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Experimental capabilities and
limitations of a position-based control
algorithm for swarm robotics

Yating Zheng1,2 , Cristián Huepe1,3,4 and Zhangang Han1

Abstract
Achieving efficient and reliable self-organization in groups of autonomous robots is a fundamental challenge in swarm
robotics. Even simple states of collective motion, such as group translation or rotation, require nontrivial algorithms,
sensors, and actuators to be achieved in real-world scenarios. We study here the capabilities and limitations in control-
ling experimental robot swarms of a decentralized control algorithm that only requires information on the positions of
neighboring agents, and not on their headings. Using swarms of e-Puck robots, we implement this algorithm in experi-
ments and show its ability to converge to self-organized collective translation or rotation, starting from a state with ran-
dom orientations. Through a simple analytical calculation, we also unveil an essential limitation of the algorithm that
produces small persistent oscillations of the aligned state, related to its marginal stability. By comparing predictions and
measurements, we compute the experimental noise distributions of the linear and angular robot speeds, showing that
they are well described by Gaussian functions. We then implement simulations that model this noise by adding Gaussian
random variables with the experimentally measured standard deviations. These simulations are performed for multiple
parameter combinations and compared to experiments, showing that they provide good predictions for the expected
speed and robustness of the self-organizing dynamics.

Keywords
Collective motion, decentralized control, position-based models, self-organization, swarm robotics

Handling Editor: Georg Martius, Max Planck Institute for Intelligent Systems, Germany

1. Introduction

One of the first challenges of swarm robotics is to
develop decentralized control algorithms that can lead
groups of autonomous robots to self-organize into
coherent states of collective motion (Brambilla et al.,
2013). A variety of such algorithms have been imple-
mented in simulations, mostly trying to reproduce the
collective dynamics observed in biological systems.
They have tried to imitate, for example, the dynamics
of bacterial colonies (Zhang et al., 2010), ant groups
(Mersch et al., 2013), fish schools (Calovi et al., 2014;
Gautrais et al., 2008; Tunstrøm et al., 2013), and bird
flocks (Bhattacharya & Vicsek, 2010; Cavagna et al.,
2013; Toner & Tu, 1995). These bioinspired algorithm
could help develop a set of simple core rules for con-
trolling robot swarms and performing other predeter-
mined collective tasks, such as path planning (Sartoretti
et al., 2014), spatial formations (Kushleyev et al., 2013;

Mathews et al., 2017; Rubenstein et al., 2014; Wang
et al., 2014), or collective decision making (Vigelius
et al., 2014).

Many of the current collective motion algorithms
have been strongly influenced by the Vicsek model
(Chaté et al., 2008; Vicsek et al., 1995; Vicsek &
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Zafeiris, 2012). This is a minimal model that is purely
based on alignment interactions, where each agent
advances at a fixed speed and tends to align to the mean
heading direction of its neighbors. When simulated in a
two-dimensional periodic box with noise levels below a
critical value, all agents will become approximately
aligned and thus move in a common direction. More
complex models that use a similar alignment-based
mechanism to achieve self-organization have also been
introduced. The model in Couzin et al. (2002), for exam-
ple, considers a three-dimensional system and adds
attraction–repulsion interactions to generate group
aggregation and avoid collisions between agents. More
recently, other models have experiments to address how
interactions could depend on other factors, such as
agent speed or the choice of interacting neighbors
(Bialek et al., 2012; Gautrais et al., 2012; Katz et al.,
2011). Despite the differences between these models,
they all strongly rely on explicit, Vicsek-like aligning
interactions to self-organize into collective motion.

In the context of swarm robotics, a strong reliance
on alignment interactions can have several disadvan-
tages. For example, components that detect relative
orientations are less common than those measuring
relative positions. In addition, each robot will typically
have to obtain information not only on the headings of
other agents (to implement the alignment-based algo-
rithm) but also on their relative positions (in order to
avoid collisions and group dispersion). This implies that
all robots must have the necessary hardware to detect
both quantities, which increases their cost and complex-
ity. Furthermore, although aligning interactions are
effective in achieving self-organized collective transla-
tional motion, they typically cannot produce other
states of coherent collective motion, such as group rota-
tion1 (Gautrais et al., 2012). It would therefore be bene-
ficial to implement in robot swarms control algorithms
that can achieve collective motion without requiring
aligning interactions, that is, without requiring the
exchange of orientation information between agents.
One such algorithm2 is the Active-Elastic (AE) model,
which was recently proposed theoretically in Ferrante
et al. (2013a, 2013b) and first tested experimentally in
Ferrante et al. (2012).

In this work, we implement the AE model as a
position-based decentralized motion control algorithm
for a collective robotics experiment, exploring its advan-
tages and disadvantages in a real-world setting. We
show that a system of up to seven robots initially in a
nonaligned state can robustly self-organize to a com-
mon heading direction and achieve collective motion,
even in an experimental setup with significant sources
of noise and long processing time-delays. Despite this
success in achieving collective motion, we also observe
that the AE algorithm is intrinsically prone to small-
scale oscillations, which can eventually lead to instabil-
ities. We will identify the origin of these oscillations

with a simple analytical calculation that considers only
two agents. We then characterize the experimental noise
and processing times introduced by real-world limita-
tions, showing that we can closely reproduce the robot
dynamics when these are added to our numerical simu-
lations. We thus demonstrate that it is possible to pre-
dict the optimal experimental parameter combinations
leading to self-organization by simulating the observed
noise. Finally, we show that a small variation of the AE
algorithm can achieve instead self-organization into col-
lective rotation.

The article is organized as follows. In Section 2, we
describe the AE algorithm in its dimensional and non-
dimensional forms, its self-organizing mechanism, and
the order parameters used to monitor its collective
states. Section 3 presents our experimental setup and
the tests we performed for its validation. In Section 4,
we describe the typical self-organizing dynamics
observed in our robotic system and characterize its sta-
bility and experimental noise. We then compare in
Section 5 the typical collective dynamics in our experi-
ments and simulations for different regions of the para-
meter space. In Section 6, we introduce a variation of
the AE algorithm that leads to collective rotation in
our experiments. Finally, Section 7 discusses the cap-
abilities and limitations of the AE model for control-
ling robot swarms, in light of our experimental and
numerical results, and presents our conclusions.

2. Position-based control algorithm

In this section, we describe the AE control algorithm
and order parameters used in our swarm robotics
experiments.

2.1. The AE model

We implemented a decentralized swarm robotics con-
trol algorithm based on the AE model introduced in
Ferrante et al. (2013a, 2013b). This minimal model was
shown to produce self-organized collective motion, even
in the presence of noise, when starting from a group of
agents with random initial headings. It only requires
the exchange of positional information between agents,
without requiring any explicit alignment interaction or
the exchange of orientation or velocity information.

We used as the control algorithm a noiseless AE
model and defined all the interaction forces between
agents as having the same strength k0 and equilibrium
distance l0. With these simplifications, the AE model is
defined as follows

_~xi = v0 +a~Fi � n̂i
� �

n̂i ð1Þ

_ui =b~Fi � n̂?i ð2Þ

with
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~Fi =
k

l0

X
j2Si

~rij
�� ��� l0
� � ~rij

~rij
�� �� : ð3Þ

Here, ~xi and ui represent the position and heading
direction of agent i, respectively. Unit vector n̂i points
parallel to the agent’s heading direction and n̂?i points
perpendicular to it. Self-propulsion at the preferred
speed v0 is imposed for all agents.

Equations (1) and (2) determine the forward/back-
ward speed and the angular velocity of each agent,
respectively. The system is overdamped: each agent
moves faster or slower than its preferred speed v0 by a
factor proportional to the projection of forces parallel
to its direction of motion, while turning with an angular
velocity proportional to the projection perpendicular to
it (with a and b the respective proportionality con-
stants). In equation (3), ~rij =~xj �~xi is the distance
between agent i and agent j. The total force ~Fi over each
agent i is computed as the sum of linear spring-like
forces with spring constant k=l0 and natural length l0.
This sum is over all neighboring agents (represented by
the Si sets), which we connect through ‘‘virtual springs’’
at the beginning of each run. This choice of interacting
agents remains fixed throughout the experiment. The
interaction network is therefore unchanged from the
beginning, regardless of how much the distance between
robots may change during the run. The use of a fixed
interaction network has advantages and disadvantages
for real-world applications. On one hand, it allows for
individual positions in predetermined formations to be
robust, even under strong perturbations. On the other
hand, such formation rigidity can be a disadvantage for
certain applications and may present implementation
problems, when the inter-robot distances display large
changes throughout the dynamics. In practice, however,
the use of a fixed interaction network does not affect
the results of the experiments and simulations presented
in this article, since we only consider strong attraction–
repulsion forces. The typical distances between agents
will thus not change significantly, and interacting neigh-
bors should remain the same, even without a fixed
network.

We confirmed in preliminary analyses that AE mod-
els with attraction–repulsion potentials that allow
changes of interacting neighbors produce similar self-
organizing dynamics as the fixed interaction models
studied here, but introducing additional complications.
If the interaction range is too short, connectivity is bro-
ken and the swarm can disband; if it is too long, inter-
actions with second neighbors can produce excessive
aggregation. Further studies that go beyond the scope
of this article should therefore be carried out to deter-
mine the proper nonfixed interaction rules for each sce-
nario. For simplicity and robustness, we will thus only
consider here fixed interaction networks.

2.2. Nondimensional form

In order to reduce the dimensionality of the parameter
space, we write the nondimensional form of equations
(1), (2), and (3) in terms of the system’s natural length
and time units, L = l0 and T = l0/v0, respectively. We
thus obtain

d~~xi
d~t

= 1+ ~a
X
j2Si

k~~rij k �1
� �~~rij � n̂i

k~~rij k

" #
n̂i ð4Þ

du

d~t
= ~b

X
j2Si

k~~rij k �1
� �~~rij � n̂?i

k~~rij k
: ð5Þ

Here, the variables with tilde are nondimensional
(expressed in units of L and T) and we have defined the
nondimensional effective coupling constants ~a=ak=v0
and ~b=bkl0=v0. Note that the angular variable u has
no tilde, since it is always nondimensional.

2.3. Self-organizing mechanism

Given that the AE model has no explicit local align-
ment interactions that could directly lead to heading
consensus, a more subtle mechanism for its self-
organization was unveiled in Ferrante et al. (2013a,
2013b). This mechanism is based on a rearrangement
of individual headings that favors the injection of self-
propulsion energy into lower ‘‘elastic’’ modes of the
collective structure formed by all interacting agents. As
in standard damped elastic systems, higher energy
modes tend to decay faster than lower ones, since they
are harder to excite. In this active case, however, each
agent is continuously injecting energy through its self-
propulsion, so all modes cannot be fully dampened.
Instead, through the coupling in equation (2), higher
elastic modes decay by steering agents away from them.
Self-propulsion thus feeds more energy into lower
modes, which have larger regions of coherent motion,
eventually achieving self-organization into collective
motion at the scale of the whole system. A more
detailed explanation of this mechanism was given in
Ferrante et al. (2013a, 2013b). In the remainder of this
article, we will explore the capabilities and limitations
of this mechanism when applied to real robotic systems.

It is important to point out that the scalability of the
AE algorithm, for achieving collective motion in sys-
tems with a large number of agents, has already been
demonstrated numerically in Ferrante et al. (2013a,
2013b). In these papers, simulations with over 3000
agents are shown to self-organize into collective motion.
The approaches presented here could therefore, in prin-
ciple, be applied to larger robotic systems, although fur-
ther research is needed to show that the real-world
conditions explored in this article are also scalable.

Zheng et al. 3
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2.4. Order parameters

We define here two order parameters that will help us
monitor the degree of translational and rotational order
in the system, as in Couzin et al. (2002).

First, we consider a quantity that can monitor to
what extent robots are aligned and moving in a com-
mon direction. The polarization order parameter is thus
defined as

P(t)=
1

N

XN
i= 1

n̂i(t)

�����

�����: ð6Þ

where N is the total number of agents. Second, we
define a quantity that shows when the robots are rotat-
ing as a group. The rotational order parameter is thus
given by

M(t)=
1

N

XN
i= 1

R̂i(t)3 n̂i(t)

�����

�����: ð7Þ

Here, R̂i(t)=~Ri(t)= k ~Ri(t) k is a unit vector pointing
from the group centroid to each agent, defined in terms
of

~Ri(t)=~xi(t)� ~Xctd(t) ð8Þ

where ~Xctd is the position of the group centroid, given
by

~Xctd(t)=
1

N

XN
i= 1

~xi(t): ð9Þ

Note that, with these definitions, the values of P(t)
and M(t) will both range between 0 and 1. A case with
P(t) = 1 and M(t) = 0 corresponds to perfect parallel
group translation and a case with P(t) = 0 and
M(t) = 1, to perfect rotation.

3. Experimental setup and validation

We describe in this section the details of our experi-
mental setup and three tests that we performed to
validate it.

3.1. Agents, arena, and time-step

Our experimental setup is presented in Figure 1. We
chose the e-Puck robots as our agents (Mondada et al.,
2009) because these small differential wheeled robots
can be easily manipulated and programmed. They also
display the smooth forward, backward, and turning
motion required by our algorithm. On top of each e-
Puck, we added a Wi-Fi communication module (Hlk-
wifi-m04), connected to the processor through its serial
port. We can then link a router or a wireless exchange
board to all Wi-Fi modules to achieve one-to-all

broadcast communication. This allows each robot to
receive the relative positions of its neighbors, as well as
its own heading, through wireless information from an
external computer outside of the arena. Each robot
then computes the control algorithm on its onboard
processor and moves accordingly. Note that these rela-
tive positions and heading could have been, in princi-
ple, measured onboard. The only reason for obtaining
them off-board in our experiments is that e-Pucks have
no onboard compass and very imprecise range and
bearing sensors. Our setup thus implements a control
algorithm that could be fully decentralized and autono-
mous (with all sensors and computations onboard) for
robots with better sensing capabilities.

The details of the external sensing system are as fol-
lows. We placed a tag on top of each robot with a tri-
angle pointing in its heading direction and a letter (see
Figure 1(a)). These visual cues were used to determine
the position, orientation, and identity of each robot.
We set up a high resolution camera (1928 3 1448

Figure 1. Robots and arena setup used in our swarm robotics
control experiments. Groups of e-Puck robots, detailed in
Panels (a) and (b), are placed on the arena sketched in (c). Each
agent receives the position of its neighbors and its own
orientation from an external computer, using this information to
compute and execute the control algorithm on board: (a) View
of a modified e-Puck robot used in our experiments. (b)
Diagram of the e-Puck robot structure, viewed from above. (c)
Arena and position acquisition system. The overhead camera
and the computer detect agent positions, relaying them to the
robots via Wi-Fi.
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pixels, FLIR Systems, Point Gray Research, model
GS3-U3-41C6C) over the arena, pointing down, and
linked it to an external computer (see Figure 1(c)). The
camera was set at an approximate height of 1.5 m, in
order to cover an area of approximately 1 3 1.5 m of
the arena (which had a total size of 2 3 2 m), within
which the robots were placed and all the experimental
dynamics were set to occur. Using this setup, snapshots
were taken throughout each experimental run and ana-
lyzed by an image processing software. The positions
and orientations of all robots were then immediately
broadcasted, with each robot receiving through its Wi-
Fi module only its own orientation and the relative
positions of its neighbors. At every update, the
onboard control algorithm thus generated new _~x and _ui
values for each robot, which were converted through a
simple geometrical calculation into the speeds of the
left and right wheels, Sl. and Sr, respectively. As shown
in Figure 1(b), to do this, we first define the forward/
backward speed as V = _~xi � n̂i and the angular velocity
as O= _ui. We then write V = Sl + Sr and O= 2

(sr � sl)=D, where D= 5:5 cm is the distance between
wheels. From here, we can find the expressions
Sl =V � DO=4 and Sr =V +DO=4 for the speed of
each wheel.

Despite requiring additional hardware and a special
arena, the external sensing system in our experiments is
ideally suited for testing the capabilities and limitations
of the AE model. Indeed, since the tracking algorithm
and information broadcasting take some time and are
simultaneous, they force the _~xi and _ui update in control
equations (1) and (2) to be discrete and synchronous.
This update time thus becomes equivalent to the time-
step used in our numerical integration, allowing us to
implement a simple computer simulator that models
not only the idealized motion but also the imprecisions
of each robot, as discussed in the following sections.
Although the processing time is not constant (ranging
from 200 to 300 ms, depending on image complexity),
we will use below a fixed time-step Dt= 240 ms, which
corresponds to the mean processing time.

3.2. Validation in a two-robot system

We validated our experimental setup by testing three
simple cases of the two-robot dynamics for which we
know the theoretical results. In all these tests, we set
the equilibrium distance between robots to l0 = 22:5
cm and the preferred speed to v0 = 2:6 cm/s.

Our first test consisted in placing the two robots
side-by-side, heading in the same direction, and at the
equilibrium distance l0 at which the ~Fi forces in equa-
tion (3) vanish. Since the agents are set to advance in
parallel, their distance should change only due to
experimental errors so forces should remain close to
zero. The result of this test is presented as curve A in
Figure 2, which displays the distance R12 between the

two robots as a function of time (see also Video SV1 in
the Supplementary Material). We observe that R12

oscillates around the preferred equilibrium distance l0,
thus confirming that this is a stable configuration.

The second test was to place the robots back to back,
pointing in opposite directions. In this test, the robots
will move away from each other until they reach an
equilibrium distance Rmax, where their self-propulsion is
balanced by their interaction force. Using equations (1)
and (3), this distance is easily computed as

Rmax= l0 1+
v0

ak

� �
: ð10Þ

The result of this experiment is presented as curve B
in Figure 2 (see also Video SV2 in the Supplementary
Material). Given that ak= 2:25 cm/s, the theoretical
equilibrium distance here is Rmax= 48:5 cm, which is
within 1 mm of the final R12 value reached by the
experimental curve.

In our third and final test, we placed the robots side-
by-side, pointing in parallel but opposite directions. We
set them at a distance Rrot from each other, which we
chose so that both agents follow stationary circular tra-
jectories about a common center of rotation midway
between them (see Video SV3 in the Supplementary
Material). We can compute Rrot by imposing that the
angular velocity of each robot around its own axis is
equal to the angular velocity of its circular trajectory
around the center of rotation. This condition is given
by 2v0=Rrot =bk (Rrot � l0), from where we find that
the distance at which stationary circular trajectories
should be observed is

Rrot =
1

2
l0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l20 +

8v0

bk

s !
: ð11Þ

Figure 2. Relative distances, as a function of time, between the
two robots used in three simple tests performed to validate our
experimental setup (see Section 3.2).

Zheng et al. 5
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Since we used bk= 0:01 s�1 in our experimental
test, we find from here Rrot’ 37 cm. Curve C in Figure
2 shows that, when starting from the initial condition
described above, with R12 =Rrot, the robots trace
quasi-stationary circles about a common center or rota-
tion, as expected. Indeed, this curve shows that the dis-
tance R12 remains reasonably constant, without
displaying the strong drifts observed when starting at
any other distance (data not shown).

The three tests detailed above confirmed that our
control algorithm works as expected in simple two-
robot scenarios. They also displayed evidence of vari-
ous sources of experimental noise that can lead to small
differences with respect to our theoretical results. We
point out, however, that these tests are not a systematic
analysis of the precision or reliability of the two-robot
system. They only describe our verification method for
showing that our setup can match the expected theore-
tical dynamics. We found that our two-robot trials were
always successful when there were no failures in the
robots, tracking, or Wi-Fi system (such as mechanical,
position detection, or communication issues). They
therefore allowed us to debug our experimental setup.
In scenarios where the focus is on the performance of a
specific system for engineering applications, a systema-
tic study of the two-robot system could provide critical
information that can be extrapolated to larger robot
swarms.

4. Translational collective motion

In this section, we study the self-organizing dynamics
that leads to collective translational motion in our
experimental system. We begin by examining the typi-
cal dynamics of a group of seven robots in a hexagonal
formation and with initial random headings. We then
focus on the oscillations in the heading direction that
spontaneously appear after the collective translation
state is reached. These result in sinusoidal trajectories
that are only partially aligned. Finally, we end the sec-
tion by characterizing in detail the experimental noise
measured in our system.

4.1. Typical self-organizing robot dynamics

Figure 3 displays snapshots of the typical self-organizing
dynamics observed in our experiments (see also Video
SV4 in the Supplementary Material). We overlaid here
blue lines on all panels to show which pairs of robots
are interacting. We also added large green arrows to
Panels (b) and (d) to indicate the group’s heading direc-
tion. In addition to these snapshots, Figure 4 plots the
corresponding values of the polarization and rotational
order parameters, as defined in equations (6) and (7),
for the same experiment.

Figure 3(a) shows our standard initial condition;
seven robots placed in an hexagonal configuration
where all interacting pairs are at the equilibrium dis-
tance l0. Note that, although the system can self-
organize into translating collective motion starting
from any set of initial robot orientations, the conver-
gence time and specific dynamics will strongly depend
on this initial condition. We therefore used the same
standard initial condition, displayed on Figure 3(a), in
all experiments performed for the parameter space
exploration presented below. This initial condition con-
sists of placing all robots pointing radially outward
(except for the central one, for which this direction is
undefined). This guarantees that, both, the polarization
and the rotational order parameters will be close to
zero at the beginning of each run (see Figure 4). As
time moves forward, each robot advances in the direc-
tion indicated by the arrow on top of it until the elastic

Figure 3. Snapshots of a robot swarm experiment that
implements the position-based decentralized control algorithm
specified in equations (1)—(3). We observe its typical self-
organizing dynamics toward translating collective motion (see
video SV4 in the Supplementary Material). The overlaid blue
lines indicate which robots are interacting. (a) Standard initial
condition used in our experiments and simulations (t = 0 s);
robots are placed in a perfect hexagonal configuration with all
but the central agent pointing radially outwards. (b) Transient
rotating state (t = 108 s); as the system self-organizes, it
sometimes first visits a metastable rotational state, as displayed
in this panel. (c) Transition to translating state (t = 155 s); the
group eventually leaves the rotational state, converging towards
translational motion. (d) Final self-organized aligned state (t =
216 s); the system achieves translational collective motion and
will move together until it reaches the edge of the experimental
frame.

6 Adaptive Behavior
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forces balance self-propulsion. It then starts oscillating
forward and backward while slowly turning toward a
collective state. Figure 3(b) displays a metastable collec-
tive rotational state that is often visited by the system
before aligning (Ferrante et al., 2013b). It is character-
ized by the high rotational order parameter and low
polarization order parameter (observed in the t’ 100

to t’ 150 interval in Figure 4). The system typically
leaves this state after approximately 50 s, as the central
robot continues to push forward, impeding stationary
rotation. In Figure 3(c), the group starts reorganizing
from rotational to translational collective motion.
Finally, in Figure 3(d), it reaches an aligned state
where all agents advance together, in which the polari-
zation is almost 1 and the rotational order parameter is
almost 0.

4.2. Stability analysis

In the experimental runs described above, we observed
a phenomenon that was already apparent in the sinu-
soidal nature of Curve A in Figure 2; individual head-
ings often display recurrent, persistent oscillations with
respect to the mean heading direction after achieving
translational collective motion. These oscillations can
be seen, for example, in Videos SV1 and SV4 of the
Supplementary Material. To understand the origins of
this phenomenon, we carried out a simple linear stabi-
lity analysis, which we detail below.

We consider a system of two robots advancing
together side by side at the equilibrium distance l0, fol-
lowing the AE control equations (1) and (2). This setup
is equivalent to Test A in Section 3.2, but with zero

noise. If we impose complete symmetry in the initial
conditions, the dynamics will remain symmetric, so
the motion of one robot will be the mirror image of
that of the other. Under these conditions, this system
can be described in terms of the distance Dx and
angular difference Du between robots (see Figure 5).
We find that these quantities evolve following the
equations

d

dt
Dx= 2 v0 � akDx sin

Du

2

� �
sin

Du

2
ð12Þ

d

dt
Du= � 2bkDx cos

Du

2
: ð13Þ

If we then linearize these expressions for small Dx
and Du perturbations, we obtain

d

dt

Dx
Du

� �
=

0 v0
�2bk 0

� �
Dx
Du

� �
: ð14Þ

We can then compute the eigenvalues of the stability
matrix in this equation, which are given by

l6 =6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2bk v0

p
: ð15Þ

Since both eigenvalues are purely imaginary, we con-
clude that this simple two-robot toy system displays
marginal linear stability and that linear perturbations
will not dampen out, producing instead persistent
oscillations.

Although our experimental system contains many
more degrees of freedom than the toy case described
above, this analysis suggests that the AE control algo-
rithm does not dampen out linear perturbations.
Instead, it will sustain small oscillations that can only
decay due to nonlinear interactions. This appears to
explain the observed small, persistent heading oscilla-
tions, suggesting that the AE algorithm may have fun-
damental limitations in achieving and maintaining
perfect alignment.

Figure 4. Polarization and rotational order parameters as a
function of time for the experiment presented in Figure 3. At
t= 0, both order parameters display low values. In the t’100 to
t’150 interval, the robots reach a metastable rotating state with
low polarization and large rotational order parameter. Finally, for
t.200, the system converges to translating collective motion,
displaying high polarization and low rotational order parameter.

Figure 5. Sketch of the minimal two-robot fully symmetric
setup for studying the linear stability of the aligned state.
Perturbation variables Dx and Du represent, respectively, small
differences in the distance and relative heading angle between
the robots with respect to their equilibrium values.

Zheng et al. 7
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4.3. Experimental noise analysis

Our experimental control system can have multiple
sources of error. We will refer to these, generically, as
noise. An interesting advantage of our setup is that the
information required by each agent to determine its
next linear and angular speeds is measured and broad-
casted simultaneously to all robots. This allows us to
characterize the experimental noise by comparing their
predicted and observed values at every update step.

Panel (a) of Figure 6 displays a scatter plot of the
difference at every update step between predicted and
observed angular and linear speed values, labeled Dv
and Dv, respectively. We carried out a set of experi-
ments similar to those in Figure 3, where seven robots
in a hexagonal configuration self-organize starting from
our standard initial condition. We then computed Dv
and Dv at every update throughout the trajectories of
four of the robots, each in a different experimental run,
and plotted the resulting values. We observe that all
four scatter plots follow a similar distribution. Their
approximate specular symmetry with respect to both
axes is evidence of no significant systematic errors in
the linear or angular speed of the robots. The noniso-
tropic shape implies nontrivial correlations between Dv
and Dv. If we neglect these correlations and plot both
errors independently, however, we observe that they
follow relatively narrow Gaussian-like distributions, as
seen in Panels (d) and (e). It is apparent in these figures,
however, that these experimental noise distributions
also include rare (but large) long-tail events that cannot
be described by a simple Gaussian function.

Rather than attempting to capture all the subtleties
of the experimental noise, we will focus here on finding
a minimal description of the noise distribution that
reproduces the main qualitative properties of the
observed dynamics. We therefore search for Gaussian
functions that match only the central regions of the Dv
and Dv distributions. To do this, we generate Q-Q
(quantile–quantile) plots for all the Dv and Dv data
against the quantiles of two normal distributions. We
then find the standard deviation values for which their
central regions match the diagonal, obtaining
sDv ’ 0:03 rad/s and sDv ’ 0:1 cm/s, respectively. We
confirm in Panels (b) and (e) of Figure 6 that the result-
ing Gaussian functions are a good approximation of
the central regions (for jDvj\0:05 and jDvj\0:2,
respectively) of the experimental noise.

The analysis presented above shows that our noise
distributions can be reasonably well approximated by
Gaussian functions. We can therefore simulate the
experimental noise by adding normally distributed ran-
dom variables to the speed and angular velocity of each
agent. We will implement this approach below to study
how this noise and the control parameters affect self-
organization.

5. Dependency on control parameters

In this section, we will study how the self-organizing
dynamics and the stability of polarized states depend
on the AE algorithm parameters a, b, v0, k, and l0.

In order to reduce our parameter space to two
dimensions, we will use the non dimensional quantities
~a and ~b, introduced in equations (4) and (5), as control
parameters. This formulation captures all possible solu-
tions of the original equations (1) and (2), but expressed
in non dimensional units of space and time (L= l0 and
T = l0=v0, respectively). The actual spatio-temporal
scales are relevant in real-world systems, however, since
they are typically constrained by experimental condi-
tions. In our case, spatial scales are bounded by the
minimum distance between robots and by the size of
the arena. Robot speeds are in turn limited by their
operational range. Indeed, we found that e-Pucks could
not be controlled with precision when they moved
slower than ;0:2 cm/s and that our tracking system
produced significant errors when they moved faster
than ;1 cm/s. Given these constraints, we fixed our
dimensional values to v0 = 0:5 cm/s, l0 = 15 cm and
k= 0:015 in all experiments below, and then scanned
the parameter space as a function of ~a and ~b.

The simulations implemented for this section were
designed to closely mimic our experiments. In order to
reproduce the effects of the experimental update step,
we used a forward Euler method with numerical time-
step Dt= 240 ms, which we found to be the mean pro-
cessing time of our position acquisition system. We
simulated the experimental noise by adding, at every
time-step, a normally distributed independent random
variable (with the standard deviation values, sDv and
sDv, computed in Section 4.3) to the linear and angular
speeds of each agent, that is, to the right-hand side of
equations (1) and (2).

Following the approaches described above, we car-
ried out a set of experimental and numerical runs using
for the same parameter combinations, starting from
our standard initial conditions, and mimicking numeri-
cally the experimental update step and noise. We char-
acterize below the resulting dynamics and self-
organizing properties.

5.1. Experimental and numerical dynamics

Figure 7 displays examples of the typical polarization
order parameter dynamics P(t) in experiments and
simulations, for four selected nondimensional para-
meter combinations that cover our experimental opera-
tional range. These were chosen from the experiments
and simulations that were performed to generate the
four corners of the diagrams presented in Figures 8 and
9. We will analyze here these four representative exam-
ples of the dynamics, rather than their mean

8 Adaptive Behavior
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Figure 6. Analysis of the experimental noise in the angular and linear speeds of each robot. All plots display the difference between
their predicted and measured values after every experimental update, labeled Dv and Dy, respectively. Panel (a) shows a scatter plot
of the angular and linear speed errors (Dv, Dy) for four different robots in different experimental runs (distinguished by different
symbols and colors). Panels (b) and (c) present the Q-Q (quantile-quantile) plots of the angular speed noise Dw and linear speed
noise Dv error data (obtained in five experiments for all seven robots in the hexagonal configuration) against the quantiles of two
Gaussian distributions that match their central regions. Panels (d) and (e) display the Dv and Dy distributions with their
corresponding Gaussians overlaid as blue curves. The red lines indicate the central regions (|Dv|\ 0.05 and |Dy|\ 0.2) where
these provide a good approximation. Speeds are measured in cm/s and angles in rad/s.
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characteristics over all available data, in order to com-
pare the multiple features that they display, albeit qua-
litatively. An advantage of carrying out this type of
initial analysis is that many of these features, such as
the details of the observed oscillations, could be lost
when averaging over specific characterizing quantities.

We will then perform a quantitative analysis of the
mean behavior of two selected features in Section 5.2.

The figure shows that the experimental and numeri-
cal curves display similar features. For the same ~a, ~b
values, the typical time it takes to reach the polarized
state is almost identical. The maximum polarization
reached and type of oscillations displayed by the differ-
ent curves are also very similar. A difference, however,
is that the noise appears to more easily destabilize the
self-organized polarized state in the experimental case.
This is apparent in the ~a= 25, ~b= 100 curve, where
noise-driven oscillations destabilize the ordered state
after ;150 s. These oscillations also seem to be respon-
sible for the lower level of order reached by the ~a= 10,
~b= 10 experiment.

We hypothesize that the difference that we observe
between the experimental and numerical dynamics is
mainly due to the long tails displayed by the noise dis-
tributions in Figure 6. These are not captured by our
Gaussian approximations and reflect rare but strong
perturbations that can push the swarm away from its
ordered state. We note, however, that this difference
could also be due to other properties of the noise not
included in our model, such as systematic hardware
errors or correlations between noise sources. In order to
examine the potential role of these different factors in
mimicking numerically the observed dynamics, future
works will have to develop a more detailed description
of the noise (including its systemic components for dif-
ferent specific hardware pieces and its multiple underly-
ing correlations) and quantitative measures for

Figure 7. Polarization order parameter as a function of time
for selected experimental and numerical runs with the same
non-dimensional parameter combinations (~a, ~b): (a) Polarization
order parameter in experimental data. (b) Polarization order
parameter in numerical data. Each curve corresponds to a run
with seven robots in a hexagonal configuration, starting from
our standard initial conditions (see Figure 3). Dimensional
parameters were fixed to v0 = 0.5 cm/s, l0 = 15 cm, k = 0.015,
and Dt = 0.240 s for all runs. The experimental and numerical
curves display similar features, including their convergence times
and the level of self-organized polarization they reached.
Experimental curves display larger fluctuations, however, which
tend to destabilize their ordered state, as in the ~a = 25, ~b = 100
case. Note that some of these end early, when robots exit the
arena.

Figure 8. Time t required to first reach a self-organized state
with polarization Pø 0:5, as a function of nondimensional
control parameters ~a and ~b. Experimental results (left-side
panel) are compared to simulations with two different numerical
time-steps: Dt= 240 ms (central panel) and Dt= 24 ms (right-
side panel). We observe that experiments and simulations with
Dt= 240 ms behave almost identically, whereas the Dt= 24 ms
time-step produces faster convergence times. In all cases, the
fastest convergence is for low ~a and high ~b values. Each unit in
the color scale corresponds to 240 ms.
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characterizing the self-organizing dynamics of the spe-
cific robot swarm under consideration.

5.2. Phase diagrams

We will now study how self-organization into translat-
ing collective motion depends on the control para-
meters ~a and ~b. We refer to the resulting figures as
‘‘phase diagrams,’’ in a loose analogy with the plots
used in physics to represent changes in the state of a
given system as a function of its control parameters.

We present below two phase diagrams, each corre-
sponding to a different order parameter. The first-order
parameter, t, is defined as the amount of time it takes
for the group to first reach a polarized state with
P(t)ø 0:5, starting from our standard initial condition
in Figure 3. The second one, C= hP(t)it. t, is defined
as the mean polarization from time t until the end of
the experiment or simulation. With this definition, C
can be computed for runs of any duration, which is
required because the length of the P(t) data set will be
different in each experiment, since it is determined by
the amount of time the group remains within the track-
ing region of the arena. Note that a low C value can
reflect either that the ordered state is not strongly
aligned or that order was lost after time t. An example
of the latter can be found in the ~a= 25, ~b= 100 curve
of Figure 7, which yields a low C value despite tempo-
rarily reaching a high degree of order.

Figures 8 and 9 present the experimental and numer-
ical phase diagrams for t and C, respectively, as a func-
tion of ~a and ~b. These results were obtained by
sampling 24 experimental parameter combinations,
corresponding to four values of ~a (10, 15, 20 and 25)
and six values of ~b (10, 20, 40, 60, 80 and 100). For
each parameter set, we performed five repetitions of
the experiment, starting from our standard initial con-
dition displayed on Panel (a) of Figure 3 (with all
agents pointing radially outward, except for the central
one for which this direction is undefined). We then
selected the three experimental runs with the smallest
trajectory variations (measured as the difference
between polarization curves) to discard outlier experi-
mental runs. For each parameter set, we also per-
formed 20 numerical runs with different noise seeds.

The left-side panel of Figure 8 displays the mean
value of t, averaged over the three selected experimen-
tal runs. The central and right-side panels present t
averaged over all 20 simulations, using time-steps
Dt= 240 ms and Dt= 24 ms, respectively. The diagram
shows that our simulations closely predict the experi-
mental convergence times when we set the numerical
time-step to 240 ms, in order to match the mean update
time measured in our experiments. When we consider a
shorter time-step of Dt= 24 ms, all convergence times
are significantly reduced, but the structure of the phase
diagram remains the same. For all Dt values, the low ~a

and high ~b region displays the shortest convergence
times.

Figure 9 presents the mean value of C, averaged
over the same experiments and simulations used in
Figure 8. The left-side and central panels show that in
this case, even when using the same Dt= 240 ms as in
experiments, we observe much lower experimental
polarization values than predicted by simulations. We
also note that these phase diagrams display no clear
structure, showing instead strong fluctuations between
regions with neighboring ~a, ~b values. Only when a
much smaller Dt= 24 ms is used, a cleaner phase dia-
gram emerges, where the highest C values are reached
for low ~a, high ~b parameter combinations.

In order to better understand the structure of these
phase diagrams and their dependency on Dt, we gener-
ated more detailed versions using only numerical simu-
lations, which we present in Figures 10 and 11. These
new diagrams display results for 90 parameter combi-
nations, using Dt= 240 ms in Panel (a) and Dt= 24 ms
in Panel (b). They show the same structures as Figures
8 and 9. The phase diagrams obtained for t with differ-
ent time-steps are again very similar, showing only
slightly shorter convergence times in the small Dt case.
The diagram for C is again very noisy for large Dt and
only displays a clear structure for small Dt. A detailed
analysis of the numerical convergence curves showed
that the main cause for this is that larger Dt values pro-
duce much less stable polarized states. This appears to
be related to the persistent oscillations that develop
after the agents align, which stems from the marginally
stable dynamics of the AE algorithm that we showed in
Section 4.2. Indeed, the stability of the converged state

Figure 9. Mean polarization C after first reaching a self-
organized state with Pø 0:5, as a function of nondimensional
control parameters ~a and ~b. Experimental results (left-side
panel) are compared to simulations with two different numerical
time-steps: Dt= 240 ms (central panel) and Dt= 24 ms (right-
side panel). Here, the agreement between experiments and
simulations is much less than for t (see Figure 8), but all cases
still tend to display higher order for low ~a and high ~b values. In
contrast to Figure 8, the shorter numerical time-step (Dt= 24
ms) produces here very different results, displaying a much
higher level of self-organized polarization.
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would be greatly reduced when using large time-step
values in this scenario, since these can easily destabilize
marginally stable systems by amplifying small oscilla-
tions. This would also explain why C is becoming
smaller for ~a= 7:5 and ~b= 100, since this parameter
combination will also enhances the destabilizing effect
of these oscillations.

By combining the information in these types of
phase diagrams, it is possible to predict the region of
parameter combinations that should favor fast and
robust self-organization in a given experimental system.

After inspecting Figures 10 and 11, for example, we can
estimate that in our specific setup, ~a’ 10 and ~b’ 80

appear to be a good compromise region for achieving
rapid convergence to a self-organized state that has a
relatively high and stable level of order. We can also
predict that the experimental update time must be
smaller than 240 ms to achieve a self-organized state
that is reliably robust, but it does not need to be smaller
than 24 ms. Finally, these phase diagrams also show
that even a simple Gaussian approximation of the mea-
sured experimental noise yields good predictions for the

Figure 10. Time t required to first reach a self-organized state with polarization Pø 0:5, as a function of nondimensional control
parameters ~a and ~b, in numerical simulations with two different values for the time-step Dt: (a) Simulations with time-step Dt ¼ 240
ms. (b) Simulations with time-step Dt ¼ 24 ms. Whereas convergence is faster for the smaller Dt, the difference is small and the
structure of the phase diagram is the same. The diagram predicts that swarms with low ~a and high ~b values will produce the fastest
self-organizing dynamics. Each unit in the color scale corresponds to 240 ms.

Figure 11. Mean polarization C after first reaching a self-organized state with Pø 0:5, as a function of nondimensional control
parameters ~a and ~b, in numerical simulations with two different values for the time-step Dt: (a) Simulations with time-step Dt ¼ 240
ms. (b) Simulations with time-step Dt ¼ 24 ms. In contrast to Figure 10, a smaller Dt produces here a very different, much less noisy
diagram with significantly lower C values. The figure predicts that swarms with ~a’10 and ~b’80 will reach the highest C values.
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expected dynamics. We note, however, that although
these simulations typically mimic the expected type of
trajectories, these can sometimes display significant dif-
ferences with the experiments because they fail to cap-
ture important details of the real-world noise, such as
correlations between error sources or rare, but large,
non-Gaussian fluctuations.

6. Rotational collective motion

Collective rotation is another state of collective motion
found in nature (Calovi et al., 2014; Pitcher, 1983;
Radakov, 1973; Tunstrøm et al., 2013), in which agents
self-organize to orbit around a central point. In this
section, we will show that our AE algorithm can be
modified to produce self-organization into this rotating
state.

In order to achieve collective rotation, we made a
small modification in the AE equations, introducing a
different v0 for each agent. We thus set v0(R) as linearly
proportional to the distance R between the correspond-
ing robot and the collective center of rotation, which
we place at the centroid of the group. With this change,
each robot can advance at its preferred speed while the
group rotates collectively as a rigid body, without
changing the distance between agents. Note that, as
shown in Figure 3, the standard AE algorithm can also
reach collective rotation, but only as a metastable state.
By increasing v0 with the distance to the center of rota-
tion, we stabilize this rotating state. It thus becomes the
final result of the self-organizing process, in which all
robots can remain at their equilibrium distances while
advancing at their preferred speeds.

We carried out proof-of-concept experiments to test
whether real-world rotational collective motion can be
achieved with our modified AE algorithm. We per-
formed two sets of five repetitions of the experiments
detailed below, always obtaining the same qualitative
outcome. For these tests, we set up an elongated struc-
ture, rather than a hexagon, using the same seven
robots. This structure increases the difference between
the largest and smallest preferred v0 values, thus favor-
ing collective rotation. We note that our modified AE
algorithm does not aim to self-organize the system into
this initial condition, given here by the agent positions
within the elongated formation and their corresponding
R values. Other decentralized control algorithms in the
literature could be used to reach this state, however,
such as the algorithm used in Rubenstein et al. (2014),
which can also provide the initial R values needed to
compute v0.

Figure 12 displays snapshots of our proof-of-concept
experiment. As shown in Panel (a), all robots were ini-
tially placed at a distance l0 = 15 cm from their nearest
neighbors, with random headings. The experimental

parameters were set to a= 5, b= 30, k= 0:015. The
preferred speed for each robot i was defined as
v0(i)= 2Ri=(

ffiffiffi
3

p
l0) cm/s, where Ri is its distance to the

centroid of the structure (which we chose to be the cen-
ter of rotation). With this definition, the preferred
speed of the robot labeled D in Panel (a) was set to
v0 = 0:5 cm/s. Panel (b) shows the group starting to
self-organize, as it arranges into circular headings that
are approximately tangential to the line connecting
each robot to the center of rotation. In Panels (c) and
(d), we confirm that a persistent state of collective rota-
tion is established.

The ability demonstrated above by our modified AE
algorithm to self-organize agents into a rotating state
highlights the many potential applications of our AE
model in robot swarm control. Indeed, as discussed in
the ‘‘Introduction’’ section, most decentralized control
algorithms rely on explicit alignment, and can therefore
only produce collective translation. The AE model will
instead lead a group of agents to the lowest accessible
elastic mode of their collective structure, which can be

Figure 12. Snapshots of a proof-of-concept robot swarm
experiment that self-organizes into rotational collective motion
by following the control algorithm in Section 6 (see video SV5 in
the Supplementary Material). The overlaid blue lines indicate
which robots are interacting. (a) Initial condition with all robots
at natural distance l0 from their neighbors and random headings
(t = 0 s). (b) Self-organization into circular headings (t = 47 s); as
the system starts self-organizing, robots reorient into circular
headings while the group rotates its first 90 degrees. (c)
Structure starts rotating (t = 107 s); rotating motion is
established. (d) Collective rotation continues until the end of
the experimental run (t = 124 s).
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expected dynamics. We note, however, that although
these simulations typically mimic the expected type of
trajectories, these can sometimes display significant dif-
ferences with the experiments because they fail to cap-
ture important details of the real-world noise, such as
correlations between error sources or rare, but large,
non-Gaussian fluctuations.

6. Rotational collective motion

Collective rotation is another state of collective motion
found in nature (Calovi et al., 2014; Pitcher, 1983;
Radakov, 1973; Tunstrøm et al., 2013), in which agents
self-organize to orbit around a central point. In this
section, we will show that our AE algorithm can be
modified to produce self-organization into this rotating
state.

In order to achieve collective rotation, we made a
small modification in the AE equations, introducing a
different v0 for each agent. We thus set v0(R) as linearly
proportional to the distance R between the correspond-
ing robot and the collective center of rotation, which
we place at the centroid of the group. With this change,
each robot can advance at its preferred speed while the
group rotates collectively as a rigid body, without
changing the distance between agents. Note that, as
shown in Figure 3, the standard AE algorithm can also
reach collective rotation, but only as a metastable state.
By increasing v0 with the distance to the center of rota-
tion, we stabilize this rotating state. It thus becomes the
final result of the self-organizing process, in which all
robots can remain at their equilibrium distances while
advancing at their preferred speeds.

We carried out proof-of-concept experiments to test
whether real-world rotational collective motion can be
achieved with our modified AE algorithm. We per-
formed two sets of five repetitions of the experiments
detailed below, always obtaining the same qualitative
outcome. For these tests, we set up an elongated struc-
ture, rather than a hexagon, using the same seven
robots. This structure increases the difference between
the largest and smallest preferred v0 values, thus favor-
ing collective rotation. We note that our modified AE
algorithm does not aim to self-organize the system into
this initial condition, given here by the agent positions
within the elongated formation and their corresponding
R values. Other decentralized control algorithms in the
literature could be used to reach this state, however,
such as the algorithm used in Rubenstein et al. (2014),
which can also provide the initial R values needed to
compute v0.

Figure 12 displays snapshots of our proof-of-concept
experiment. As shown in Panel (a), all robots were ini-
tially placed at a distance l0 = 15 cm from their nearest
neighbors, with random headings. The experimental

parameters were set to a= 5, b= 30, k= 0:015. The
preferred speed for each robot i was defined as
v0(i)= 2Ri=(
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centroid of the structure (which we chose to be the cen-
ter of rotation). With this definition, the preferred
speed of the robot labeled D in Panel (a) was set to
v0 = 0:5 cm/s. Panel (b) shows the group starting to
self-organize, as it arranges into circular headings that
are approximately tangential to the line connecting
each robot to the center of rotation. In Panels (c) and
(d), we confirm that a persistent state of collective rota-
tion is established.

The ability demonstrated above by our modified AE
algorithm to self-organize agents into a rotating state
highlights the many potential applications of our AE
model in robot swarm control. Indeed, as discussed in
the ‘‘Introduction’’ section, most decentralized control
algorithms rely on explicit alignment, and can therefore
only produce collective translation. The AE model will
instead lead a group of agents to the lowest accessible
elastic mode of their collective structure, which can be

Figure 12. Snapshots of a proof-of-concept robot swarm
experiment that self-organizes into rotational collective motion
by following the control algorithm in Section 6 (see video SV5 in
the Supplementary Material). The overlaid blue lines indicate
which robots are interacting. (a) Initial condition with all robots
at natural distance l0 from their neighbors and random headings
(t = 0 s). (b) Self-organization into circular headings (t = 47 s); as
the system starts self-organizing, robots reorient into circular
headings while the group rotates its first 90 degrees. (c)
Structure starts rotating (t = 107 s); rotating motion is
established. (d) Collective rotation continues until the end of
the experimental run (t = 124 s).
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designed through small modifications to correspond to
any number of collective states. For example, given
that our elastic forces can be established permanently
between any combination of robots (not only all near-
est neighbors), one can imagine defining interaction
networks that lead to self-organized states with various
locally rotating substructures.

7. Discussion and conclusions

In this work, we have analyzed for the first time the
capabilities and limitations of the AE model as a real-
world decentralized control algorithm in a swarm
robotics experiment. In contrast to its only previous
implementation, in Ferrante et al. (2012), we focused
here on characterizing the dependency of the self-
organizing dynamics on model parameters and the
effects of the experimental noise. We thus showed that
it can effectively lead robots to self-organize into collec-
tive translating or rotating motion. Since the AE algo-
rithm relies only on the positional information of
neighbors, our experiments showed that robots do not
require hardware that detects the headings of other
robots to achieve self-organized collective motion.

Our control algorithm was fully implemented on
board, but it was fed the robot’s own orientation and
neighbor positions by an external tracking system set
up above the arena. Despite its current use of external
information, this implies that the AE algorithm could
be executed fully autonomously in other robots, if they
have sensors capable of determining this information
individually and with enough precision. Note that, in
this case, each robot would not require additional hard-
ware to determine its own heading direction, since the
position of its neighbors would already be measured
with respect to the orientation of its own reference
frame.

It is important to point out that a fully onboard
implementation of the AE algorithm (including all sen-
sing) would result in several differences when compar-
ing with our experiments. The most notable practical
difference is that no external position acquisition cap-
abilities would be needed, thus allowing the implemen-
tation of the AE algorithm in a broader range of
conditions. Regarding algorithm performance, the dif-
ference will depend on the precision and processing
times of the onboard sensors when compared with our
arena. On one hand, these sensors will typically be less
precise than our external system, and could perform
badly when confronted with occlusions or large inter-
agent distances. On the other hand, our external system
is based on image analysis, which has its own limita-
tions. For example, the processing time is relatively
long (and increases with the number of robots) and the
position detection fails at the edges of the arena. The
effects on noise and performance of using onboard

sensors will thus depend on how they behave under the
required operational conditions and for the desired
swarm dynamics.

An important difference between onboard and exter-
nal position acquisition systems that can be addressed
in a general framework stems from the synchronous
or asynchronous nature of their updating processes.
Indeed, our arena acquisition system measures and
broadcasts the required position information to all
agents almost simultaneously. This implies that all
robots update their control algorithms practically at
the same time. In contrast, onboard sensors are typi-
cally not synchronized, so individual robot dynamics
will be updated asynchronously. In order to test the
effects of this difference, we performed preliminary
simulations that show that the asynchronous and syn-
chronous dynamics follow similar trends (data not
shown). The asynchronous simulations appear to pro-
duce more noisy trajectories, however, especially in the
high b cases, although this difference is reduced for
smaller Dt values. We thus find that similar analyses
and overall conclusions could be applied to the asyn-
chronous case, although its complete understanding
will require systematic studies that are left for future
work.

The use of an external tracking system allowed us to
study in detail the properties of the experimental noise.
Indeed, the fact that the information required to exe-
cute the control algorithm is collected and broadcasted
simultaneously to all robots makes our experiment
equivalent to a numerical simulation with synchronous
update. We are thus able to analyze the experimental
noise by comparing the predicted and observed robot
states after every time-step. We found that the noise
distribution of both the angular and linear speeds can
be well fitted by Gaussians. However, we also observed
small deviations from this distribution in the form of
long-tails that correspond to strong perturbations with
low probability. Despite these differences, we were able
to successfully model the effects of noise by adding to
the linear and angular speed of each agent a Gaussian-
distributed random variable with the corresponding,
experimentally measured, standard deviation.

By simulating the effects of noise, we found that we
can numerically predict the approximate dynamics
observed in experiments. The speed of self-organization
and the stability of the ordered states are slightly lower
in experiments than in simulations, however, which is
likely due to the observed non-Gaussian fluctuations
and potential underlying correlations of the noise dis-
tributions. This could be verified in future work by
using random variables with the exact experimental
noise distributions. Despite these small differences, our
results show that numerical simulations that approxi-
mately include the experimental noise can be used to
determine the optimal operational regime of a real-
world robot swarm.
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We also found in this article that the AE algorithm
produces a self-organized translating state in which
robots display small persistent oscillations about the
aligned state. We studied the source of these oscilla-
tions by carrying out a simple two-robot analytical cal-
culation and showed that they are a generic feature of
the AE control algorithm, resulting from the marginal
linear stability of the aligned state.

Taken together, the results highlighted above suggest
various ways in which our work could be generalized to
other swarm robotic systems. First, our experimental
analyses could be useful for the future implementation
of position-based algorithms in any context where
exchanging orientational information is impossible or
inefficient (for example, if the robots have very limited
sensing capabilities). Second, our studies lay the
groundwork for extending this type of algorithms to
other experimental robotic swarms, such as unmanned
underwater or aerial vehicle swarms, since the AE
model could be extended to three dimensions and to
include the effects of inertia, winds, currents, and so on.
Third, our characterization of the noise dynamics and
of the response to parameter changes under real-world
conditions could be generalized to other types of
swarms. Fourth, we expect that an intermediate, com-
promise a and b parameter region (where convergence
is fast but also stable to large perturbations), as well as
the observed persistent oscillations (which we identified
as a potential problem), should be present in other simi-
lar position-based systems. Finally, our analysis meth-
ods for characterizing noise distributions could be
extended to other robot swarms, and in some real-
world scenarios where the control update can be syn-
chronous, we showed that these distributions can be
directly incorporated into simulations to predict opti-
mal parameter ranges.

In future work, we plan to further develop the noise
characterization carried out in this article, in order to
better match the theoretically predicted and the experi-
mentally observed robot trajectories. We also plan to
consider model modifications that could correct the
marginal stability identified in the aligned state, which
should improve its robustness. Furthermore, given that
we demonstrated that rotational collective motion can
be achieved by simply imposing different preferred
speeds to different robots, we plan to test other simple
modifications that could achieve new self-organized
states, going beyond the usual collective translation or
rotation. Finally, it would be interesting to extend our
AE algorithm to three-dimensional systems, in order to
test its effectiveness for Unmanned Aerial Vehicle
(UAV) swarm control.

An interesting question that was not addressed in
this article is how a group of robots that follow the AE
algorithm would interact with obstacles. This is a com-
plex matter, since the answer will strongly depend on

their shape and their type of interactions with the
robots. We can argue, however, that the AE algorithm
has interesting potential capabilities in this regard.
Indeed, since the model already includes attraction–
repulsion forces, it provides a natural setting for design-
ing different obstacle collision avoidance rules that can
address specific swarm-obstacle interaction challenges.
For example, if obstacles are treated as purely repulsive
forces that are strong at short range but weak at inter-
mediate (order l0) distances, small obstacles could pass
through the group without colliding with individual
robots and without significantly affecting its structure.
In contrast, if the obstacles are treated as having strong
forces at scales larger than l0, they would act as reflec-
tive barriers for the whole group. These examples show
that the choice of the robot–obstacle interactions is crit-
ical in determining the resulting group dynamics.
Therefore, developing an understanding of the capabil-
ities of the AE algorithm in this context will require a
systematic exploration of multiple scenarios. This inter-
esting and worthy new research will also be left for
future work.
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2 Another algorithm known to achieve collective motion
without orientation information exchange was proposed
in Szabó et al. (2006).
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Chaté, H., & Theraulaz, G. (2012). Deciphering interac-
tions in moving animal groups. PLOS Computational Biol-

ogy, 8(9), Article e1002678.
Gautrais, J., Jost, C., & Theraulaz, G. (2008). Key beha-

vioural factors in a self-organised fish school model.
Annales Zoologici Fennici, 45(5), 415–428.

Katz, Y., Tunstrøm, K., Ioannou, C. C., Huepe, C., & Cou-

zin, I. D. (2011). Inferring the structure and dynamics of
interactions in schooling fish. Proceedings of the National

Academy of Sciences of the United States of America,

108(46), 18720–18725.

Kushleyev, A., Mellinger, D., Powers, C., & Kumar, V.
(2013). Towards a swarm of agile micro quadrotors.

Autonomous Robots, 35(4), 287–300.
Mathews, N., Christensen, A. L., OGrady, R., Mondada, F.,

& Dorigo, M. (2017). Mergeable nervous systems for
robots. Nature Communications, 8, Article 439.

Mersch, D. P., Crespi, A., & Keller, L. (2013). Tracking indi-
viduals shows spatial fidelity is a key regulator of ant social
organization. Science, 340(6136), 1090–1093.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C.,
Klaptocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D.,
& Martinoli, A. (2009). The e-puck, a robot designed for
education in engineering. In P. J. S. Goncxalves, P. J.
D. Torres, & C. M. O. Alves (Eds.), Proceedings of the 9th
conference on autonomous robot systems and competitions

(Vol. 1, pp. 59–65). Instituto Politécnico de Castelo Branco.
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