsorbate and Adsorbent

species ε/kB (K) σ (Å)

Ar46 119.8 3.40
CCl4

47 366.0 5.14
OMCTS48 351.4 7.70
C6H5NO2

47 425.0 5.14
C6H5Br

27 351.2 5.38
graphite49 28.0 3.40
silica47 230.0 2.70
mica44 940.0 3.50
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slit-pore geometry have been validated in several previous
works.22−24,29−31

2.3. Machine Learning with Input from CDFT
Predictions. Machine learning is a useful approach for solving
the classification and prediction of complex problems. As
illustrated in Figure 2, the gas solubility under specific
conditions (fixed pressure, temperature, solvent, solute, wall
type, and pore size) can be predicted by using CDFT. Owing
to the efficiency and accuracy of CDFT, many similar case
studies can be carried out, and these supply individual logical
points to ML. ML can then be used to find the hidden relation
among these points. With the help of this relation, ML can
thereafter predict the gas solubility for other cases or provide a
general criterion to classify these points efficiently.
In general, ML algorithms can be divided into two types,

supervised learning algorithms and semisupervised learning
algorithms. Supervised learning algorithms build a mathemat-
ical model from a set of data that contains both the inputs and
the desired outputs. The data is known as training data and
consists of a set of training examples. Each training example
has one or more inputs and a desired output, also known as a
supervisory signal. Classification and regression are the two
main branches of supervised algorithms. On the contrary,
unsupervised learning algorithms take a set of data that
contains only inputs and find structure in the data, like
grouping or clustering of data points. The algorithms therefore
learn from test data that has not been labeled, classified, or
categorized.

In the present work, since we only considered the influence
of four different parameters, i.e., σv/σs, εv/εs, P* (=Pσgraphite

3 /
εgraphite), and T* (=kBT/εgraphite), based on some statistical
heuristic methods,56,57 we use 75 different systems as a training
set and 25 different systems as a test set. Since, for smaller data
sets, a supervised learning method known as support-vector
machine (SVM)58 always predicts a better performance than
the conventional statistical method, SVM is used in the present
work, and a detailed discussion about SVM is given below.

3. RESULTS AND DISCUSSION

3.1. Case Studies with CDFT: Argon Solubility in
Nanopores. A confined solute−solvent system with argon as
solute and CCl4 as solvent is investigated at 298 K and 15 bar
bulk pressure. The range of pore widths studied is from
1.9σCCl4 to 6.0σCCl4, with a discrete interval of 0.1σCCl4. Pore
walls under consideration are graphite, silica, and mica. In
Figure 3a, we show the CDFT predictions for the solubility of
argon as a function of pore size with the presence of three
different walls. Over-solubility is observed when H/σCCl4 is less

than 2.5, while under-solubility is found when H/σCCl4 is larger
than 2.5. Interestingly, argon solubility oscillates with pore
width as pore size is increased. This oscillation phenomenon
could also be interpreted in terms of the averaged
concentrations of solvent and solute, ρ̅i, in the pore. The
concentration of the ith adsorbate can be calculated by

∫ρ ρ̅ = ′ z z( )di H

H

i
1

0
, where H′ = H − σaw is the accessible pore

Figure 2. Schematic of the combination of CDFT and machine learning.

Figure 3. Argon uptake at 298 K and 15 bar bulk pressure in slit pores of varying pore width: (a) solubilities of argon in confined CCl4 for three
different walls and (b) density profiles for adsorbed argon (black points and line) and CCl4 (red points and line) in carbon (graphite) pores. The
horizontal dashed lines show the values of solubility and density for the bulk fluid under the same conditions of temperature and pressure.
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width.22 As shown in Figure 3b, the averaged concentrations
versus pore width also exhibit oscillations.
This oscillation in concentration can be explained by a

combination of packing effects and competitive adsorption
mechanism. The packing effect indicates that when the pore
width is comparable to the size of the adsorbate molecule, the
adsorbate forms a layer-by-layer structure in the pore due to
the geometrical confinement. From Figure 3a, we can observe
that for graphite, when the pore width is around 2.2σ, 3.1σ,
4.0σ, or 5.1σ, the argon solubility is higher than for nearby
pore widths. This is because at these pore widths, the solvent
molecules are prevented from forming dense and complete
layers due to the steric constraints of the pore walls, and
consequently, they are less packed. Thus, more space is
available to accommodate solute molecules. At a width of 2.2σ,
CCl4 forms two loosely packed layers, leading to an enhanced
adsorption of argon. The density of argon is much higher than
that in the bulk system, as shown in Figure 3b. As a result, the
solubility of argon in pores exhibits over-solubility.
The adsorption of argon and CCl4 in each slit pore is a

physical process according to Hu et al.22 The molecule uptake
of each component is mainly determined by the competitive
adsorption mechanism. At a bulk pressure of 15 bar, the effect
from the difference in the excess chemical potentials of the two
components is relatively small, and in this circumstance, the
wall−adsorbate interaction, i.e., the confinement effect, is the
major factor in determining the density distribution. On the
other hand, the wall−CCl4 interaction is much more attractive
than the wall−argon interaction, and thus, the adsorption of
CCl4 is more competitive, and this explains the enhancement
of its concentration as shown in Figure 3b. On increasing the
pore width, the confinement effect becomes less significant. As
a result, the solubility and the density of both solute and

solvent gradually recover to its bulk value as the pore width
further increases.
It has been reported that the solubilities of N2 and O2 in

water are enhanced by 5−10-fold when confined in hydro-
phobic pores9 and the solubility of CH4 in water is reduced in
hydrophobic clay minerals.28 Generally, when the wall
potential well depth εw becomes larger, the interaction between
the adsorbate and the solid surface becomes stronger,
suggesting that the surface is more amphiphilic.59,60 With the
decrease of εw, the dispersion interaction becomes weaker, and
the surface becomes amphiphobic. To further study the gas
solubility in a confined solvent, we consider changes in the wall
potential well depth, εw. A graphite wall (εw/kB = 28 K) was
chosen as a suitable benchmark for making comparisons. We
chose wall potential well depths to be 3, 28, 200, 400, 600, and
800 K and set the pore width to be 2 and 4 nm, which are
experimentally achievable sizes. All the other parameters and
state conditions were kept the same as those of the graphite
wall system considered above. The argon solubility, SAr, results
are presented in Figure 4 for four different confined solvents
(CCl4, OMCTS, C6H5NO2, C6H5Br). For the argon−CCl4,
argon−C6H5NO2 and argon−C6H5Br systems, with increasing
εw/kB, the interaction between solute and solvent gradually
increases, and we find that SAr decreases monotonically. Also,
the SAr results indicate over-solubility when εw/kB is less than
about 5 K but display under-solubility for higher values of the
wall energy parameter. By contrast, for the argon−OMCTS
system, SAr increases with increasing εw/kB, and we observe
over-solubility when εw/kB is larger than about 100 K in 2 nm
slit pores and 700 K in 4 nm slit pores.
These phenomena indicate that for a confined gas−solvent

system, we could regulate the gas solubility by modulating the
wall−adsorbate interaction or the pore width. From an

Figure 4. Argon solubilities in various solvents at 298 K and 15 bar bulk pressure in slit pores of various wall potentials with 2 (black solid lines)
and 4 nm (blue dash lines) pore widths: (a) CCl4, (b) OMCTS, (c) C6H5NO2, (d) C6H5Br.
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experimental perspective, we can change the adsorbent
material, alter the pore wall surfaces, or change the pore width.
Furthermore, the abnormal gas solubility enhancement with

increasing wall potential in the argon−OMCTS system
suggests that there may be some deterministic factors to
regulate the gas solubility in the confined space. If these factors
are identified, we may be able to predict the solubility for other

confined gas−solvent systems. For convenience, we define a
system to be an enhance-beneficial system if the gas solubility
is increased when enhancing the wall potential well depth.
Otherwise, we refer to it as a reduce-beneficial system.

3.2. Incorporation with Machine Learning: Manipu-
lation Mechanism. Support-vector machine (SVM) is a
supervised classifier, which has been proven to be highly

Figure 5. Schematic representations of (a) the principle of support-vector machine and (b) calculated accuracy.

Figure 6. Scatter distribution of enhance-beneficial (red circles) and reduce-beneficial (blue triangles) systems for a pore of width 2.0 nm: (a) T* ∼
σv/σs, (b) T ∼ P* (Pσgraphite

3 /εgraphite), (c) P* ∼ εv/εs, (d) σv/σs ∼ P*, (e) σv/σs∼∼ T* (kBT/εgraphite), (f) σv/σs ∼ εv/εs.
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effective in solving pattern recognition problems with a wide
range.61 The fundamental and core idea of SVM is to find a
classification hyperplane to separate the data set into different
classes. It is illustrated in Figure 5a, where L1, L2, and L3
represent three different hyperplanes. It intuitively suggests
that auxiliary line L3 gives the best performance for
classification, especially on the boundary or edge. This
means that a good SVM classifier should be robust enough
to tolerate the local “perturbation” and be of great general-
ization. In addition, SVM has low computational cost to solve
nonlinear problems compared with other classifiers, such as
decision-tree or logistic regression.
The general procedure for implementation of SVM can be

divided into two steps. In the first place, the training data set is
projected into higher dimensional space through the kernel
function. Then, the machine finds a hyperplane that has the
maximum margin to separate data vectors.
In this work, an initial SVM is constructed by considering

four different parameters, i.e., σv/σs, εv/εs, P* (=Pσgraphite
3 /

εgraphite), and T* (=kBT/εgraphite). Herein, the subscript v stands
for solvent, and the subscript s represents solute species. We
aim at using this SVM to classify whether a given confined
solute−solvent system is an enhance-beneficial or a reduce-
beneficial system. That is to say, the output category labels of
SVM in this work are over-solubility and under-solubility.
First, we choose the data sets for sample training and testing.

Argon is chosen as the solute, with LJ parameters σs = 3.4 Å
and εs/kB = 119.8 K. In this initial sample training and testing,
we keep both the pore width, H = 2 nm, and the wall
composition, graphite, fixed. The other parameters are
considered with reasonable limits, which are 1.1 < σv/σs <
2.4, 2.4 < εv/εs < 3.6, 9.5 < T* < 12, and 0.05 < P* < 0.51. 100
different enhance-beneficial or reduce-beneficial confined
solute−solvent systems are randomly generated with CDFT.
75 of them are selected as the training set, and the remaining
25 systems are the test set. We show that this trained SVM is
good enough to give accurate predictions for the test set in
what follows.
Second, by removing one of the four parameters, we obtain

four new SVMs involving the remaining three parameters.
Following training using these training sets, we can determine
the accuracy of these four SVMs to describe the testing set.
The accuracies of the four SVMs are presented in Figure 5b.
The accuracy of the three SVMs when omitting εv/εs, P*, and
T* still remains 100%. However, the accuracy of the SVM
when omitting σv/σs is less than 60%. This result indicates that
σv/σs is the dominant parameter in determining whether a
specific confined solute−solvent system is enhance-beneficial
or reduce-beneficial when H is fixed at 2.0 nm.
In Figure 6, by setting the four parameters σv/σs, εv/εs, P*,

and T* as horizontal and vertical axes, respectively, we separate
the confined solute−solvent systems into two categories. Red
circles stand for enhance-beneficial systems, and blue triangles
represent reduce-beneficial systems. From Figure 6a−c, one
can see that when setting the three parameters εv/εs, P*, and
T* as horizontal and vertical axes, respectively, the two
different systems distribute randomly, indicating that we
cannot separate these systems effectively by using these three
parameters. However, if we set σv/σs as the horizontal axis and
the remaining three parameters as the vertical axes,
respectively, as illustrated in Figure 6d−f, one observes an
obvious that if a system is an enhance-beneficial system or a
reduce-beneficial system is only irrelevant with the ratio

between solvent and solute particle sizes, σv/σs. This confirms
the results from the ML analysis, namely, that the molecular
size ratio between the solvent and solute σv/σs represents the
dominant parameter to control whether a specific confined
solute−solvent system is enhance-beneficial or reduce-
beneficial.
To understand how this dominant parameter will affect the

solubility, in Figure 7, we present the gas solubility ratio with

respect to σv/σs and εw/kB. This ratio is defined as the
solubility in the confined solvent relative to that in the bulk
solvent. If the gas solubility ratio is greater than 1, over-
solubility occurs. Otherwise, we have under-solubility. Here,
we take argon and OMCTS as the reference solute and solvent,
respectively. Changing the parameter σv/σs is affected by
varying the solvent molecule size, σv. The change in εw/kB
corresponds to altering the potential well depth of the pore
wall. The black solid lines in both the lower-left corner and
upper-right corner of Figure 7 represent the crossover from
under- to over-solubility, i.e., the locus of points where the gas
solubility in confined solvents equals that in the bulk solvent.
In the lower-left corner in Figure 7, the confined solute−
solvent systems are reduce-beneficial. Thereafter, the gas
solubility gradually increases with the decrease of εw/kB.
Consequently, the gas solubility above the black line is
suppressed, and that under the black line is enhanced. In the
upper-right corner in Figure 7, the confined solute−solvent
systems are enhance-beneficial. As a result, the gas solubility
above the black line is enhanced, and the gas solubility under
the black line is suppressed. It is noteworthy that when σv/σs is
small, the confined solute−solvent system changes from over-
solubility to under-solubility with the increase of εw/kB.
Conversely, when σv/σs is a large number, the situation is
the opposite.
In Figure 7, there are two over-solubility regions, the lower-

left corner and the upper-right corner. To explain the
difference between these over-solubility regions, we have
considered the density distribution in these two regions. In the
lower-left corner of Figure 7, this over-solubility is believed to
occur because the higher εw/kB will change the density
distributions of both the large and small species. To verify this
reasoning, the density distributions of a binary mixture
confined in a slit pore with different εw/kB and different σv/
σs are shown in Figure 8. In Figure 8a, it is seen that when the
sizes of two species are similar, increasing εw/kB causes the

Figure 7. Evolution of the ratio of gas solubility in the slit pore and in
the bulk phase with respect to σv/σs and εw* = εw/εgraphite for a pore of
width H = 2.0 nm. In these calculations, σw = 0.340 nm, the value for
graphite. The three points here represent the real systems, i.e., argon−
CCl4, εw/kB = 3 K (black point); argon−C6H5Br, εw/kB = 20
K(yellow point).
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density of the large species to increase and decreases the
density of the small species. This can explain the mechanism of
solubility enhancement of the lower-left corner in Figure 7.
Also, this can explain the behavior of argon−solvent systems
presented in Figure 4, but not the argon−OMCTS system. To
explain the upper-right corner in Figure 7 and the behavior of
the argon−OMCTS system, we also considered the density
distribution when σv/σs is large, presented in Figure 8b. In
Figure 8b, it is seen that when the sizes of two species are far
different, increasing εw/kB causes the density of both species to
increase, and since the small solute particles are adsorbed in
the void spaces between the big solvent particles, this leads to
the density increase of small species that is faster than that of
large species. This can explain the mechanism of solubility
enhancement of the upper-right corner in Figure 7 and the
behavior of the argon−OMCTS system.

4. CONCLUSIONS

The confinement effect on the gas solubility in nanopores has
been investigated by combining CDFT with the ML method.
Specifically, CDFT calculations provide the solubilities of
argon gas in four confined solvents within nanopores of
different pore widths and wall types. We demonstrate that the
gas solubility can be altered by reducing the pore width or by
varying the potential well depth of the pore wall. In total, 100
individual solute−solvent systems are examined, which supply
a reliable training set to ML.
The combination of CDFT and ML can provide a powerful

platform to unravel the microscopic mechanisms of various
complex systems with multiple controlling parameters, in
contrast to other works that are always limited to case-by-case
studies. Two types of systems are defined according to the
effect of the wall type on gas solubility. Enhance-beneficial
systems are those for which the gas solubility increases on
increasing the potential well depth of the pore wall. By
contrast, in the reduce-beneficial systems, the gas solubility
decreases on increasing the potential well depth. Both systems
are distinguished with the help of this combined study. In
addition, the combined study shows that the molecular size
ratio between the solvent and solute, σv/σs, represents a
dominant parameter. This gives a criterion for determining the
over-solubility or under-solubility of gas in a confined solvent
for a particular pore width of 2.0 nm.
This theoretical study gives mechanistic insights into the

regulation of gas solubility in nanopores. Meanwhile, we
demonstrate that the combination of CDFT and the ML
method provides a feasible engineering tool to investigate the

complex interfacial systems with multiple controlling param-
eters.
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Figure 8. Density distribution of a binary mixture in a H = 4.0 nm slit pore: (a) The ratio of the diameter of the solute particle to that of the solvent
particle, σv/σs, is 1.323. (b) The ratio of the diameter of the solute particle to that of the solvent particle, σv/σs, is 1.762.
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